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Abstract

This paper is concerned with the general problem of
aggregating many binary relations in order to find out
a consensus. The theoretical background we rely on
is the Relational Analysis (RA) approach. The latter
method represents binary relations (BRs) as adjacency
matrices, models relational properties as linear equa-
tions and finds a consensus by maximizing a majority-
based criterion using 0-1 integer linear programming.
Our contribution consists in a generalization of the the-
oretical results obtained in this framework. First, with
regards to classical BRs on a single set, we provide new
linear equations that correspond to relational properties
that have not been covered yet such as semi-transitivity,
quasi-transitivity or Ferrers relation. Second, we extend
the BR aggregation problem to the case of maps or func-
tions which are interpreted as BRs on two different sets.
These results allow the RA approach to be a more gen-
eral framework for dealing with BR aggregation prob-
lems. We also analyze the relationships between dif-
ferent BR aggregation problems and several tasks ad-
dressed in the artificial intelligence and machine learn-
ing fields. In that case, preference aggregation, cluster-
ing, and bi-clustering tasks are studied and we thus em-
phasize the underlying theoretical foundations of such
problems from the point of view of BRs and their ag-
gregations.

1 Introduction

Binary relations (BRs) are concepts which are commonly
used in order to describe the relationships between several
items. In everyday life for instance, “is the parent of” or
“is married to”, are examples of BRs that describe how two
persons in the same family are linked. In many scientific
fields, BRs are concepts that are ubiquitous. For example, in
mathematics, functions are basically relations between two
sets. We say that x is in relation with y according to the
function f if y = f(z). Another example is the database
systems domain where a relational table typically codes BRs
between objects and attributes.

In this paper, we assume that we are given many binary
relations on the same set of items. As an example, we could
consider a set of candidates to an election and the prefer-
ence relations of many voters on those candidates. Then,
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the problem we want to address is to aggregate these indi-
vidual BRs in order to find out a consensual binary relation
(BR) that aims at summarizing them. Following the exam-
ple mentioned beforehand, aggregating the voters’ prefer-
ence relation amounts to searching for a consensual prefer-
ence relation on the candidates and determining the winner
of the election. In the artificial intelligence field, quite sim-
ilar situations appear in the context of multi-agent systems
for example, where the preference relations of the agents on
a set of alternatives are known and we want to aggregate
them properly in order to achieve a decision. Another ex-
ample is ensemble clustering in the context of unsupervised
learning, where we want to aggregate the output of several
clustering algorithms (that is to say their partitions) in order
to obtain a more robust clustering of the data.

More formally, let us denote { R*, R?, ..., RM} the set of
BRs of interest. In this work, we assume that each R* could
be of any type! although, in classical problems, we usually
deal with a set of BRs of the same type. Then, we want to
find a specified type of BR?, R*, such that:

R* = Argmax (Aggreg(Rl, R?,...,RM. R)) (1)
R

where Aggreg is an aggregation procedure.

We mentioned previously two particular problems namely
preference relations and equivalence relations (partitions)
aggregation. The two latter cases are the most well-known
BR aggregation problems. However, there are many other
types of BRs and thus, many aggregation problems that fall
under the general problem given in Equation (1).

In this paper, we propose a theoretical framework that
tackles the BR aggregation problems from a general and
flexible perspective. Our approach is based upon the Re-
lational Analysis (RA) method originally introduced in the
following papers (Michaud & Marcotorchino 1979; Mar-
cotorchino & Michaud 1979; 1981; Marcotorchino 1987).
In brief, this approach represents BRs through their adja-
cency matrices, models their relational properties using lin-
ear equations, aggregates them using the Condorcet proce-
dure (Condorcet 1785), and finds a consensus by means of
0-1 integer linear programming (0-1 ILP).

'Different types of orders such as a mix of partial, strict linear
orders and interval orders, for instance.
2Such as a strict linear order.



We propose a generalization which results in making the
RA framework a unifying approach for modeling and opti-
mally solving BR aggregation problems from a theoretical
standpoint. Accordingly, our contribution is two-fold. First,
we study relational properties that have not been covered yet
in the RA method such as semi-transitivity, quasi-transitivity
and Ferrers relation. Therefore, we show that more types of
BRs can be taken into account through this approach such
as semi- orders, interval orders. Second, we extend the RA
approach in order to deal with BRs on two different sets. In
that perspective, we show that maps which are interpreted
from their general algebraic definition, can also be aggre-
gated using the RA method.

The remainder of the paper is organized as follows. In
section 2, we recall the basic definitions of BRs on one and
two sets, their classical relational properties and some well-
known types of BRs. In section 3, we recall some basics
about the RA approach. Then, we provide linear equations
that are equivalent to relational properties and we also ex-
tend the RA framework to BRs on two sets. In section 4,
we recall the Condorcet aggregation procedure of boolean
BRs and briefly consider multivalued BRs as well. Then,
we show how to find consensual BRs using 0-1 ILP. In sec-
tion 5, we analyze particular BR aggregation problems and
establish their relationships with several machine learning
tasks and related works. We finally illustrate our approach
using an example in section 6 before concluding in section
7.

2 Basics on binary relations

In this section, we recall the definitions of BRs on one and
two sets in subsections 2.1 and 2.2 respectively. We also
remind the logical definition of well-known relational prop-
erties that a BR can satisfy. This leads us to the definition of
special types of BRs such as preorders or interval orders for
BRs on one set and partial maps and bijections in the case
of BRs on two sets.

2.1 Binary relations on a single set

Definition 1. Binary relation on A.

A binary relation R on a set of objects A, is a couple
(A, G(R)), where G(R) called the graph of the relation R,
is a subset of the Cartesian product A x A. If we have
(a,b) € G(R), then we say that object a is in relation with
object b for the relation R. This will be denoted by a Rb.

Definition 2. Complement of a binary relation on A.

Let (A, G(R)) be a binary relation on the set A. Then we
can associate to [2, its complement which is a binary relation
denoted by R that is the subset of the Cartesian product A x
A such that (a,b) € G(R) < (a,b) ¢ G(R).

There are different properties that a binary relation

(A, G(R)) can satisfy. Some of the most used of these rela-
tional properties are the following ones.

Property 1. Relational properties for (A, G(R)).
1. Reflexive: Va (aRa)

2. Trreflexive: Va (aRa)

3. Symmetric: Va, b (aRb = bRa)

e A

Asymmetric: Va # b (aRb = bRa)

Antisymmetric (=) : Va, b ((aRb A bRa) = a = b)
Antisymmetric (=): Va, b ((aRb A bRa) = a = b)
Total (or complete): Va # b (aRb V bRa)

Transitive: Va, b, ¢ ((aRb A bRc) = aRc)
Negatively transitive: Va, b, ¢ ((aRb A bRc) = aRc)

10. Semi-transitive: Ya, b, ¢, d ((aRb A bRc) = (aRd V dRc))
11. Quasi-transitive:

Va,b,c ((aRb AbRa AbRc A cRb) = (aRc A cRa))

12. Acyclic: Va,...,s ((aRbA ... A7Rs) = aRs)
13. Ferrers: Va, b, c,d ((aRb A cRd) = (aRd V cRb))

The aforementioned notations Va, b and Va # b precisely
means Va, Vb and Va,Vb(a # b) respectively. In this work
we also distinguish two kinds of equality relations: = and
=. The relation a = b denotes the fact that a and b refer to
exactly the same item of the set A. On the contrary a = b
means that ¢ and b (which are not necessarily the same ob-

jects of A) are indiscernible that is to say they have exactly

the same properties. This concept is related to the identity of
indiscernibles principle which was first introduced in (Leib-
niz 1686). In our context, the properties of an object a are
related to its profile with respect to a relation . The profile
of a is in fact the set of objects ¢ € A such that aRc or cRa.
Accordingly, the identity of indiscernibles principle can be
formally expressed as follows:

Va,b(Ve((aRe < bRe) A (cRa < cRb)) = a=0b) (2)

In order to better illustrate the difference between these
two types of equivalence relations = and =, let us take the
following example employing the antisymmetric property.
Suppose on the one hand, that A is the set of real numbers
and R is the “less or equal to” relation denoted <. In that
case a < band b < a implies a = b. On the other hand,
let us take the following case: A is a set of candidates and R
is the preference relation < such that ¢ < b means that b is
preferred or indifferent to a. In that case if a and b are two
different candidates than @ < b and b < a implies a = b.
More precisely this means that both candidates a and b are
tied yet distinct.

Specific combinations of some relational properties listed
in Property 1 lead to the definition of particular types of BRs.
We have the following well-known cases.

Definition 3. Some types of binary relations on A.

e A preorder is a BR that is reflexive and transitive.

e A partial order is a BR that is reflexive, antisymmetric and
transitive.

e A total order or a linear order is a BR that is reflexive,
antisymmetric, transitive and total.

e A strict total order or a strict linear order is a BR that is
irreflexive, asymmetric, transitive and total.

e A semi-order is a BR that is reflexive, complete, Ferrers
and semi-transitive.

e An interval order is a BR that is reflexive, complete and

Ferrers.

e An equivalence relation is a BR that is reflexive, symmet-
ric, and transitive.



2.2 Binary relations on two sets

In a more general way, we can define BRs on two different
sets A and B.

Definition 4. Binary relation on A and B.

A binary relation R on two sets of objects A (the domain)
and B (the codomain), is a triple (A, B, G(R)), where G(R)
called the graph of the relation R, is a subset of the Cartesian
product A x B. If we have (a, @) € G(R), then we say that
object a is in relation with object ¢ for the relation R. This
will be denoted by aRo.

Notice that, in the sequel, we will always use Latin letters
for items in A and bold Greek letters for items in B.

We can also define the complement of a binary relation
(A, B, G(R)) which is similar to Definition 2. The classical
relational properties of BRs on two sets are given in Property
2.

Property 2. Relational properties for (A, B, G(R)).

. Left-total: Va (3a(aRex))

. Right-total: Vo (Ja(aRax))

. Surjective: Left-total and right-total

. Injective (=): Va,b,Va ((aRa A bRa) = a = b)

. Injective (=): Va,b,Va ((aRa A bRa) = a = b)

. Functional (=): Ve, 3,Va ((aRa A aRB) = a = )

. Functional (=): Vo, 8, Va ((aRa A aRB) = a = 3)

. Bijective (=,=)*: Surjective, injective (=), functional (=)

O 0 9 N Lt A W N =

. Bijective (=,=): Surjective, injective (=), functional (=)

—_
=

. Bijective (=,=): Surjective, injective (=), functional (=)
11. Bijective (=,=): Surjective, injective (=), functional (=)
As previously, we consider two kinds of equality relations

= and =. However, since A and B are basically two differ-
ent sets, these relations concern the comparison of internal

objects of A and B. As a result, in that case, the identity of
indiscernibles principle is rather formulated as follows:

Va,b (Va(aRa < bRa) = a = b) 3)
Ve, 8 (Va(aRa < aRB) = a = 03) 4)

We can then recall the definition of the following particu-
lar types of BRs on two sets.

Definition 5. Some types of binary relations on A and B.

e A partial map is a BR that is functional.

e A map is a BR that is left-total and functional.

e An injective map is a BR that is left-total, functional and
injective.

e A surjective map is a BR that is functional and surjective.

e A bijective map is a BR that is functional, subjective and
injective.

3The first equality sign corresponds to the one used for the in-
jective property while the second one, is the one used for the func-
tional property.

3 Representing binary relations using
relational matrices

The Relational Analysis (RA) method is a flexible approach
for dealing with BR aggregation problems. In this section
we begin by introducing relational matrices that represent
BRs using adjacency matrices. Moreover, we show how we
can express relational properties that we have recalled pre-
viously by means of linear equations. In subsection 3.1, we
deal with BRs on one single set whereas in subsection 3.2
we focus on BRs on two sets. In that perspective, we point
out our contributions which consist in, on the one hand, giv-
ing the linear equations of relational properties of BRs on
one set that have not been covered so far and, on the other
hand, extending the RA method to the case of BRs on two
sets.

3.1 Binary relations on a single set

In the RA framework, a BR R on a set A is represented by its
adjacency matrix which is a binary pairwise matrix. In our
context, we rather call such adjacency matrices, relational
matrices, since the latter satisfy particular properties that we
introduce in what follows.

We denote C' the relational matrix associated to the binary
relation R. Its general term is given as follows, Va, b:

_J 1 ifaRb
Cab = { 0 otherwise )

Following Definition 2, we can similarly define, C, the
relational matrix of the complement of R. It is related to C'
through the following relation, Va, b:

6ab =1~ Cab (6)

In Proposition 1, we give linear equations in terms of C
that are equivalent to the logical definitions of the relational
properties recalled in Property 1. These linear constraints
are fundamental from a modeling standpoint since they al-
low one to use 0-1 ILP solvers to optimally solve BR aggre-
gation problems.

Proposition 1. Relational properties of (A, G(R)) as linear
equations using the RA formalism.

Reflexive: Va; Cyo = 1

Irreflexive: Va; C, =0

Symmetric: Va, b; Cop = Chyq

Asymmetric: Va # b; Cop + Cpq < 1
Antisymmetric (=): Va # b; Cyp + Che < 1
Antisymmetric (=): Va, b;

C(Lb + Cba + Cac - Cbc S 2

Cap + Cpq — Cac + Cpe < 2

Cab + Cba + Cca, - ch S 2

Cap +Cpg — Coqg +Ccp <2

7. Total (or complete): Va # b; Cyp + Chg > 1
Transitive: Va, b, c; Cyp + Cpe — Cue < 1

9. Negatively transitive: Va, b, ¢; Coe < Cup + Che

10. Semi-transitive: Ya, b, ¢, d; Cyp + Cpe — Coqg — Cge < 1

AR N
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11. Quasi-transitive: Va, b, ¢;
Cab - Cba + Cbc - ch - Cac § 1
Cvab - Cba + Cbc - ch + Cca S 2

12. Acyclic: Va,...,s5;Cqp+ ...+ Crs + Cys < S — 1 with
S being the length of the sequence a, . . ., s.

13. Ferrers: Va,b,c,d; Cop + Cog — Cpg — Cop < 1

In Proposition 1, the linear equations 1, 2, 3, 4, 7, 8 were
already given in (Michaud & Marcotorchino 1979). As a re-
sult, to our knowledge the other linear equations are new re-
sults. Particularly, the properties 6, 10, 11, 13 are non-trivial.
We give a sketch of their respective proof in appendix. Fur-
thermore, our approach that consists in distinguishing two
different kinds of equivalence relations = and = and which
leads to different linear equations is also new.

Because of these linear equations, relational matrices are
adjacency matrices of a certain kind. Below, we give two
examples that illustrate the particular structure that charac-
terizes relational matrices. We assume A = {a,b,c,d}.
First, we define the following equivalence relation: R' =
{(a,a); (b,0); (¢, ¢); (d, d); (a, b); (b, a); (a, c); (¢, a); (b, c);
(¢,b)}. Second, we set R? = {(a, a); (b, b); (¢, c); (d, d);
(a,b); (a,c); (a,d); (b,a); (b, c); (b,d); (c,d)} which, with
regards to the properties it satisfies, represents a total order
with antisymmetry* (=). The respective relational matrices
C' and C? are the following ones:

a b ¢ d a b ¢ d

a/1 1 1 0 a/1 1 1 1

1 b1 1 10 2 b1 1 1 1
C=cli 110 C=cloo 11
d\0 0 0 1 d\0 0 0 1

3.2 Binary relations on two sets

In the case of BRs on two sets, the relational matrix C' re-
lated to the BR R is defined by, Va, Va:

1 ifaR«
Caa = { 0 otherwise O

Similarly to Equation (6) we can also define the relational
matrix C of the BR R. We give in Proposition 2 the linear
equations in terms of C that are equivalent to the logical
definitions of the relational properties given in Property 2.

Proposition 2. Relational properties as linear equations us-
ing the RA formalism for (A, B, G(R)) binary relations.

1. Left-total: Va; ), .5 Caa > 1
2. Right-total: Va; ),y Caa > 1

Va’; ZaEIB C‘la Z 1

) ZaEA C(La Z 1

4. Injective (=): Vo; Y cp Caa <1
5. Injective (=): Va, b, Va;
v3; { Coo + Cra+Cop — Crg < 2
’ Caa"'cba_ aﬁ+0bﬁ§2

6. Functional (=): Va; Y

3. Surjective: {

ach Caa <1

“Note that regarding C?, objects a and b are such that a # b
but a = b.

8. Bijective (=,=): {

11. Bijective (=,=):

7. Functional (=): Ve, 8, Va;

Vb: Caa + Oaﬁ + Cba - ObB < 2
’ Caa+caﬁ_cba+cbﬁ§2

Va; ) nen Caa =1

Q5 ) aen Caa =1
: >
9. Bijective (=,=): { :Z.%aeligaa ;11
) ac act
10. Bijective (=,=): { :“a{%aeigaz 211
) ac acx Z
Va’; ZQEB Caa Z 1
vaa EaEA Caa Z 1
Va, b; Ve, B;

Coa+Cog — Cpa +Crg < 2

{ Caa+caﬁ+cba_cbﬁ§2
Caafcaﬁ+cba+cbﬁ SQ

The linear equations related to the bijective (=,=) prop-
erty was introduced in another context in (Marcotorchino
1987). Except this case, to our knowledge, this work is the
first attempt to represent relational properties of BRs on two
sets as linear equations in a unifying framework. We give a
sketch of their respective proof in appendix.

We illustrate the following types of BRs on A =
{a,b,¢} and B = {ea,B,7,0}. On the one
hand, we consider the bijective (=,=) map R® =
{(a,); (b, B); (b,8); (c,v)}. On the other hand, we de-
fine the relational matrix of the bijective (=, =) map, R* =
{(a, @); (a, B); (b, ); (b, B); (¢,7); (¢, 8)}. These BRs are

represented by the relational matrices below:

a B v 6 a B v 6

a/1 0 0 0 a/1 1 0 0
03b<0 10 1>;C4b<1 10 0)
c\0 0 1 0 c\0 0 1 1

4 Aggregating binary relations

In the previous section, we have recalled the definition of re-
lational matrices and more particularly we have provided the
linear equations that are equivalent to the relational proper-
ties introduced in section 2. Thereby, we have stated new
contributions which contribute to extend the scope of ap-
plications of the RA approach in modeling BRs. In this
section, we deal with the aggregation procedure of BRs in
the RA framework. We recall the aggregation of many BRs
into collective relational matrices in subsection 4.1. Next,
in subsection 4.2, we introduce majority-based criteria that
we want to maximize in order to determine a consensual BR
of a special type. In subsection 4.3, we briefly consider the
more general case of multivalued BRs. Then, we explain in
subsection 4.4 how we can optimally solve BRs aggregation
problems using 0-1 integer linear programming.

Without loss of generality, throughout this section, we sup-
pose that we deal with BRs on two sets A and B. But, this
case generalizes the case of BRs on a single set, if we as-
sume A = B and a = a, b = 3 and so on.



4.1 Collective relational matrices

Finding a general way to aggregate BRs is not straightfor-
ward. For example, let us assume that we have a set of linear
orders as individual BRs such as in the context of preference
aggregation. We could represent the preferences linearly as
an ordered list of the items of interest. a <1 b <1 cis an ex-
ample of such a representation. Thereby, if we take another
linear order such as b <9 ¢ <3 a, one can see that it is not
easy to define an aggregate of both linear orders from these
representations.

It turns out that by representing BRs by means of their
relational matrices, we can define a simple way to aggre-
gate those pieces of information. This aggregation proce-
dure is simply the sum over the relational matrices and it
naturally works for any kinds of BRs (over the same set(s)
of items). We call the resulting matrix, the positive collec-
tive relational matrix which is denoted by C. If we assume
MBRs RF:k=1,...,Mand C* = k = 1,..., M being
their respective relational matrices then, we have:

M
c=) c* ®)
k=1

The general term of C,, is the number of relations that
support “a is in relation with o” and thus, Va,Va; C,e €
{0,1,..., M}. Similarly to the positive collective relational
matrix C, we can define its complement, the negative col-

lective relational matrix, C, which is the following sum:
c=Y7c ©)

In that case, C,q is the number of relations that support
“a is not in relation with a”. We have the following equation
that links both collective matrices, Va, Vo

Caa + éaa =M (10)

4.2 Majority-based criteria

From both collective matrices C and C we can consider the
pairwise “difference” matrix, D, given by C—C. Therefore,
D, compares the number of (positive) BRs that support
“a is in relation with o’ to the number of (negative) BRs
that supports “a is not in relation with a”. We then have
Va,Va; Dyo € {—M,...,—1,0,1,...,M}. We can see
that the greater D,, the more we should consider to put a
in relation with o if we want to promote the consensus and
likewise, the lower D,,,, the more we should consider to not
put a in relation with cx.

As a result, the Condorcet criterion aims at maximizing
the following function F' in order to find a consensus:

m)&(me(C’l,...,CM;X): Z (Caa — Caa) Xaa
(a,a)EAXB

Doa

where X is the relational matrix representing R* the con-
sensual BR we are looking for.

We can simplify the previous function in order
to underline the notion of simple majority. In-
deed, the aforementioned equation is equivalent to

Maxx Y, o) (Caa — M) Xoa. In the latter expression
we can see that the Condorcet criterion amounts to compar-
ing the number of BRs that support a relation between a pair
of objects to the simple majority %

As a generalization of such types of consensus criterion,
we can consider the following majority-based criteria:

1 M .y —
m)%xF(C e, O omy X)) = Z (Caa — M) Xoo
(a,b)eAxB D...

where m is a parameter that belongs to [0, M] and which
represents the specified majority. This parameter could also
be dependent on each pair (a, a)’.

4.3 The more general case of multivalued binary
relations

The material presented previously focuses on boolean BRs
aggregation problems. A more general case, we could con-
sider is the one for which we are given fuzzy BRs. In that

case, Vk; Va, Yo; C* T, € [0, 1].

As far far as the aggregation procedure of such BRs is
concerned, there are in the literature, plenty of aggrega-
tion operators which could be used in order to determine
fuzzy collective relational matrices. Power means, quasi-
arithmetic means or triangular norms and co-norms are ex-
amples of such operations (see for example, (Calvo et al.
2002)). We can thus formulate the positive and negative

fuzzy collective relational matrices as follows, Va, Vo

Cua = A(CL,,C%,. ....CM)
éaa - A(éclzaaéza""aéfz\i)

where A is an aggregation operators.
As a consequence, we can define a “difference” matrix D
given by C — C.

Finally, an even more general setting is when we are given
a “difference” matrix D such that Va,Va; —00 < Dgo <
—+o0 and the greater the positive value of D, the more we
should promote aR*b and the lower the negative value of
D, the less we should promote a R*b. All criteria we have
presented so far are particular cases of the following objec-
tive function:

max F(D;X) = Y DoaXoa (11)

(a,)EAXB

4.4 Finding a consensus using 0-1 ILP

On the one hand, we have shown that the basic relational
properties that define special types of BRs such as interval
orders and bijective maps among others, can be expressed
as linear equations in terms of the relational matrix. On the
other hand, we have previously defined objective criteria F’
which are linear with respect to the relational matrix X that
represents the consensual BR R* we want to determine. As
a consequence, we can use 0-1 ILP to model and optimally
solve any of the BR aggregation problems that fall under the
material described in this paper. To this end, one could apply
the following general procedure:

3See for example (Ah-Pine 2009) in the context of clustering.



1. We start by finding positive and negative collective rela-
tional matrices by summing (or aggregating depending on
the nature of the BRs) the relational matrices of the indi-
vidual BRs. Note that the set of individual BRs could be
heterogeneous meaning that one could consider the aggre-
gation of a mix of several types of BR.

2. Then, we maximize the objective function F' which gen-
eral formulation is given in Equation (11) with respect to
X using 0-1 ILP and to specify the type of BR we would
like to obtain, we constrain X to satisfy the corresponding
linear constraints given by Propositions 1 or 2.

It is worth mentioning that the described approach allows
one to integrate other simple constraints such as “must-link”
or “cannot-link” relations. In that context we assume that we
have prior knowledge about some pairs of items for which
we know that they should or should not be in relation. Thus,
if we want the pair of objects (a, ) to be in relation then we
add the constraint X,, = 1. On the contrary, if according
to some expertise, we know that those objects must not be in
relation, we impose X, = 0. As aresult, itis easy to model
constrained BR aggregation problems in the RA framework.

5 Some related applications and works

We have presented a theoretical framework for modeling
various BR aggregation problems by means of 0-1 ILP. In
this section, we analyze different related applications and
works. To that regard, we recall that our contribution is at the
theoretical level. Therefore, it is not the purpose of this pa-
per to design methods that tackle BR relation problems with
large sets of items. Indeed, BR aggregation problems are
combinatorial and NP-Hard problems (Wakabayashi 1998;
Hudry 2008). Besides, our approach aims at optimally solv-
ing those problems which means that we cannot avoid the
combinatorial aspect of such problems using our framework.
Thus, in practice, the 0-1 ILP approach could only be ap-
plied when the sizes of A and B are not large but regardless
of the number of individual BRs.

Accordingly, for the tasks we are going to present, there
are, in the literature, numerous heuristics that target large
datasets and are designed in the goal of finding an approx-
imate solution to the corresponding BR aggregation prob-
lem in a reasonable amount of time. We will not focus on
such contributions but rather cite papers that are interested in
analyzing BR aggregation problems from the modeling and
combinatorial optimization viewpoints.

In subsection 5.1 we are concerned with the preference ag-
gregation problems and in a more general manner order re-
lations aggregation problems. Then, in subsection 5.2, we
focus on clustering problems where the consensual BR that
we want to obtain is a hard partition or an equivalence re-
lation. Finally in subsection 5.3, we are interested in BRs
on two sets and we show that assignment and bi-clustering
problems can both be seen as the search for a consensual
bijection but of two different kinds.

5.1 Preference and order relations aggregation

Preference aggregation problems are encountered in vari-
ous domains. For example, in economics and more par-

ticularly in voting and social choice theories, aggregating
preference relations such as linear orders among a set of
candidates is a core problem (Condorcet 1785; Arrow 1963;
Kemeny & Snell 1972; Fishburn 1972; Michaud & Marco-
torchino 1979; Barthélémy & Monjardet 1991).

Ordinal data analysis and multicriteria decision making are
other fields that also study related problems (Marcotorchino
& Michaud 1979; Lerman 1981; Figueira, Mousseau, & Roy
2005; Oztiirk, Tsoukias, & Vincke 2005).

More recently, in the artificial intelligence field there have
been numerous papers related to agent’s preference relations
aggregation problems and in diverse contexts (Chevaleyre et
al. 2007; Pini et al. 2008; Conitzer, Rognlie, & Xia 2009;
Shoham & Leyton-Brown 2009). Lately, there have been
some papers interested in the aggregation of interval orders
(Oztiirk & Tsoukias 2006; Berre, Marquis, & Oztiirk 2009).
With regards to our contribution, no such 0-1 ILP formula-
tion of this problem as the one we design in this paper, has
been proposed so far to our knowledge.

Apart from the applications mentioned previously, in the in-
formation retrieval domain we can also notice many recent
papers about rank aggregation for meta-search problems that
are also related to this topic (Montague & Aslam 2002;
Farah & Vanderpooten 2007). In the latter application, the
aim is to combine different search engines results in order to
determine a more robust top list of relevant results.

Finally, as far as the complexity and optimization viewpoints
of linear orders aggregation are concerned, we can cite
the following papers (Grotschel, Jiinger, & Reinelt 1984;
Reinelt 1985; Barthélémy, Guenoche, & Hudry 1989; Wak-
abayashi 1998).

5.2 Clustering

In unsupervised learning, one main task consists in cluster-
ing a set of objects departing from a feature matrix that de-
scribes the latter in an euclidean space. The goal is to find a
partition such that objects within a cluster are highly similar.
There are many fields and numerous papers that have been
studying similarity measures and clustering techniques and
heuristics (see for example (Mirkin 1996)) since this topic is
an important one in data analysis.

However, (Zahn 1964; Régnier 1965; Mirkin 1974) are some
papers that originally addressed the clustering problem from
the BR point of view. In that context, the work presented in
(Michaud & Marcotorchino 1979; Barthélémy & Monjardet
1991) and lately in (Ailon, Charikar, & Newman 2008), con-
tributed to unify the preference aggregation and the cluster-
ing problems (also known as median relation problems).
Following (Michaud & Marcotorchino 1979; Marcotorchino
1986), the clustering problem of categorical data can be in-
terpreted as an equivalence relations (partition) aggregation
problem and be optimally solved by using 0-1 ILP. More
recently, there has been a renewed interest in that type of
work in the context of correlation clustering (Bansal, Blum,
& Chawla 2004; Demaine & Immorlica 2003; Joachims &
Hopcroft 2005). In that case, the problem is to find a parti-
tion departing from an undirected graph of the items of in-
terest.

Finally as mentioned earlier, there have also been many pa-



pers in cluster aggregation techniques or ensemble cluster-
ing which consist in combining several clustering outputs in
order to compute a more robust partition (Ailon, Charikar,
& Newman 2008; Gionis, Mannila, & Panayiotis 2007).

5.3 Assignment problems and Bi-clustering

A classical assignment problem aims at finding a relation
that assigns each element of A to a unique element of B
such that it minimizes the cost (or maximizes the profit) in
a weighted bipartite graph. Is is easy to see that this prob-
lem amounts to searching for a bijective (=,=) map given
by relation 8 in Proposition 2. Thus, our results allow such a
problem to be embedded in a more general framework. First,
the distinction between = and = allows one to design differ-
ent related problems by using distinct kinds of bijections.
Second, the assignment problem can be seen as a particular
case of BR aggregation problems.

Another related problem is the bi-clustering one also
known as co-clustering or two-mode clustering in the liter-
ature (Mirkin 1996; Anagnostopoulos, Dasgupta, & Kumar
2008). In such a problem the goal is to simultaneously find
a clustering of the rows and the columns of a matrix. There-
fore, the output is a set of non-overlapping bi-clusters where
a cluster of elements of A is associated to a unique clus-
ter of elements of B. Such a decomposition is of interest
in many domains such as text-mining (Dhillon, Mallela, &
Modha 2003) or microarray data analysis (Pensa & Bouli-
caut 2008). In fact, we can see this problem as the search for
a bijective (=,=) map given by relation 11 in Proposition
2. This binary relation is aimed at maximizing an objective
function dependent on a “difference” matrix D such that the
higher D, the greater we should consider to put a and ¢ in
relation that is to say into the same bi-cluster®. The relation
11 was already proposed in (Marcotorchino 1987). How-
ever, the interpretation was not in terms of BRs but in terms
of block seriation. Indeed, in that case, the relation 11 was
called “impossible triad” whereas we have shown that they
are related to the injective (=) and functional (=) relational
properties.

6 An illustrative example
As a proof of concept, let us take the following example em-
ploying three different kinds of order relations, C*, C2, C3,
given as follows:

a b ¢ d a b ¢ d
a /1 1 1 1 a /1 0 0 O
1 b1 1 11 s b1 1 1 1
0_00011’0_01011
d\0 0 1 1 d\0 0 0 1
a b ¢ d
a /1 1 0 O
3 b0 1 0 O
0_00011
d\0 0 0 1

®R* and its relational matrix C* introduced in subsection 3.2
gives an example of two bi-clusters.

C' is a complete preorder’, C? a total linear order and C*3
a partial order. Let us assume moreover, that there are three
BRs of each of those three kinds of order relation so that we
want to aggregate nine individual BRs. Using Equations (8)
and (9), we obtain the related positive and negative collective
relational matrices C and C respectively. Thereby, we can
compute the following “difference” matrix D = C — C:

a b c d

a /9 3 -3 3

bl 3 9 3 3

P=cl1-3 -9 9 9

d\-9 -9 -3 9
We can use our framework in order to fit D with different
types of BR. As a first example, if we want to find an interval
order that sums up as good as possible the individual BRs
than, we can optimally determine such a BR by solving the

following 0-1 ILP:

maxx Z(mb)eAz DapXap

subject to:
Va,b; Xap € {0,1} (12)
Va; Xqq = 1 (Reflexivity)
Va # b; Xop + Xpe > 1 (Total)
va7 ba ¢, d7 Xap + Xed — Xaa — Xep < 1 (Ferrers)
We used the open source GLPK package® (GNU Linear
Programming Kit) to solve the previous 0-1 integer linear

problem. We obtain the following solution X!, with an op-
timal criterion value equal to 57:

a b ¢ d
a /1 1 1 1
Lobf1 11
X=loo0 11
d\0 0 0 1

If instead of an interval order relation, we want to find a
strict linear order, then we replace the linear constraints in
the Problem (12) accordingly and we obtain the following
relational matrix X 2, which represents the strict linear order
b > ¢ > a > d. The corresponding optimal criterion value
in that case is 18.

X2 =

QO SR

O~ O 2
SO oo o
OO, OO
O ===

If the BR we are searching for is a preorder thus in that
case, the criterion value we obtain is 57 and the relational
matrix is the following one:

OO+~ Q
oo, O o
O, O O
— ===

"Equivalent to a total linear order with antisymmetry (=), in
that case.
8http://www.gnu.org/software/glpk/



Note that in the latter case, the solution is not forced to
be complete and it is actually optimal to not put in relation
a and c or ¢ and a. On the contrary, in the former case,
X2 is a strict linear order and by definition, it is a total re-
lation. One can notice that having X2(a, c) = 1 instead of
X?2(c,a) = 1, would give another optimal strict linear or-
der. Indeed, we have D(a, c) = D(c,a) = —3 and the latter
shift would not change the type of the BR since X? would
remain asymmetric, total and transitive.

Finally, since our method is a flexible one, we could also
consider to fit D with an equivalence relation. Using again
a 0-1 ILP solver, the optimal solution found gives a criterion
value of 48 and the related relational matrix is as follows:

b d

OO~ Q
OO ==
= OO 0
_—_0 O

7 Conclusion

In this paper, we are interested in the modeling aspect of
BR aggregation problems. Our main contribution is the ex-
tension of the RA approach which leads to the design of a
unifying framework for modeling and optimally solving BR
aggregation problems by means of 0-1 ILP. Our approach
encompasses the aggregation problem of the most important
BRs on a single set such as linear orders, semi-orders, inter-
val orders, equivalence relations and also extend the method
to the case of BRs on two sets such as maps. Besides, it also
enables the aggregation problem of mixed BRs to be tack-
led in a flexible manner, by allowing one to aggregate many
kinds of BRs and specify any type of BR as a consensual
BR.

Appendix

Proof. Proof of Proposition 1.

The relations 1, 2, 3, 4 and 7 are straightforward while
8 which is related to the transitivity property is given in
(Michaud & Marcotorchino 1979). Notice that the nega-
tive transitivity 9 is obtained by replacing into 8, the terms
with their complements. Then, we can see that relation 5
reduces to relation 4 despite the fact that they are originally
defined in different ways. To prove the antisymmetry (=) 5,
we use the contrapositive of the logical definition 5 given in
Property 1:

5. Va,b(a#béaﬁb\/bﬁa)
@Va#b;éab—kébaZl
@Va#b;lfC’aqulbeaZl
<:>va’7éb;cvab"_cvbaSl

To prove relation 6 related to the antisymmetry (=),
we prove that the premises (aRbAbRa) imply that
Ve ((aRe < bRc) A (cRa < ¢Rb)) which implies ¢ = b
according to Equation (2). To this end, let us denote the
four linear equations given in 6 as follows:

Cab+cba+cacfcbc<2 1
Cab + Cba - Cac + Cbc § 2 'LZ

6. VC; Cab + Cba + Cca - ch S 2w

Cab + Cba - Cca + ch <2 w
From the premises, we get Cy, = Cp, = 1 and thus
Cw + Cphe = 2. It remains four other variables

Cacy Cpe, Crq, Cop but which are employed by pairs
(Cac, Che) ini and i and (Cpq, Cep) in the remaining cases.
We can draw the two following tables that enumerate all
possible combinations of truth values:

Cac | Che | i | i Cea | Cep | i | iv
T 1 [2[2 T [ 1 ][22
10 [3[/1 ad 1 [0]3]|1
0|1 |13 01|13
00|22 00 |2]2

From these tables we can see that the cases for which the
four linear equations 1, ¢%, 27 and ¢v are simultaneously less
are equal than 2 are exactly the ones for which (C,. = Cj,)
and (C., = C,) (first and fourth rows of the tables) which
is equivalent to (aRc < bRc) A (cRa < cRb).

The same technique can be applied to prove the other re-
maining relations. In brief, we infer from the premises the
corresponding truth values associated to the terms of rela-
tional matrices. Next, we identify the other terms and enu-
merate each possible combination of truth values. We re-
place any complement such as C; (if any) with 1 — Cip.
We then compute the value of the linear equations for all
possible combinations. We finally show that the cases that
respect the given linear constraints are the ones that exactly
satisfy the logical definition of the property. [

Proof. Proof of Proposition 2.

The relations 1, 2, 3 are straightforward. The proof of the in-
jective (=) property given by relation 4 starts similarly to the
proof of the relation 5 in Proposition 1 provided previously.

4. Va,b,Vau (a #b= (aRa \/bﬁa))
& Va # b Vo Coa + Cra > 1
SVa#bVa,l —Coq+1—Cha > 1
& Va # b Vo; Coo + Cpo < 1
S Va; ) cn Caa <1

The proof of relation 6 is the same as the proof of relation
4. Then we can show relations 5 and 7 using the tech-
nique we introduced at the end of Proof of Proposition 1.
Relation 8§ is a straightforward consequence of linear equa-
tions 3, 4 and 6. With regards to relation 9 which is related
to bijections (=,=), we get from linear equations 3 and 4:
Vo), cp Caa = 1. The latter linear constraint implies
relation 7 which therefore, becomes redundant. The same
goes for relation 10. Finally, relation 11, is the bijection
(=,=) and it is the conjunction between linear constraints
givenin 3, 5 and 7. Since the two last relations have one lin-
ear constraint in common, this explains why the conjunction
of 5 and 7 reduces to three linear constraints. O
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