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ABSTRACT. Many real-world optimization problems have to face a lot of difficulties: they are often 
characterized by large and complex search spaces, multiple conflicting objective functions, and a host of 
uncertainties that  have to be taken into account.  Metaheuristics are natural candidates to solve those 
problems and make them preferable to classical optimization methods. We here propose a number of new 
evolutionary  algorithms  to  find  a  set  of  non-dominated  solutions  from  multiobjective  optimization 
problems  in  uncertain  environments.  Experiments  are  conducted  on  multiobjective  scheduling  with 
stochastic processing times.

KEYWORDS. Multiobjective optimization problem; Uncertain environments; Evolutionary algorithms; 
Scheduling.

1. MOTIVATIONS

Nowadays, it has become clear that many practical optimization problems have to deal with multiple, 
usually conflicting, objective functions. In recent years, one of the most challenging issues related to 
multiobjective optimization is related to the identification of the Pareto set, or an approximation of it for 
large-size and difficult problems. For such a purpose, evolutionary algorithms have received a growing 
interest (Deb, 2001). However, a large part of multiobjective optimization problems are also subject to 
uncertainties coming from many sources, whether on decision variables and environmental parameters, or 
on an objective function by itself. There exists a growing demand for solving such real-world problems. 
In  practice,  existing  approaches  often  consist  in  modeling  the  original,  uncertain,  problem  in  a 
deterministic way. However, a few adjustments in terms of resolution methods can be very useful  to 
address such problems. This research area has received an increasing interest in recent years because of 
its difficulty, yet practical matter. By their inherent stochastic nature, conventional metaheuristics with 
sufficient  adaptations  present  interesting  mechanisms  for  solving  optimization  problems  under 
uncertainty. Although they are commonly used to solve multiobjective problems on the one hand (Deb, 
2001) and stochastic problems on the other hand (Jin and Branke, 2005), very few studies have been 
conducted simultaneously on both issues.  For instance,  scheduling problems are usually tackled  in a 
single-objective and deterministic way. However, they are generally clearly multiobjective (T’Kindt and 
Billaut, 2002) and they are subject to many uncertainties (Billaut et al., 2008). Despite the importance of 
multiobjective optimization and optimization under uncertainty, a very limited number of studies devoted 
to the consideration of these two aspects exist to date.

To our knowledge, existing approaches for solving multiobjective optimization problems that are subject 
to uncertainties consist of the following ones. Firstly, Teich (2001) and Hughes (2001) independently 
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suggested  to  extend  the  concept  of  Pareto  dominance  for  the  stochastic  case.  They  integrate  this 
probabilistic dominance into the fitness assignment scheme of a multiobjective search method. But both 
studies make an assumption on the probability distribution the objective functions follow. Deb and Gupta 
(2006) propose to associate the average value for each dimension of the objective space to any feasible 
solution, determined over a given sample of objective vectors. A classical multiobjective search method, 
usually  designed  for  deterministic  multiobjective  optimization  problems,  is  then  applied  over  these 
approximated  objective  vectors.  More  recently,  Barrico  and  Antunes (2007)  introduced  a  process  to 
quantify  the  degree  of  robustness  of  a  solution  that  is  integrated  into  a  multiobjective  evolutionary 
algorithm.  Additionally,  Goh and Tan (2007)  studied  the  impact  of  noisy  objective  functions  on  the 
performance  of  a  set  of  evolutionary  multiobjective  optimization  algorithms.  According  to  the 
classification proposed by Jin and Branke (2005),  all  these methods deal either  with noisy objective 
functions or with robustness on design variables, even if all of them can generally be applied in both 
cases. Although all  the contributions of the paper can be applied to a large number of multiobjective 
optimization  problems subject  to  uncertainties,  experiments  are  here  carried  out  on  a  multiobjective 
combinatorial optimization problem where stochastic environmental parameters are involved.

In many cases related to noisy objective functions, uncertainty on decision variables or on environmental 
parameters, the basic concept of uncertainty handling can be translated by the application of sets from the 
decision space to the objective space.  Hence, taking the uncertainty into account often results in the 
comparison  of  sets.  From a  multiobjective  standpoint,  a  solution  is  projected  into  a  sample  set  of 
objective vectors, whose shape is generally not known in advance. The main challenge raised by such 
stochastic multiobjective problems can be summarized by the pair-wise comparison of objective vector 
sets, rather than a pair-wise comparison of single objective vectors in the deterministic case. Resolution 
methods and performance assessment protocols must then be adapted to deal with this specificity, either 
through the selection of representative objective vectors or by adjusting their internal mechanisms.

Here, we present a set of approaches devoted to stochastic multiobjective problem solving. Then, we 
introduce a bi-objective permutation flow-shop scheduling problem with stochastic processing times. To 
the best of our knowledge, this is the first time that such a stochastic scheduling problem is investigated 
in a multiobjective way.

2.  INDICATOR-BASED  METAHEURISTICS  FOR  MULTIOBJECTIVE  OPTIMIZATION  IN 
UNCERTAIN ENVIRONMENTS

The set of  approaches proposed for the resolution of stochastic multiobjective optimization problems 
generalize  the  indicator-based  fitness  assignment  strategy  in  order  to  take  uncertainty  into  account. 
Hence, such schemes can take place in any indicator-based metaheuristic, and they are investigated here 
on evolutionary algorithms, in particular the Indicator-Based Evolutionary Algorithm (IBEA) proposed 
by Zitzler and Künzli (2004). To this end, we assume that a sample set of objective vectors is associated 
to any feasible solution. Sample sets are computed by means of a finite set of equally likely scenarios, 
each one corresponding to a realization of random variables (Fig. 1).

Figure 1. Multiple evaluations of a solution according to 4 scenarios (s1, s2, s3, s4). The true evaluation is 
unknown until the actual realization of the random variables.
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Two kinds of approaches are here proposed (Fig. 2). The first ones are based on the scalarization of the 
objective vector values, while the second ones consist of adapting the fitness assignment strategy within 
IBEA in order to take uncertainty into account. For each case, four approaches, corresponding to a best-
case, a worst-case,  an average-case and a median-case strategy, are proposed. Following the work of 
Basseur and Zitzler (2006), these approaches can be seen as uncertainty-handling indicators to be used in 
the frame of IBEA.

 
Figure 2. Approaches proposed to deal with multiobjective optimization problems under uncertainty.

2.1. Objective-vector level approaches

Firstly, objective vector-level approaches consist of reducing the objective vector sample set associated to 
each  solution  into  a  single  representative  objective  vector,  according  to  one  of  the  four  preference 
strategies  (zbest for  best-case,  zworst for  worst-case,  zavg for  average-case  and  zmed for  median-case),  as 
illustrated in Fig. 3. Such an objective vector can be seen as a deterministic one, and can then potentially 
be used into any multiobjective resolution method (and not only into IBEA as investigated in the paper).

Figure 3. Illustration of the choice of a representative objective vector from a given sample set.

2.2. Indicator-level approaches

On the contrary, indicator-based approaches convert the set of indicator-values, obtained from the pair-
wise comparison of solutions, into a single scalar value. Such strategies are then closely related to the 
indicator-based fitness assignment scheme based on a binary quality indicator (Zitzler and Künzli, 2004). 
It consists of introducing a total order between solutions by generalizing the Pareto dominance relation by 
means of a suitable binary quality indicator. It is based on a pair-wise comparison of solutions from the 
current population, based on a user-given indicator.  To each solution is then assigned a fitness value 
measuring the “loss in quality'” if it was removed from the current population (Zitzler and Künzli, 2004). 
However, contrary to the deterministic case where the comparison of two solutions in the decision space 
results in their comparison in the objective space (Fig.4 (a)), we here have to compute an indicator-value 
for each pair of objective vectors (Fig.4 (b)), and then convert these values into a single one by means of 
one of the four preference strategies (best-case, worst-case, average-case and for median-case). Let us 
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note that two cases may arise. If each evaluation of a given solution is independent from all the others 
performed until then, all the objective vectors from the samples associated to all solutions are strictly 
independent the one from the others (and the sample size can eventually differ from one solution to 
another). In the other case, a number of independent and equally probable scenarios is considered. Then, 
the solutions from the sample sets of two arbitrary solutions can be taken as paired: the two objective 
vectors corresponding to scenario s1, the two objective vectors corresponding to scenario s2, and so on. 
The latter case will be considered for our experiments.

Figure 4. Illustration of the computation of indicator values for (left) the deterministic case and (right) the 
stochastic case.

3. APPLICATION TO STOCHASTIC MULTIOBJECTIVE SCHEDULING

3.1. A bi-objective permutation flow-shop scheduling problem with stochastic processing times

The permutation flow-shop scheduling problem is one of the most well-known scheduling problems and 
has been widely studied in the literature. It consists of scheduling a number of jobs on some machines. 
The majority of works devoted to this  problem considers it on a single-objective deterministic form. 
However, many objective functions and many sources of uncertainty, depending on the particularities of 
the  tackled  problem.  Here  we  consider  a  two-objective  formulation  where  both  the  makespan (total 
completion time) and the total tardiness are to be minimized.

Our aim here is to find robust solutions with regards to stochastic environmental parameters. Indeed, in 
real-world situations, uncertainty may occur from many sources such as release or due date variations, 
machine breakdowns, unexpected arrival or cancellation of orders, variable processing times, and so on. 
For the particular case of the tackled problem, we decide to adopt a proactive stochastic approach where 
processing time values are regarded as uncertain and are represented by random variables. To this end, we 
propose a number of benchmark test instances generated according to four noise models a stochastic 
processing  time  may  follow  (uniform,  exponential,  normal,  and  log-normal  probability  distribution 
functions). Those instances are available at the URL: http://www.lifl.fr/~liefooga/benchmarks/.

3.2. Computation results

A set of eight benchmark test instances has been investigated, together with the assumption of five types 
of uncertainty on processing times (uniform, exponential, normal, log-normal, and various distributions), 
and two level of uncertainty (± 10%, 20% of noise over processing times). The stopping condition is 
based on a maximum number of evaluations. The population size has been set to 100 individuals. In order 
to assess the performance of our algorithms, we first  reevaluate the approximations on a new set  of 
scenarios so that the influence of the search process is avoided. Then, we consider an assessment protocol 
based on the four preference strategies (best-case, worst-case, average-case and for median-case). Our 
different algorithms have also been compared to a naive, uncertainty-free approach that is based on a 
single (arbitrary) possible scenario, denoted by z1.
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For an illustrative purpose, Table 1 and Table 2 present the results obtained with respect to the median-
case  objective  vectors  and  to  the  median-case  indicator-values,  respectively.  The  best-,  worst-  and 
average-case results are not given due to space limitation. Each table gives the number of algorithms 
performing significantly better than the approach under consideration over a set of 10 experimental runs. 
The hypervolume difference indicator has been considered together with the Wilcoxon non-parametric 
statistical test. For each method, two different parameters have been investigated: a sample size of 10 
scenarios, and a sample size of 20 scenarios.

First  of  all,  the  proposed  approaches  dealing  with  uncertainty  were  overall  more  efficient  that  the 
uncertainty-free approach, and this for almost all instances we experimented. Theses results proove that 
deterministic approaches can generally not compete with stochastic techniques, even the simplest ones. 
For the other approaches, the results are quite different from one preference type to another. We can still 
notice  the  very  good  performance  of  the  approach  based  on  the  average  objective  vector  when 
considering the average case. However, indicator-level approaches seem to appear more competitive than 
their objective vector-level counterpart in the other cases (best-, worst, and median-case).

Table 1. Comparison of median-case algorithms with respect to median-case objective vectors.

noise ± 10% noise ± 20% 

Instances z1 zmed (10)zmed (20) Imed (10) Imed (20) z1 zmed (10)zmed (20) Imed (10) Imed (20)

020 x 05 x 01 0 1 4 0 3 4 0 1 0 1

020 x 10 x 01 2 0 1 0 2 4 2 0 2 0

020 x 20 x 01 4 1 1 0 0 4 1 0 1 0

050 x 05 x 01 3 0 3 0 0 4 0 0 1 0

050 x 10 x 01 4 0 0 0 0 4 2 2 0 0

050 x 20 x 01 4 2 0 1 0 4 0 2 0 0

Table 2. Comparison of median-case algorithms with respect to median-case indicator-values.

noise ± 10% noise ± 20% 

Instances z1 zmed (10)zmed (20) Imed (10) Imed (20) z1 zmed (10)zmed (20) Imed (10) Imed (20)

020 x 05 x 01 1 1 4 0 3 4 0 2 0 0

020 x 10 x 01 4 0 0 0 2 4 2 0 3 1

020 x 20 x 01 4 2 2 0 0 4 3 1 1 0

050 x 05 x 01 3 0 3 0 1 4 0 0 2 0

050 x 10 x 01 4 0 0 0 0 4 2 2 1 0

050 x 20 x 01 4 2 0 2 0 4 1 3 0 0

4. CONCLUDING REMARKS

We proposed a set of new approaches to deal with multiobjective optimization problems in uncertain 
environments. We tested those methods on a combinatorial optimization problem from scheduling, while 
taking both the stochastic and the multiobjective aspects into account simultaneously. Although it is still 
relatively  emerging  in  the context  of  multiobjective  optimization,  there  exists  a  growing demand on 
taking  uncertainty  into  account  during  the  problem formulation  and  resolution  approaches,  given  its 
undoubted practical  importance.  We hope to have raised the interest  of  this  research  domain and its 
impact  on  the  resolution  methods,  especially  from  a  metaheuristic  point  of  view.  We  believe  that 
metaheuristics  have  an  obvious  role  to  play  in  solving  such  problems,  although  many  fundamental 
questions remain open.
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