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Abstract

We consider a discrete set of individual agents interacting with a continuum. Examples
might be a predator facing a huge group of preys, or a few shepherd dogs driving a herd
of sheeps. Analytically, these situations can be described through a system of ordinary
differential equations coupled with a scalar conservation law in several space dimensions.
This paper provides a complete well posedness theory for the resulting Cauchy problem.
A few applications are considered in detail and numerical integrations are provided.

Keywords: Mixed P.D.E.–O.D.E. Problems, Conservation Laws, Ordinary Differential
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1 Introduction

In various situations a small set of individuals has to interact with a continuum. A first famous
examples comes from the fairy tale of the pied piper [7], where a musician frees a city from rats
using his magic flute. An entirely different case is that of shepherd dogs confining sheeps while
pasturing, or that of a wild predator seeking to split a flock of preys. From a deterministic
point of view, studying these phenomena leads to a dynamical system consisting of ordinary
differential equations for the evolution of the agents and partial differential equations for
that of the continuum. Here, motivated by the present toy applications, we choose scalar
conservation laws for the description of the continuum’s evolution. In particular, no diffusion
is here considered. On one side, this choice makes the analytical treatment technically more
difficult, due to the possible singularities arising in the density that describes the continuum.
On the other hand, we obtain a framework where all propagation speeds are finite. As a
consequence, for instance, a continuum initially confined in a bounded region will remain in
a (larger but) bounded region at any positive time. This allows to state problems concerning
the support of the continuum, such as confinement problems (the rats should leave the city,
or the shepherd dogs should keep sheeps inside a given area) or far more complex ones (how
can a predator split the support of the density of its preys?).

In the current literature, similar problems have been considered with a great variety of
analytical tools, see for instance [2] for a fire confinement problem modeled through differential
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inclusions, or [3] for a tumor–induced angiogenesis described through a stochastic geometric
model. Other examples are provided by the interaction of a fluid (liquid or gas) with a rigid
body or with an elastic structure, like a membrane, see [12, 13]: the evolution of the rigid
body is described by a system of ordinary differential equations, while the evolution of the
fluid is subject to partial differential equations like Navier-Stokes or Euler equations. Further
results are currently available in the 1D case. For instance, a problem motivated by traffic
flow is considered in [9]; the piston problem, a blood circulation model and a supply chain
model are considered in [1].

Formally, we are thus lead to the dynamical system























∂tρ+ divx f
(

t, x, ρ, p(t)
)

= 0

ṗ = ϕ
(

t, p,
(

Aρ(t)
)

(p)
)

ρ(0, x) = ρ̄(x)
p(0) = p̄

(t, x) ∈ R
+ × R

Nx

ρ ∈ R
+

p ∈ R
Np

(1.1)

where the unknowns are ρ and p. The former one, ρ = ρ(t, x) is the density describing
the macroscopic state of the continuum while the latter, p = p(t), characterizes the state
of the individuals. It can be for instance the vector of the individuals’ positions or of the
individuals’ positions and speeds. The dynamics of the continuum is described by the flow f ,
which in general can be thought as the product f = ρ v of the density ρ and a suitable speed
v = v(t, x, ρ, p). The vector field ϕ defines the dynamics of the individuals at time t and it
depends from the continuum density ρ(t) through a suitable average A

(

ρ(t)
)

. Our driving
example below is the convolution in the space variable A

(

ρ(t)
)

= ρ(t) ∗ η, with a smooth
compactly supported kernel η.

Below we address and solve the first mathematical questions that arise about (1.1), i.e. the
existence and uniqueness of entropy solutions, their stability with respect the data and the
equation, and the existence of optimal controls. A first well posedness result, that applies to
general initial data, is provided in Theorem 2.2. As usual in this context, see also [4, 5, 8, 11],
the hypotheses on f are rather intricate. However, the present framework naturally applies
to situations in which the continuum can be supposed initially confined in a bounded region,
i.e. ρ vanishes outside a compact subset of RNx. In this case, Corollary 2.5 applies and the
hypotheses on f are greatly simplified.

The next section presents the analytical well-posedness results. Section 3 is devoted to
various applications, while all proofs are deferred to the last section.

2 Notation and Analytical Results

We now collect the various assumptions on (1.1) that allow us to prove well posedness, i.e. the
existence of solutions, their uniqueness and their stability with respect to data and equations.
The hypotheses collected below are essentially those that ensure the well posedness of the
conservation law and, separately, of the ordinary differential equation.

Throughout, we denote R
+ = [0,+∞[ and B

R
Np (x, r) denotes the closed ball in R

Np

centered at x with radius r. Let Tmax ∈ [0,+∞] and call I = [0, Tmax] if Tmax < +∞, while I =
R
+ otherwise. The real parameter R, i.e. the maximal possible density is fixed and positive.

For a given compact set K in R
Np and a T > 0, we denote ΩT = [0, T ] × R

Nx × [0, R] ×K.
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Flow of the continuum: at point x and time t, the continuum flows with a flux f =
f
(

t, x, ρ(t, x), p(t)
)

that depends on time t, on the space variable x, on the continuum density
ρ evaluated at (t, x) and on the state p of the individuals at time t. We require the following
regularity:

(f) The flow f : I × R
Nx × [0, R]× R

Np → R
Nx is such that

(f.1) f ∈ C2(I × R
Nx × [0, R] × R

Np ;RNx).

(f.2) For all (t, x, p) ∈ I × R
Nx × R

Np , f(t, x, 0, p) = f(t, x,R, p) = 0.

(f.3) For all T ∈ I and for all compact subsets K ⊂ R
Np , there exists a constant Cf

such that for t ∈ [0, T ], x ∈ R
Nx , ρ ∈ [0, R] and p ∈ K,

∥

∥∂ρf(t, x, ρ, p)
∥

∥ < Cf ,
∣

∣divx f(t, x, ρ, p)
∣

∣ < Cf .

(f.4) For all T ∈ I and for all compact subsets K ⊂ R
Np , there exists a constant Cf

such that for t ∈ [0, T ], x ∈ R
Nx , ρ ∈ [0, R] and p ∈ K,

∥

∥∇x∂ρf(t, x, ρ, p)
∥

∥ < Cf .

(f.5) For all compact subsets K ⊂ R
Np , there exists a constant Cf such that

∫

I

∫

RNx

sup
p∈K,ρ∈[0,R]

∥

∥∇x divx f(t, x, ρ, p)
∥

∥ dxdt < Cf ,

(f.6) For all compact subsets K ⊂ R
Np , there exists a constant Cf such that

∫

I

∫

RNx

sup
p∈K,ρ∈[0,R]

∥

∥divx f(t, x, ρ, p)
∥

∥ dxdt < Cf .

(f.7) For all T ∈ I and for all compact subsets K ⊂ R
Np , there exists a constant Cf

such that for t ∈ [0, T ], ρ ∈ [0, R] and p ∈ K,

∫

RNx

∥

∥∇p divx f(t, x, ρ, p)
∥

∥ dx < Cf ,
∥

∥∇p∂ρf(t, x, ρ, p)
∥

∥ < Cf for all x ∈ R
Nx .

Condition (f.2) states that at the maximal density ρ = R, the continuum is at congestion
and can not move. Assumption (f.2) has a key importance. The first part ensures the finite
propagation speed of the solution to the partial differential equation, see Proposition 4.2 or [8,
Theorem 1]. The second part ensures that the solutions are bounded, similarly to the role of
the sublinearity (ϕ.3) in the ordinary differential equation.

All these assumptions are satisfied, for instance, by vector fields of the form u(ρ, x, p) =
v(ρ)~v(x, p) with v ∈ C2([0, R];R) and ~v ∈ C2

c(R
Nx × R

Nx ;RNx).

We note that if f does not depend explicitly on t and x, which is a usual situation when
dealing with systems of conservation laws in one space dimension, then the above assumptions
reduce to only (f.1), (f.2), the first part of (f.3) and the first part of (f.7).

Moreover, Corollary 2.5 shows that whenever the initial density distribution ρ̄ has com-
pact support, then the requirements on f are reduced, since only (f.1), (f.2) and (f.3) are
necessary.
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Speed of the individuals: at time t, the individuals’ state changes with a speed ϕ =

ϕ
(

t, p(t), A
(

ρ(t)
) (

p(t)
)

)

that depends on time t, on the individuals’ state p at time t and

on an average A
(

ρ(t)
)

of the continuum density ρ evaluated at time t and computed at p(t).
On the averaging operator A we require the following conditions.

(A) A : L1(RNx ;R) → W1,∞(RNp ;RNr) is linear and continuous, i.e. there exists a constant
CA such that for all ρ ∈ L1(RNx ;R)

‖Aρ‖
W1,∞ ≤ CA ‖ρ‖

L1 .

Below, the operator norm of A is denoted ‖A‖L(L1,W1,∞). For instance, in the case Np = Nx,

a typical example of such an operator A is
(

A(ρ)
)

(p) = (ρ∗η)(p) for a kernel η ∈ C1
c(R

Nx ;R)
with

∫

R
Np η dx = 1.

The speed law ϕ satisfies the assumptions:

(ϕ) The vector field ϕ : R+ ×R
Np × R

Nr → R
Np is such that

(ϕ.1) t 7→ ϕ(t, p, r) is measurable for all p ∈ R
Np and all r ∈ R

Nr ;

(ϕ.2) there exists a function Cϕ ∈ L1(I;R+) such that for a.e. t ∈ I, p1, p2 ∈ R
Np and

r1, r2 ∈ R
Nr ,

∥

∥ϕ(t, p1, r1)− ϕ(t, p2, r2)
∥

∥ ≤ Cϕ(t)
(

‖p1 − p2‖+ ‖r1 − r2‖
)

;

(ϕ.3) there exists a function Cϕ ∈ L1(I;R+) such that for a.e. t ∈ [0, T ], for all p ∈ R
Np

and for all r ∈ R
Nr ,

∥

∥ϕ(t, p, r)
∥

∥ ≤ Cϕ(t)
(

1 + ‖p‖
)

.

These hypotheses are motivated by the standard theory of Caratheodory ordinary differential
equations, see [6, § 1]. All the above assumptions (f), (A) and (ϕ) are satisfied in the
applications considered in Section 3.

As a first step in the analytical treatment of (1.1), we rigorously state what we mean by
solution to (1.1).

Definition 2.1 Fix ρ̄ ∈ (L1 ∩BV)
(

R
Nx ; [0, R]

)

and p̄ ∈ R
Np. A pair (ρ, p) with

ρ ∈ C0

(

I;L1(RNx ; [0, R])
)

and p ∈ W1,1(I;RNp)

is a solution to (1.1) with initial datum (ρ̄, p̄) if

(i) the map ρ = ρ(t, x) is a Kružkov solution to the scalar conservation law

∂tρ+ divx f
(

t, x, ρ, p(t)
)

= 0 (2.1)

(ii) the map p = p(t) is a Caratheodory solution to the ordinary differential equation

ṗ = ϕ
(

t, p,A
(

ρ(t)
)

(p)
)

; (2.2)

(iii) ρ(0) = ρ̄ and p(0) = p̄.
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For the standard definition of Kružkov solution we refer to [8, Definition 1], for that of
Caratheodory solution, see [6, § 1].

Theorem 2.2 Under conditions (f), (ϕ) and (A), for any initial datum p̄ ∈ R
Np and ρ̄ ∈

(L1∩BV)(RNx ; [0, R]), problem (1.1) admits a unique solution in the sense of Definition 2.1.
This solution can be extended to all I.

Let now f1, f2 satisfy (f); A1, A2 satisfy (A) and ϕ1, ϕ2 satisfy (ϕ); in all cases for the
same interval I and the same parameters or functions R,Cf , CA, Cϕ. Then, for any initial
data (ρ̄1, p̄1), (ρ̄2, p̄2) ∈ (L1∩BV)(RNx ; [0, R])×R

Np , the solutions (ρ1, p1) and (ρ2, p2) to the
problems






















∂tρ1 + divx f1
(

t, x, ρ1, p1(t)
)

= 0

ṗ1 = ϕ1

(

t, p1,
(

A1ρ1(t)
)

(p1)
)

ρ1(0, x) = ρ̄1(x)
p1(0) = p̄1

and























∂tρ2 + divx f2
(

t, x, ρ2, p2(t)
)

= 0

ṗ2 = ϕ2

(

t, p2,
(

A2ρ2(t)
)

(p2)
)

ρ2(0, x) = ρ̄2(x)
p2(0) = p̄2

(2.3)

satisfy the inequalities
∥

∥(ρ1 − ρ2)(t)
∥

∥

L1

≤
(

1 +K(t)
)

‖ρ̄1 − ρ̄2‖L1

+K(t)
(

∥

∥∂ρ(f1 − f2)
∥

∥

L∞(Ωt)
+
∥

∥div (f1 − f2)
∥

∥

L1(RNx )×L∞([0,t]×[0,R]×Kt)

)

+K(t)
(

‖ϕ1 − ϕ2‖L∞([0,t]×Kt×[0,CA]) + ‖A1 −A2‖L(L1,W1,∞) + ‖p̄1 − p̄2‖
)

and
∥

∥(p1 − p2)(t)
∥

∥

≤
(

1 +K(t)
)

‖p̄1 − p̄2‖
+K(t)

(

∥

∥∂ρ(f1 − f2)
∥

∥

L∞(Ωt)
+
∥

∥div (f1 − f2)
∥

∥

L1(RNx )×L∞([0,t]×[0,R]×Kt)

)

+K(t)
(

‖ϕ1 − ϕ2‖L∞([0,t]×Kt×[0,CA]) + ‖A1 −A2‖L(L1,W1,∞) + ‖ρ̄1 − ρ̄2‖L1

)

where K ∈ C0(I;R+) vanishes at t = 0.

More detailed expressions of the various coefficients are presented in Section 4. The proof,
which is deferred to Section 4, is obtained through Banach Contraction Theorem. The nec-
essary estimates for the convergence are a consequence of [8, Theorem 5], [5, Theorem 2.5]
and of an adaptation of the standard theory of Caratheodory ordinary differential equations,
collected in the following two lemmas.

Lemma 2.3 Let (f) hold. Choose any ρ̄ ∈ (L1 ∩ L∞ ∩ BV)(RNx ; [0, R]). Fix a function
π ∈ C0(I;RNp). Then, the conservation law

{

∂tρ+ divx f
(

t, x, ρ, π(t)
)

= 0
ρ(0, x) = ρ̄(x)

(2.4)

admits a unique solution ρ ∈ C0

(

I;L1(RNx , [0, R])
)

. For all t ∈ I, introduce the compact

set Kt = B
R
Np (0, ‖π‖C0([0,t])), denote Ωt = [0, t] × R

Nx × [0, R] ×Kt and define

κt = (2Nx + 1)
∥

∥∇x∂ρf
∥

∥

L∞(Ωt)
. (2.5)
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Then, the following BV estimate holds: for all t ∈ I

TV
(

ρ(t)
)

≤
(

TV(ρ̄) +NxWNx t

∫

RNx

∥

∥∇x divx f(·, x, ·, ·)
∥

∥

L∞([0,t]×[0,R]×Kt)
dx

)

eκtt . (2.6)

Let now, for i = 1, 2, ρi be the solution to (1.1) corresponding to the initial datum ρ̄i and to
the equation defined by πi ∈ C0(I;RNp) and by fi, satisfying (f). Then,

∥

∥(ρ1 − ρ2)(t)
∥

∥

L1
≤ ‖ρ̄1 − ρ̄2‖L1

+t C(t)
[

‖π1 − π2‖L∞([0,t]) +
∥

∥∂ρ(f1 − f2)
∥

∥

L∞(Ωt)

+
∥

∥div (f1 − f2)
∥

∥

L1(RNx )×L∞([0,t]×[0,R]×Kt)

]

(2.7)

where C(t) depends on TV(ρ̄1),
∥

∥∇x∂ρf1
∥

∥

L∞(Ωt)
, ‖∇x divx f1‖L1(RNx )×L∞([0,t]×[0,R]×Kt)

and
∥

∥∇p∂ρf2
∥

∥

L∞(Ωt)
,
∥

∥divx∇pf2
∥

∥

L1(RNx )×L∞([0,t]×[0,R]×Kt)
, t.

An explicit expression of C(t) is provided in (4.1).
The estimates related to the ordinary differential equation are provided by the following

lemma.

Lemma 2.4 Let (ϕ) and (A) hold. Choose an initial datum p̄ ∈ R
Np and fix a function

r ∈ C0

(

I;L1(RNx ; [0, R])
)

. Then, the ordinary differential equation






ṗ = ϕ
(

t, p,A
(

r(t)
)

(p)
)

p(0) = p̄ .
(2.8)

admits a unique solution p ∈ W1,∞
loc

(I;RNp). The following bound holds:
∥

∥p(t)
∥

∥ ≤
(

‖p̄‖+ 1
)

e
∫ t
0
Cϕ(τ)dτ − 1 . (2.9)

Given two initial conditions p̄1, p̄2 ∈ R
Np, two functions r1, r2 ∈ C0

(

I;L1(RNx ; [0, R])
)

, two

speed laws ϕ1, ϕ2 satisfying (ϕ) and two averaging operators A1, A2 satisfying (A), define

F (t) =
(

1 + CA‖r1‖L∞([0,t];L1)

)

∫ t

0
Cϕ(τ) dτ . (2.10)

Then,
∥

∥(p1 − p2)(t)
∥

∥

≤ eF (t)‖p̄1 − p̄2‖+
∫ t

0
eF (t)−F (τ)

∥

∥ϕ1(τ)− ϕ2(τ)
∥

∥

L∞ dτ

+

∫ t

0
eF (t)−F (τ)Cϕ(τ)

(

CA

∥

∥(r1 − r2)(τ)
∥

∥

L1
+ ‖A1 −A2‖L(L1,W1,∞)

∥

∥r2(τ)
∥

∥

L1

)

dτ .

(2.11)

In the applications below, the support of the initial data is compact. Thanks to the
finite propagation speed typical of conservation laws, this allows a major simplification in the
assumptions of Theorem 2.2.

Corollary 2.5 Consider problem (1.1) with f satisfying (f.1), (f.2) and (f.3). Let A sat-
isfy (A) and ϕ satisfy (ϕ). If ρ̄ vanishes outside a compact set, then problem (1.1) admits
a unique solution in the sense of Definition 2.1. This solution can be extended to all of I.
Moreover, the stability estimates of Theorem 2.2 apply, provided both ρ̄1 and ρ̄2 vanish outside
a compact set.
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3 Applications

This section is devoted to a few sample applications of Theorem 2.2. While the unknown ρ
keeps throughout the meaning of a scalar density, the state p of the individuals is the position
of a single agent in § 3.1, it is a vector of several positions in § 3.2 and it becomes a 4–vector
position–speed in § 3.3.

Numerical integrations are also provided in order to show the qualitative behavior of the
solutions. In all cases, the Lax–Friedrichs method, see [10, § 12.5], with dimensional splitting
was used for the conservation law and Euler polygonals to integrate the ordinary differential
equation.

3.1 The Pied Piper

As a first toy application we consider the situation described in [7, n. 246]. To lure rats away,
the city of Hamelin (now Hamel) hires a rat-catcher who, playing his magic pipe, attracts all
mice out of the city. In this case, ρ = ρ(t, x) is the mice density and p = p(t) is the position
of the piper. Rats move with a speed v(ρ)~v(p−x), with the scalar v and the vector ~v having
the qualitative behavior in Figure 1. More precisely, at density 0 mice have the fastest speed

0

v

ρ → v(ρ)

R ρ 0 ‖x‖

‖~v‖
x → ~v(x)

0

q

ρ → q(ρ)

R ρ

Figure 1: Left, v is assumed C2 and decreasing. Center, ~v describes the attraction felt by the mice
towards the piper. Right, q accounts for the acceleration of the piper when surrounded by a high mice
density.

while at density R their speed vanishes. The term ~v accounts for the attraction of the mice
towards the piper. The magic musician has a speed q(ρ ∗ η) ~ψ(t), i.e. he moves faster when
the average density of mice around him is higher. On the contrary, when only few rats are
near to him, he slows down.

Lemma 3.1 Let Nx = 2, Np = 2, Nr = 1 and fix a positive R. Assume v ∈ C2([0, R];R),

~v ∈ C2(R2;R2), q ∈ W1,∞([0, R];R), ~ψ ∈ W1,∞(R+;R2), η ∈ C2
c(R

2,R) with
∫

R2 η dx = 1.
Assume that v(R) = 0. Define

f(t, x, ρ, p) = ρ v(ρ)~v(p − x) ϕ(t, p, r) = q(r) ~ψ(t) Aρ = ρ ∗x η . (3.1)

Then, this setting fits in the framework of Corollary 2.5 as soon as ρ̄ vanishes outside a
compact set.

The proof is immediate and, hence, omitted.
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Numerical example: To fix a specific situation, we choose the following functions
in (1.1):

v(ρ) = Vmax

(

1− ρ
R

)

Vmax = 9 R = 1

~v(x) = x e−‖x‖2

q(r) = vp +
Vp−vp

R r Vp = 7 vp = 1

~ψ(t) =

[

cosωt
− sinωt

]

ω = 1

η(x) = 3
πrp6

(

max
{

0, rp
2 − ‖x‖2

}

)2

rp = 0.15

(3.2)

At time t = 0, we assume that rats are uniformly distributed with density R = 1 in the
rectangle [−0.5, 0] × [0.35, 0.85]. The piper starts moving at the point (−1, 0.5).

Figure 2: The pied piper and the rats, at times 0, when p = (0, 0.5); 0.171, 0.543, 0.945, 1.447 and
1.930, when the rats almost completely left the rectangle and p = (0.366,−0.983).

Several optimization problems can now be stated with reference to (1.1)–(3.1)–(3.2). Re-
ferring to the situation [7, n. 246], a first natural question is the following. Let the compact
set K be the area of the city and fix a finite positive time Tmax. Then, find the initial position
p̄ and the trajectory ~ψ of the piper so that the amount of mice left in the city at time Tmax

is minimal. In other words, we want to minimize the functional

(p̄, ~ψ) 7→
∫

K

(

ρ(p̄, ~ψ)
)

(Tmax, x) dx .

Here, ρ(p̄, ~ψ) is the ρ–component of the solution to (1.1)–(3.1)–(3.2). The existence of such
an optimal strategy for the piper follows from Theorem 2.2 via a standard application of
Weierstraß Theorem.



9

Proposition 3.2 Let Tmax be finite. Denote by K ⊂ R
2 the compact Hamelin urban area.

Define the set of the possible piper’s route choices

K =

{

(p̄, ~ψ) ∈ K ×W1,∞(I;R2) :
∥

∥

∥

~ψ
∥

∥

∥

W1,∞
≤ 1

}

and call J : K 7→ R the functional giving the total amount of mice in Hamelin at time Tmax,
i.e.

J (p̄, ~ψ) =

∫

K

(

ρ(p̄, ~ψ)
)

(Tmax, x) dx ,

where ρ(p̄, ~ψ) is the solution to (1.1)–(3.1)–(3.2). Then, there exists an optimal trajectory
(p̄∗, ~ψ∗) ∈ K such that J (p̄∗, ~ψ∗) = minK J (p̄, ~ψ).

Thanks to the stability estimates in Theorem 2.2, the proof of this proposition directly follows
from Ascoli-Arzelà Theorem that allows to prove the compactness of K.

3.2 Shepherd Dogs

On the plane, consider a herd of, say, sheeps controlled by n shepherd dogs. Then, ρ is the
density of sheeps and p ≡ (p1, . . . , pn) is the vector of the positions of the dogs, so that each pi
is in R

2. We assume that initially the sheeps are distributed around, say, the origin and tend
to disperse moving radially with a speed directed by ~vr(x). The duty of the dogs is to prevent
this dispersion and they pursue this goal moving around sheeps or, more precisely, with a speed
ϕ orthogonal to the gradient of the sheeps’ density. The sheeps modify their speed escaping
from the dogs with a repulsive speed ~vd(x, p) =

∑

i ~v(x − pi), where ~v behaves qualitatively
as in Figure 1. Finally, the speed of the sheeps is then given by v(ρ) ( ~vr(x)+

∑n
i=1 ~v(x− pi))

where v is maximal at the density zero and vanishes at the maximal density R. This last fact
means that the sheeps can not move when their density is maximal.

Lemma 3.3 Let n ∈ N, Nx = 2, Np = 2n, Nr = 2n and fix a positive R. Assume v ∈
C2([0, R];R), ~vr ∈ C2(R2;R2) ~v ∈ C2(R2;R2), η ∈ C2

c(R
2,R) with

∫

R2 η dx = 1. Assume
that v(R) = 0. Define

f(t, x, ρ, p) = ρ v(ρ)
(

~vr(x) +
∑n

i=1 ~v(x− pi)
)

,

ϕ(t, p, r) = Vd
r⊥√

1+‖r‖2
,

Aρ = ρ ∗x ∇η .

(3.3)

Then, this setting fits in the framework of Corollary 2.5 as soon as ρ̄ vanishes outside a
compact set.

Here, r ≡ (r1, . . . , rn) is a vector in (R2)n and we set r⊥ ≡ (r⊥1 , . . . , r
⊥
n ), with

[

a
b

]⊥

=

[

b
−a

]

.
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Numerical Integration: To fix a specific situation, we choose n = 2 and the following
functions in (1.1):

v(ρ) = Vmax

(

1− ρ

R

)

Vmax = 1 R = 1

~v(x) =
α√
ℓ
e−‖x‖2/ℓ x α = 20 ℓ = 0.2

~vr(x) =
β x

1 + ‖x‖2
β = 1

η(x) =
3

πrp6

(

max
{

0, rp
2 − ‖x‖2

}

)2

rp = 1

Vd = 100

(3.4)

At time zero, sheeps are uniformly distributed at the maximal density R = 1 in the circumfer-
ence centered at (0, 0) with radius 0.2. Dogs start moving from (0.7, 0) and (−0.7, 0) Graphs

Figure 3: Solution to (1.1)–(3.3)–(3.4) at times t = 0, t = 0.044, t = 0.067, t = 0.111, t = 0.156,
t = 0.200. Sheeps are initially uniformly distributed at the maximal density R = 1 in the circumference
centered at (0, 0) with radius 0.2. Dogs start moving from (0.7, 0) and (−0.7, 0), they succeed in
confining the dispersion of the sheeps, at least for the tie interval considered.

of the corresponding solution are in Figure 3.
Merely technical modifications may allow to pass to various other problems. For instance,

dogs may be asked to constrain the movement of all sheeps towards a certain area.

3.3 Predator and Preys

We consider here a predator attacking a group of preys. We think for example at a hawk
pursuing a flock of smaller birds or at a shark attacking a group of sardines. Here, ρ is the
density of the preys with x ∈ R

3, p is now the pair (P, V ) ∈ R
6, where P ∈ R

3 is the position
of the predator, V ∈ R

3 is its speed and we postulate below an equation for the acceleration
P̈ = V̇ of the predator. Indeed, the framework in Theorem 2.2 allows to consider also second,
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or higher, order ordinary differential equations for the single agents. The initial density of
the preys is assumed to have a compact, connected support. The aim of the predator is to
divide this connected group into two smaller (disconnected) groups. Hence, its acceleration
is directed along the gradient of the preys’ density, say P̈ = αρ(t) ∗x ∇η for a suitable α > 0.
The preys have a speed Vmax(1− ρ/R)V0, for a fixed V0 ∈ R

2, and modify it trying to escape
from the predator. The resulting speed of the preys is thus

v(t, x, ρ, p) = Vmax(1− ρ/R)
(

V0 +B e−C‖x−p(t)‖ (x− p(t)
)

)

(3.5)

where B,C are positive constants. The former one is related to the speed at which preys
escape the predator and the latter to the distance at which preys feel the presence of the
predator. Once again, v is maximal at zero density and vanishes at the maximal density R,
which means that the preys can not move when their density is maximal.

Lemma 3.4 Let Nx = 3, Np = 6, Nr = 3 and fix a positive R. Assume v is as in (3.5),
η ∈ C2

c(R
2,R) with

∫

R2 η dx = 1. Denote p = (P, V ) and define

f(t, x, ρ, p) = ρ v(t, x, ρ, p), ϕ



t,

[

P
V

]

, r



 =

[

V
r

]

, Aρ = ρ ∗x ∇η . (3.6)

Then, this setting fits in the framework of Corollary 2.5 as soon as ρ̄ vanishes outside a
compact set.

Figure 4: Solution obtained through the numerical integration of (1.1)–(3.5)–(3.6)–(3.8) computed at
times 0, 0.091, 0.267, 0.358, 0.449 and 0.491. Note that the predator succeeds in splitting the support
of the preys.



12

Numerical Integration: For graphical purposes, we limit the numerical integration to the
2D case. With reference to (1.1)–(3.5)–(3.6), we choose the following parameters

Vmax = 2 , C = 5.25 , V0 = [0− 0.5]T , B = 40 , A = 400

η(x) =
3

πrp6

(

max
{

0, rp
2 − ‖x‖2

}

)2

rp = 0.5 .
(3.7)

and the initial datum

Po =

[

0
−0.8

]

, Vo =

[

0
1

]

, ρo(x, y) = χ
[−0.2,0.2]

(x)χ
[−0.2,−0.1]

(y) . (3.8)

The result is in Figure 4. Note that the predator succeeds in splitting the support of the
preys.

4 Technical Details

Throughout, we let WNx =
∫ π/2
0 (cos θ)Nx dθ. We state below a Grönwall–type lemma for

later use.

Lemma 4.1 Let the functions α ∈ C0(I;R), β ∈ W1,1(I;R), γ ∈ C0(I;R+), ∆ ∈ C0(I;R)
be such that

∆(t) ≤ α(t)

(

β(t) +

∫ t

0
γ(τ)∆(τ) dτ

)

.

Then, for all t ∈ I,

∆(t) ≤ α(t)



β(0) exp

(

∫ t

0
α(τ) γ(τ) dτ

)

+

∫ t

0
β′(τ) exp

(

∫ t

τ
α(s) γ(s) ds

)

dτ



 .

Proof. Using the following straightforward computations, we have:

γ(t)∆(t) ≤ α(t)β(t) γ(t) + α(t) γ(t)

∫ t

0
γ(τ)∆(τ) dτ ,

(

e−
∫ t
0
α(τ)γ(τ)dτ

∫ t

0
γ(τ)∆(τ) dτ

)′

≤ α(t)β(t) γ(t) e−
∫ t
0
α(τ)γ(τ)dτ .

Then, by integration we obtain

∫ t

0
γ(τ)∆(τ) dτ ≤

∫ t

0
α(t)β(t) γ(t) e

∫ t

τ
α(s)γ(s)ds dτ .

Consequently, we have

∆(t) ≤ α(t)

[

β(t) +

∫ t

0
e
∫ t
τ
α(s)γ(s)dsα(τ)β(τ)γ(τ) dτ

]

.

Integrating by part the last integral, we have finally the desired estimate. �
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Proof of Lemma 2.3. This proof consists in applying to the scalar conservation law
∂tρ + divx f

∗(t, x, ρ) = 0 with flux f∗(t, x, ρ) = f
(

t, x, ρ, p(t)
)

first the classical Kružkov
result [8, Theorem 5] and then the stability estimates in [5].

To apply Kružkov Theorem, it is sufficient to verify condition (H1) in [5, Theorem 2.5]
or the slightly weakened form in [11]. Note that: f∗ is C2 in x and ρ by (f.1), and is C0

in t by the regularity of π. This regularity is sufficient in the proof of [5, Theorem 2.5], see
also [8, Remark 4 in § 5] and [11]. Moreover, for any t ∈ I

(f.3) ⇒ ∂ρf
∗ ∈ L∞([0, t]×R

Nx × [0, R];RNx) and divx f
∗ ∈ L∞([0, t]×R

Nx × [0, R];R) .

Kružkov Theorem can then be applied on any interval [0, t].
Observe that by (f.2), the constant functions ρ̌(t, x) ≡ 0 and ρ̂(t, x) ≡ R solve the con-

servation law (2.4), independently from π. Then, by the Maximum Principle [8, Theorem 3],
we have that any solution ρ to (2.4) satisfies ρ(t, x) ∈ [0, R] for a.e. (t, x) ∈ I × R

Nx and for
all π ∈ C0(I;RNp).

To prove the L1 continuity in time and the TV bound, we apply [5, Theorem 2.5] in the
weaker form in [11]. To this aim, we verify also (H2) therein on the time interval [0, t], for
any t ∈ I. By (f.4) and the continuity of π, ∇x∂ρf

∗ ∈ L∞([0, t] × R
Nx × [0, R];RNx×Nx).

Note also that, by (f.5),
∫ t
0

∫

RNx

∥

∥∇x divx f
∗(τ, x, ρ)

∥

∥

L∞ dxdτ < +∞, with an upper bound
that depends on π.

We denote below Ωt = [0, t]×R
Nx × [0, R]×Kt where Kt is as above. By [11, Theorem 2.2]

or [5, Theorem 2.5] we obtain the estimate

TV
(

ρ(t)
)

≤ TV(ρ̄)eκtt +NxWNx

∫ t

0
eκt(t−τ)

∫

RNx

∥

∥

∥
∇x divx f

(

τ, x, ·, π(τ)
)

∥

∥

∥

L∞([0,R])
dx dτ

where κt = (2Nx + 1)
∥

∥∇x∂ρf
∥

∥

L∞(Ωt)
. This implies (2.6).

The L1–continuity in time of ρ follows from [5, Remark 2.4], thanks to (f.6) and to the
bound on the total variation, see also [4, Proof of Lemma 5.3].

To estimate the dependence of the solution from the initial datum, we check the hypothe-
ses (H3) in [11] or [5] and apply [11, Theorem 2.3] or [5, Theorem 2.6].

Let f1 and f2 satisfy (f.1), . . ., (f.5). Assume that π1 and π2 are in C0([0, t],RNp). Let
f∗
1 and f∗

2 be the corresponding compositions. With obvious notation, define K = K1
t ∪K2

t

and compute

sup
τ∈[0,t],x∈RNx ,ρ∈[0,R]

∣

∣

∣∂ρf
∗
1

(

τ, x, ρ, π1(τ)
)

− ∂ρf
∗
2

(

τ, x, ρ, π2(τ)
)

∣

∣

∣

≤
∥

∥∂ρf1 − ∂ρf2
∥

∥

L∞(Ωt)
+
∥

∥∂ρ∇pf2
∥

∥

L∞(Ωt)
‖π1 − π2‖L∞([0,t])

which is bounded by (f.3) and (f.7).
To complete (H3), it remains only to estimate the quantity

∫ t

0

∫

RNx

∥

∥

∥

∥

divx

(

f1
(

τ, x, ·, π1(τ)
)

− f2
(

τ, x, ·, π2(τ)
)

)

∥

∥

∥

∥

L∞([0,R];R)

dx dτ

≤
∫ t

0

∫

RNx

∥

∥

∥divx (f1 − f2)
(

τ, x, ·, π1(τ)
)

∥

∥

∥

L∞([0,R])
dxdτ

+

∫ t

0

∫

RNx

∥

∥∇p divx f2(x)
∥

∥

L∞

∥

∥π1(τ)− π2(τ)
∥

∥ dxdτ
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which is bounded thanks to (f.6) and (f.7). Now, we compare ρ1 and ρ2, obtaining

∥

∥(ρ1 − ρ2)(t)
∥

∥

L1

≤‖ρ̄1 − ρ̄2‖L1

+

[

eκtt − 1

κt
TV(ρ̄) +NxWNx

∫ t

0

eκt(t−τ) − 1

κt

∫

RNx

∥

∥

∥
∇x divx f1

(

τ, x, ·, π1(τ)
)

∥

∥

∥

L∞([0,R])
dxdτ

]

×
(

∥

∥∂ρf1 − ∂ρf2
∥

∥

L∞(Ωt)
+
∥

∥∂ρ∇pf2
∥

∥

L∞(Ωt)
‖π1 − π2‖L∞([0,t])

)

+

∫ t

0

∫

RNx

(

∥

∥

∥
div (f1 − f2)

(

τ, x, ·, π1(τ)
)

∥

∥

∥

L∞([0,R])

+
∥

∥∇p divx f2(τ, x, ·, ·)
∥

∥

L∞([0,R]×Kt)

∥

∥π1(τ)− π2(τ)
∥

∥

)

dxdτ (4.1)

which gives the final estimate. �

Proof of Lemma 2.4. By (ϕ), we may apply [6, theorems 1 and 2, Chap. 1] to (2.8) and
get the local in time existence and uniqueness of the solution. The bound (2.9) follows from
a standard application of Grönwall Lemma and ensures that the solution can be extended to
the whole interval I. Assume for simplicity that ϕ1 and ϕ2 satisfy (ϕ) with the same function
Cϕ. Using the representation formula

pi = p̄i +

∫ t

0
ϕi

(

τ, pi(τ), A
(

ri(τ)
)

(pi(τ))
)

dτ ,

we get

∥

∥(p1 − p2)(t)
∥

∥

≤ ‖p̄1 − p̄2‖+
∫ t

0

∥

∥

∥

∥

ϕ1

(

τ, p1(τ), A1

(

r1(τ)
)

(p1(τ))
)

− ϕ2

(

τ, p2(τ), A2

(

r2(τ)
)

(p2(τ))
)

∥

∥

∥

∥

dτ

≤ ‖p̄1 − p̄2‖+
∫ t

0

∥

∥(ϕ1 − ϕ2)(τ, p1(τ), A1(r1(τ))(p1(τ)))
∥

∥ dτ

+

∫ t

0
Cϕ(τ)

(

∥

∥(p1 − p2)(τ)
∥

∥ +
∥

∥

∥
A1

(

r1(τ)
)

(p1(τ))−A2

(

r2(τ)
)

(p2(τ))
∥

∥

∥

)

dτ

≤ ‖p̄1 − p̄2‖+
∫ t

0
Cϕ(τ)

(

1 +
∥

∥∇pA1(r1)
∥

∥

L∞

)

∥

∥(p1 − p2)(τ)
∥

∥ dτ

+

∫ t

0
Cϕ(τ)

(

‖A1‖L(L1,W1,∞)

∥

∥(r1 − r2)(τ)
∥

∥

L1
+ ‖A1 −A2‖L(L1,W1,∞)

∥

∥r2(τ)
∥

∥

L1

)

dτ

+

∫ t

0

∥

∥(ϕ1 − ϕ2)(t, ·, ·)
∥

∥

L∞dτ .

An application of Lemma 4.1 with

∆(t) =‖p̄1 − p̄2‖ ,
α(t) =1 ,
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β(t) =‖p̄1 − p̄2‖+
∫ t

0

∥

∥(ϕ1 − ϕ2)(τ, ·, ·)
∥

∥

L∞
dτ ,

γ(t) =Cϕ(t)
(

1 + ‖A1‖L(L1,W1,∞)‖r1‖L1

)

+

∫ t

0
Cϕ(τ)

[

‖A1‖L(L1,W1,∞)

∥

∥(r1 − r2)(τ)
∥

∥

L1
+ ‖A1 −A2‖L(L1,W1,∞)

∥

∥r2(τ)
∥

∥

L1

]

dτ .

completes the proof of (2.11). �

Proof of Theorem 2.2. The proof is divided in several steps.

1. Local Existence. Here we rely on an application of Banach Fixed Point Theorem. Fix
first the initial data ρ̄ ∈ (L1 ∩BV)(RNx ; [0, R]) and p̄ ∈ R

Np . Choose a positive T̂ ∈ I and,
motivated by (2.9), call

δ =
(

‖p̄‖+ 1
)

e
∫ T̂

0
Cϕ(τ)dτ − 1 .

For any positive R, with
∫

RNx ρ̄dx ≤ R, and for any T ∈
]

0, T̂
]

, define the complete metric

spaces and the distance

Xρ =

{

ρ ∈ C0

(

[0, T ];L1(RNx ; [0, R])
)

: sup
t∈[0,T ]

∫

RNx

ρ(t, x) dx ≤ R
}

,

X = Xρ ×C0
(

[0, T ];B
R
Np (0, δ)

)

,

d
(

(ρ1, p1); (ρ2, p2)
)

= sup
t∈[0,T ]

∥

∥ρ1(t)− ρ2(t)
∥

∥

L1
+ sup

t∈[0,T ]

∥

∥p1(t)− p2(t)
∥

∥ .

Define the map T : X → X by T (r, π) = (ρ, p) if and only if ρ and p solve the problems

{

∂tρ+ divx f
(

t, x, ρ, π(t)
)

= 0
ρ(0, x) = ρ̄(x)

and







ṗ = ϕ
(

t, p,
(

Ar(t)
)

(p)
)

p(0) = p̄ .
(4.2)

Note that both problems admit a unique solution, by lemmas 2.3 and 2.4. Moreover, by the
conservative form of the former problem in (4.2),

∫

RNx ρ(t, x) dx =
∫

RNx ρ̄(x) dx ≤ R, so that
T is well defined. Moreover, Lemma 2.4 shows that the solution to the latter problem in (4.2)
is in W1,∞

(

[0, T ];B
R
Np (0, δ)

)

⊂ C0
(

[0, T ];B
R
Np (0, δ)

)

.
To prove that T is a contraction, fix (r1, π1) and (r2, π2) and call (ρi, pi) = T (ri, πi).

Then, define KT̂ = B
R
Np (0, δ) and apply Lemma 2.3 with t = T . Note that KT ⊆ KT̂ .

The former problem in (4.2) is then solvable in C0

(

[0, T ];L1(RNx ; [0, R])
)

and the stability

estimate (2.7) yields

sup
t∈[0,T ]

∥

∥ρ1(t)− ρ2(t)
∥

∥

L1
≤ T C(T̂ ) sup

t∈[0,T ]

∥

∥π1(t)− π2(t)
∥

∥ .

Apply now (2.11)

sup
t∈[0,T ]

∥

∥p1(t)− p2(t)
∥

∥ ≤ CA

∫ T

0
Cϕ(τ) e

F (T )−F (τ) dτ sup
t∈[0,T ]

∥

∥r1(t)− r2(t)
∥

∥

L1
,

where F is defined as in (2.10) and can here be bounded as

F (t) ≤ (1 + CAR)

∫ t

0
Cϕ(τ) dτ . (4.3)
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Hence,

d
(

T (ρ1, p1),T (ρ2, p2)
)

≤ max
{

T C(T̂ ), CA(e
F (T ) − 1)

}

d
(

(ρ1, p1), (ρ2, p2)
)

.

Choose now a sufficiently small T so that T is a contraction. Then, its unique fixed point is
the unique solution to (1.1) defined on the time interval [0, T ].

2. Global Uniqueness: Let now (ρ1, p1) and (ρ2, p2) be two solutions to the same prob-
lem (1.1) and defined at least on a common time interval [0, Ť ] ⊆ I. Define

T ∗ = sup
{

T ∈ [0, Ť ] : (ρ1, p1)(t) = (ρ2, p2)(t) for all t ∈ [0, T ]
}

.

By the uniqueness of the fixed point, (ρ1, p1)(t) = (ρ2, p2)(t) for all t ∈ [0, T ], so that the
set in the right hand side above is not empty. Repeat Step 1 with initial datum (ρ̄∗, p̄∗) =
(ρ1, p1)(T

∗) = (ρ2, p2)(T
∗), which is possible since p is bounded on [0, T ∗] and TV(ρ̄∗) is

bounded, by (2.6). Thus, we obtain that (ρ1, p1)(t) = (ρ2, p2)(t) also on a right neighborhood
of T ∗. This contradicts the maximality of T ∗, unless T ∗ = Ť .

3. Global Existence: Define now

T∗ = sup
{

T ∈ I : ∃ a solution to (1.1) defined on [0, T ]
}

and assume that T∗ < +∞. By (2.9), p is bounded on [0, T∗[ and since

∥

∥p(t2)− p(t1)
∥

∥ ≤
∣

∣

∣

∣

∣

∫ t2

t1

Cϕ(τ)
(

1 +
∥

∥p(τ)
∥

∥

)

dτ

∣

∣

∣

∣

∣

≤
(

1 + sup
t∈[0,T∗]

∥

∥p(t)
∥

∥

) ∣

∣

∣

∣

∣

∫ t2

t1

Cϕ(τ) dτ

∣

∣

∣

∣

∣

,

p is also uniformly continuous. Hence the limit p∗ = limt→T−
∗
p(t) exists and is finite.

Apply now Lemma 2.3 on the interval [0, T∗], obtaining that the solution ρ to (2.4) is
defined on all [0, T∗] and, together with p, also solves (1.1). Now, we repeat Step 1 with
initial datum (ρ̄∗, p̄∗) = (ρ̄, p̄)(T∗), which is possible thanks to (2.6). In turn, this allows to
extend (ρ̄, p̄) to a right neighborhood of T∗. This contradicts the maximality of T∗, unless
T∗ = Tmax.

4. Stability Estimates: Fix t > 0 and let τ ∈ [0, t]. Let R ≥ max
{

∫

RNx ρ̄1 dx ,
∫

RNx ρ̄2 dx
}

.

Then, by (2.7) and (2.11), the solutions to (2.3) satisfy

∥

∥(ρ1 − ρ2)(t)
∥

∥

L1

≤ ‖ρ̄1 − ρ̄2‖L1 + t C(t)
[

‖p1 − p2‖L∞([0,t]) +
∥

∥∂ρ(f1 − f2)
∥

∥

L∞(Ωt)

+
∥

∥div (f1 − f2)
∥

∥

L1(RNx )×L∞([0,t]×[0,R]×Kt)

]

,

∥

∥(p1 − p2)(t)
∥

∥

≤ eF (t)‖p̄1 − p̄2‖+
∫ t

0
eF (t)−F (τ)

∥

∥(ϕ1 − ϕ2)(τ, ·, ·)
∥

∥

L∞ dτ

+

∫ t

0
eF (t)−F (τ)Cϕ(τ)

(

CA

∥

∥(ρ1 − ρ2)(τ)
∥

∥

L1
+R‖A1 −A2‖L(L1,W1,∞)

)

dτ .



17

with C as in Lemma 2.3, F as in (4.3), Kt = B(0, δt) and δt =
(

‖p̄‖+ 1
)

e
∫ t
0
Cϕ(τ)dτ −1. Insert

now the former estimate in the latter one and apply Lemma 4.1 with

∆ =
∥

∥(p1 − p2)(t)
∥

∥ ,

α(t) = eF (t) ,

β(t) = ‖p̄1 − p̄2‖+
R

1 + CAR
(

1− e−F (t)
)

‖A1 −A2‖L(L1,W1,∞)

+

∫ t

0

∥

∥(ϕ1 − ϕ2)(τ, ·, ·)
∥

∥

L∞e−F (τ) dτ + CA

∫ t

0
e−F (τ)Cϕ(τ)‖ρ̄1 − ρ̄2‖L1 dτ

+CA

∫ t

0
τ C(τ)Cϕ(τ) e

−F (τ)

×
(

∥

∥∂ρ(f1 − f2)
∥

∥

L∞(Ωτ )
+
∥

∥div (f1 − f2)
∥

∥

L1(RNx )×L∞([0,τ ]×[0,R]×Kτ)

)

,

γ(t) = CA t Cϕ(t) C(t)eF (t) ,

obtaining, with H(τ, t) = exp
∫ t
τ Cϕ(s)

(

1 + CA R+ CA s C(s)
)

ds,

‖p1 − p2‖ ≤



exp

(

F (t) + CA

∫ t

0
τCϕ(τ)C(τ) dτ

)



 ‖p̄1 − p̄2‖

+

(

∫ t

0
H(τ, t) dτ

)

‖ϕ1 − ϕ2‖L∞([0,t]×Kt×[0,CA]

+

(

R
∫ t

0
Cϕ(τ)H(τ, t) dτ

)

‖A1 −A2‖L(L1,W1,∞)

+

(

CA

∫ t

0
Cϕ(τ)H(τ, t) dτ

)

‖ρ̄1 − ρ̄2‖L1

+

(

CA

∫ t

0
τCϕ(τ)C(τ)H(τ, t) dτ

)

×
[

∥

∥∂ρ(f1 − f2)
∥

∥

L∞([0,R]×RNx×Kt)
+
∥

∥divx (f1 − f2)
∥

∥

L1(RNx )×L∞([0,R]×Kt)

]

.

Then, we immediately get the other bound

‖ρ1 − ρ2‖L1

≤ ‖ρ̄1 − ρ̄2‖



1 + tC(t) exp
(

F (t) + CA

∫ t

0
τCϕ(τ)C(τ) dτ

)





+

(

tC(t)
∫ t

0
H(τ, t) dτ

)

‖ϕ1 − ϕ2‖L∞([0,t]×Kt×[0,CA]

+

(

RtC(t)
∫ t

0
Cϕ(τ)H(τ, t) dτ

)

‖A1 −A2‖L(L1,W1,∞)

+CAtC(t) exp
(

F (t) + CA

(

1 + TV(ρ̄1)
)

∫ t

0
τCϕ(τ)C(τ) dτ

)

‖p̄1 − p̄2‖L1
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+tC(t)
(

1 +CA

∫ t

0
τCϕ(τ)C(τ)H(τ, t) dτ

)

×
(

∥

∥∂ρ(f1 − f2)
∥

∥

L∞([0,R]×RNx×Kt)
+
∥

∥divx (f1 − f2)
∥

∥

L1(RNx )×L∞([0,R]×Kt)

)

completing the proof. �

We need below the following consequence of Kružkov Theorem [8, Theorem 5].

Proposition 4.2 Let Nx ∈ N and T > 0. Consider the conservation law
{

∂tρ+ divx f̄(t, x, ρ) = 0
ρ(t, 0) = ρ̄

(4.4)

with f̄ ∈ C0([0, T ] × R
Nx × R;RNx); ∂ρf̄ , ∂ρ∇xf̄ and ∇2

xf̄ continuous wherever defined;,
∂ρf̄ , divx f̄ ∈ L∞([0, T ]×R

Nx × [−H,H]) for all H > 0. Assume that ρ̄ ∈ (L1∩L∞)(RNx ;R)
is such that ρ̄(x) = 0 for a.e. x ∈ R

Nx \ BRNx (0, d) for a given d > 0. Moreover, f̄(t, x, 0) =
0 for all t ∈ [0, T ] and x ∈ R

Nx. Call ρ the Kružkov solution to (4.4) and let K =
supt∈[0,T ]

∥

∥ρ(t)
∥

∥

L∞(RNx )
. Then, for all t ∈ [0, T ], ρ(t, x) = 0 for a.e. x ∈ R

Nx\BRNx (0, d+V t),

where V =
∥

∥∂ρf̄
∥

∥

L∞([0,T ]×RNx×[−K,K])
.

Above, f̄ is assumed to satisfy the usual Kružkov conditions, see [11, (H1)], or [5, 8]. The
proof essentially relies on [8, Theorem 1].

Proof of Proposition 4.2. Choose an x ∈ R
Nx \BRNx (0, d + V t). Let δ > 0 be such that

BRNx (x, δ) ∩ BRNx (0, d + V t) = ∅, so that BRNx (x, δ + V t) ∩ BRNx (0, d) = ∅. Applying [8,
Theorem 1], with u = ρ and v = 0, we have that

∫

B
RNx (x,δ)

∣

∣ρ(t, x)
∣

∣ dx ≤
∫

B
RNx (x,δ+V t)

∣

∣ρ̄(x)
∣

∣ dx = 0

hence ρ(t) vanishes a.e. outside BRNx (0, d + V t). �

Proof of Corollary 2.5. Fix any positive T ∈ I. Let d be such that ρ̄ vanishes outside
BRNx (0, d) and call K = BRNx (0, d + V T ). Let χ ∈ C∞

c (R, [0, 1]) be such that χ(x) = 1 for
all x ∈ K. Define the convolution in the space variable f∗ = f ∗x χ, so that f∗ has compact
support in x. Then, thanks also to the a priori bound (2.9), f∗ satisfies (f) on the interval
[0, T ]. Hence to the problem























∂tρ+ divx f
∗
(

t, x, ρ, p(t)
)

= 0

ṗ = ϕ
(

t, p,
(

Aρ(t)
)

(p)
)

ρ(0, x) = ρ̄(x)
p(0) = p̄

Theorem 2.2 can be applied, yielding the existence and uniqueness of a solution (ρ, p) in the
sense of Definition 2.1 defined on all the interval [0, T ]. Let now f̄(t, x, ρ) = f∗

(

t, x, ρ, p(t)
)

.
Then, ρ is a Kružkov solution to (4.4) and by Proposition 4.2 its support is contained in K,
for all t ∈ [0, T ]. Thereof ore, on the same time interval, by the definition of f∗, (ρ, p) is the
unique solution also to (1.1), always according to Definition 2.1. The rest of the proof easily
follows. �
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