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We consider a discrete set of individual agents interacting with a continuum. Examples might be a predator facing a huge group of preys, or a few shepherd dogs driving a herd of sheeps. Analytically, these situations can be described through a system of ordinary differential equations coupled with a scalar conservation law in several space dimensions. This paper provides a complete well posedness theory for the resulting Cauchy problem. A few applications are considered in detail and numerical integrations are provided.

Introduction

In various situations a small set of individuals has to interact with a continuum. A first famous examples comes from the fairy tale of the pied piper [START_REF] Grimm | Deutsche Sagen. Nicolaische Verlagsbichhandlung[END_REF], where a musician frees a city from rats using his magic flute. An entirely different case is that of shepherd dogs confining sheeps while pasturing, or that of a wild predator seeking to split a flock of preys. From a deterministic point of view, studying these phenomena leads to a dynamical system consisting of ordinary differential equations for the evolution of the agents and partial differential equations for that of the continuum. Here, motivated by the present toy applications, we choose scalar conservation laws for the description of the continuum's evolution. In particular, no diffusion is here considered. On one side, this choice makes the analytical treatment technically more difficult, due to the possible singularities arising in the density that describes the continuum. On the other hand, we obtain a framework where all propagation speeds are finite. As a consequence, for instance, a continuum initially confined in a bounded region will remain in a (larger but) bounded region at any positive time. This allows to state problems concerning the support of the continuum, such as confinement problems (the rats should leave the city, or the shepherd dogs should keep sheeps inside a given area) or far more complex ones (how can a predator split the support of the density of its preys?).

In the current literature, similar problems have been considered with a great variety of analytical tools, see for instance [START_REF] Bressan | Existence of optimal strategies for a fire confinement problem[END_REF] for a fire confinement problem modeled through differential inclusions, or [START_REF] Capasso | Stochastic geometric models, and related statistical issues in tumour-induced angiogenesis[END_REF] for a tumor-induced angiogenesis described through a stochastic geometric model. Other examples are provided by the interaction of a fluid (liquid or gas) with a rigid body or with an elastic structure, like a membrane, see [START_REF] Serre | Chute libre d'un solide dans un fluide visqueux incompressible[END_REF][START_REF] Vázquez | Large time behavior for a simplified 1D model of fluid-solid interaction[END_REF]: the evolution of the rigid body is described by a system of ordinary differential equations, while the evolution of the fluid is subject to partial differential equations like Navier-Stokes or Euler equations. Further results are currently available in the 1D case. For instance, a problem motivated by traffic flow is considered in [START_REF] Lattanzio | Moving bottlenecks in car traffic flow: a pde-ode coupled model[END_REF]; the piston problem, a blood circulation model and a supply chain model are considered in [START_REF] Borsche | On the coupling of systems of hyperbolic conservation laws with ordinary differential equations[END_REF].

Formally, we are thus lead to the dynamical system

           ∂ t ρ + div x f t, x, ρ, p(t) = 0 ṗ = ϕ t, p, Aρ(t) (p) ρ(0, x) = ρ(x) p(0) = p (t, x) ∈ R + × R Nx ρ ∈ R + p ∈ R Np (1.1)
where the unknowns are ρ and p. The former one, ρ = ρ(t, x) is the density describing the macroscopic state of the continuum while the latter, p = p(t), characterizes the state of the individuals. It can be for instance the vector of the individuals' positions or of the individuals' positions and speeds. The dynamics of the continuum is described by the flow f , which in general can be thought as the product f = ρ v of the density ρ and a suitable speed v = v(t, x, ρ, p). The vector field ϕ defines the dynamics of the individuals at time t and it depends from the continuum density ρ(t) through a suitable average A ρ(t) . Our driving example below is the convolution in the space variable A ρ(t) = ρ(t) * η, with a smooth compactly supported kernel η.

Below we address and solve the first mathematical questions that arise about (1.1), i.e. the existence and uniqueness of entropy solutions, their stability with respect the data and the equation, and the existence of optimal controls. A first well posedness result, that applies to general initial data, is provided in Theorem 2.2. As usual in this context, see also [START_REF] Colombo | Control of the continuity equation with a non-local flow[END_REF][START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF][START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF][START_REF] Mercier | Stability estimates on general scalar balance laws[END_REF], the hypotheses on f are rather intricate. However, the present framework naturally applies to situations in which the continuum can be supposed initially confined in a bounded region, i.e. ρ vanishes outside a compact subset of R Nx . In this case, Corollary 2.5 applies and the hypotheses on f are greatly simplified.

The next section presents the analytical well-posedness results. Section 3 is devoted to various applications, while all proofs are deferred to the last section.

Notation and Analytical Results

We now collect the various assumptions on (1.1) that allow us to prove well posedness, i.e. the existence of solutions, their uniqueness and their stability with respect to data and equations. The hypotheses collected below are essentially those that ensure the well posedness of the conservation law and, separately, of the ordinary differential equation.

Throughout, we denote R + = [0, +∞[ and B R Np (x, r) denotes the closed ball in R Np centered at x with radius r. Let T max ∈ [0, +∞] and call I = [0, T max ] if T max < +∞, while I = R + otherwise. The real parameter R, i.e. the maximal possible density is fixed and positive. For a given compact set K in R Np and a T > 0, we denote

Ω T = [0, T ] × R Nx × [0, R] × K.
Flow of the continuum: at point x and time t, the continuum flows with a flux f = f t, x, ρ(t, x), p(t) that depends on time t, on the space variable x, on the continuum density ρ evaluated at (t, x) and on the state p of the individuals at time t. We require the following regularity:

(f ) The flow f : I × R Nx × [0, R] × R Np → R Nx is such that (f.1) f ∈ C 2 (I × R Nx × [0, R] × R Np ; R Nx ). (f.2) For all (t, x, p) ∈ I × R Nx × R Np , f (t, x, 0, p) = f (t, x, R, p) = 0.
(f.3) For all T ∈ I and for all compact subsets K ⊂ R Np , there exists a constant

C f such that for t ∈ [0, T ], x ∈ R Nx , ρ ∈ [0, R] and p ∈ K, ∂ ρ f (t, x, ρ, p) < C f , div x f (t, x, ρ, p) < C f .
(f.4) For all T ∈ I and for all compact subsets K ⊂ R Np , there exists a constant

C f such that for t ∈ [0, T ], x ∈ R Nx , ρ ∈ [0, R] and p ∈ K, ∇ x ∂ ρ f (t, x, ρ, p) < C f .
(f.5) For all compact subsets K ⊂ R Np , there exists a constant C f such that

I R Nx sup p∈K,ρ∈[0,R] ∇ x div x f (t, x, ρ, p) dx dt < C f ,
(f.6) For all compact subsets K ⊂ R Np , there exists a constant C f such that

I R Nx sup p∈K,ρ∈[0,R] div x f (t, x, ρ, p) dx dt < C f .
(f.7) For all T ∈ I and for all compact subsets K ⊂ R Np , there exists a constant C f such that for t ∈ [0, T ], ρ ∈ [0, R] and p ∈ K,

R Nx ∇ p div x f (t, x, ρ, p) dx < C f , ∇ p ∂ ρ f (t, x, ρ, p) < C f for all x ∈ R Nx .
Condition (f.2) states that at the maximal density ρ = R, the continuum is at congestion and can not move. Assumption (f.2) has a key importance. 

= v(ρ) v(x, p) with v ∈ C 2 ([0, R]; R) and v ∈ C 2 c (R Nx × R Nx ; R Nx
). We note that if f does not depend explicitly on t and x, which is a usual situation when dealing with systems of conservation laws in one space dimension, then the above assumptions reduce to only (f.1), (f.2), the first part of (f.3) and the first part of (f.7).

Moreover, Corollary 2.5 shows that whenever the initial density distribution ρ has compact support, then the requirements on f are reduced, since only (f.1), (f.2) and (f.3) are necessary.

Speed of the individuals: at time t, the individuals' state changes with a speed ϕ = ϕ t, p(t), A ρ(t) p(t) that depends on time t, on the individuals' state p at time t and on an average A ρ(t) of the continuum density ρ evaluated at time t and computed at p(t). On the averaging operator A we require the following conditions.

(A) A : L 1 (R Nx ; R) → W 1,∞ (R Np ; R Nr
) is linear and continuous, i.e. there exists a constant C A such that for all ρ ∈ L 1 (R Nx ; R)

Aρ W 1,∞ ≤ C A ρ L 1 .
Below, the operator norm of A is denoted A L(L 1 ,W 1,∞ ) . For instance, in the case N p = N x , a typical example of such an operator

A is A(ρ) (p) = (ρ * η)(p) for a kernel η ∈ C 1 c (R Nx ; R) with R Np η dx = 1.
The speed law ϕ satisfies the assumptions:

(ϕ) The vector field ϕ : R 

+ × R Np × R Nr → R Np is such that (ϕ.
Definition 2.1 Fix ρ ∈ (L 1 ∩ BV) R Nx ; [0, R] and p ∈ R Np . A pair (ρ, p) with ρ ∈ C 0 I; L 1 (R Nx ; [0, R]) and p ∈ W 1,1 (I; R Np ) is a solution to (1.1) with initial datum (ρ, p) if (i) the map ρ = ρ(t, x
) is a Kružkov solution to the scalar conservation law This solution can be extended to all I.

∂ t ρ + div x f t, x, ρ, p(t) = 0 (2.1) (ii) the map p = p(t)
Let now f 1 , f 2 satisfy (f ); A 1 , A 2 satisfy (A) and ϕ 1 , ϕ 2 satisfy (ϕ); in all cases for the same interval I and the same parameters or functions R, C f , C A , C ϕ . Then, for any initial data

(ρ 1 , p1 ), (ρ 2 , p2 ) ∈ (L 1 ∩ BV)(R Nx ; [0, R]) × R Np , the solutions (ρ 1 , p 1 ) and (ρ 2 , p 2 ) to the problems            ∂ t ρ 1 + div x f 1 t, x, ρ 1 , p 1 (t) = 0 ṗ1 = ϕ 1 t, p 1 , A 1 ρ 1 (t) (p 1 ) ρ 1 (0, x) = ρ1 (x) p 1 (0) = p1 and            ∂ t ρ 2 + div x f 2 t, x, ρ 2 , p 2 (t) = 0 ṗ2 = ϕ 2 t, p 2 , A 2 ρ 2 (t) (p 2 ) ρ 2 (0, x) = ρ2 (x) p 2 (0) = p2 (2.3) satisfy the inequalities (ρ 1 -ρ 2 )(t) L 1 ≤ 1 + K(t) ρ1 -ρ2 L 1 +K(t) ∂ ρ (f 1 -f 2 ) L ∞ (Ωt) + div (f 1 -f 2 ) L 1 (R Nx )×L ∞ ([0,t]×[0,R]×Kt) +K(t) ϕ 1 -ϕ 2 L ∞ ([0,t]×Kt×[0,C A ]) + A 1 -A 2 L(L 1 ,W 1,∞ ) + p1 -p2 and (p 1 -p 2 )(t) ≤ 1 + K(t) p1 -p2 +K(t) ∂ ρ (f 1 -f 2 ) L ∞ (Ωt) + div (f 1 -f 2 ) L 1 (R Nx )×L ∞ ([0,t]×[0,R]×Kt) +K(t) ϕ 1 -ϕ 2 L ∞ ([0,t]×Kt×[0,C A ]) + A 1 -A 2 L(L 1 ,W 1,∞ ) + ρ1 -ρ2 L 1 where K ∈ C 0 (I; R + ) vanishes at t = 0.
More detailed expressions of the various coefficients are presented in Section 4. The proof, which is deferred to Section 4, is obtained through Banach Contraction Theorem. The necessary estimates for the convergence are a consequence of [8, Theorem 5], [5, Theorem 2.5] and of an adaptation of the standard theory of Caratheodory ordinary differential equations, collected in the following two lemmas.

Lemma 2.3 Let (f ) hold. Choose any ρ ∈ (L 1 ∩ L ∞ ∩ BV)(R Nx ; [0, R]). Fix a function π ∈ C 0 (I; R Np ).
Then, the conservation law

∂ t ρ + div x f t, x, ρ, π(t) = 0 ρ(0, x) = ρ(x) (2.4) admits a unique solution ρ ∈ C 0 I; L 1 (R Nx , [0, R]) . For all t ∈ I, introduce the compact set K t = B R Np (0, π C 0 ([0,t]) ), denote Ω t = [0, t] × R Nx × [0, R] × K t and define κ t = (2N x + 1) ∇ x ∂ ρ f L ∞ (Ωt) . (2.5)
Then, the following BV estimate holds: for all t ∈ I

TV ρ(t) ≤ TV(ρ) + N x W Nx t R Nx ∇ x div x f (•, x, •, •) L ∞ ([0,t]×[0,R]×Kt) dx e κtt . (2.6)
Let now, for i = 1, 2, ρ i be the solution to (1.1) corresponding to the initial datum ρi and to the equation defined by π i ∈ C 0 (I; R Np ) and by f i , satisfying (f ). Then,

(ρ 1 -ρ 2 )(t) L 1 ≤ ρ1 -ρ2 L 1 +t C(t) π 1 -π 2 L ∞ ([0,t]) + ∂ ρ (f 1 -f 2 ) L ∞ (Ωt) + div (f 1 -f 2 ) L 1 (R Nx )×L ∞ ([0,t]×[0,R]×Kt) (2.7)
where C(t) depends on TV(ρ 1 ),

∇ x ∂ ρ f 1 L ∞ (Ωt) , ∇ x div x f 1 L 1 (R Nx )×L ∞ ([0,t]×[0,R]×Kt) and ∇ p ∂ ρ f 2 L ∞ (Ωt) , div x ∇ p f 2 L 1 (R Nx )×L ∞ ([0,t]×[0,R]×Kt) , t.
An explicit expression of C(t) is provided in (4.1).

The estimates related to the ordinary differential equation are provided by the following lemma.

Lemma 2.4 Let (ϕ) and (A) hold. Choose an initial datum p ∈ R Np and fix a function r ∈ C 0 I; L 1 (R Nx ; [0, R]) . Then, the ordinary differential equation

   ṗ = ϕ t, p, A r(t) (p) p(0) = p .
(2.8) admits a unique solution p ∈ W 1,∞ loc (I; R Np ). The following bound holds: p(t) ≤ p + 1 e t 0 Cϕ(τ )dτ -1 .

(2.9)

Given two initial conditions p1 , p2 ∈ R Np , two functions r 1 , r 2 ∈ C 0 I; L 1 (R Nx ; [0, R]) , two speed laws ϕ 1 , ϕ 2 satisfying (ϕ) and two averaging operators A 1 , A 2 satisfying (A), define

F (t) = 1 + C A r 1 L ∞ ([0,t];L 1 ) t 0 C ϕ (τ ) dτ . (2.10) Then, (p 1 -p 2 )(t) ≤ e F (t) p1 -p2 + t 0 e F (t)-F (τ ) ϕ 1 (τ ) -ϕ 2 (τ ) L ∞ dτ + t 0 e F (t)-F (τ ) C ϕ (τ ) C A (r 1 -r 2 )(τ ) L 1 + A 1 -A 2 L(L 1 ,W 1,∞ ) r 2 (τ ) L 1 dτ .
(2.11)

In the applications below, the support of the initial data is compact. Thanks to the finite propagation speed typical of conservation laws, this allows a major simplification in the assumptions of Theorem 2.2.

Corollary 2.5 Consider problem (1.1) with f satisfying (f.1), (f.2) and (f.3). Let A satisfy (A) and ϕ satisfy (ϕ). If ρ vanishes outside a compact set, then problem (1.1) admits a unique solution in the sense of Definition 2.1. This solution can be extended to all of I. Moreover, the stability estimates of Theorem 2.2 apply, provided both ρ1 and ρ2 vanish outside a compact set.

Applications

This section is devoted to a few sample applications of Theorem 2.2. While the unknown ρ keeps throughout the meaning of a scalar density, the state p of the individuals is the position of a single agent in § 3.1, it is a vector of several positions in § 3.2 and it becomes a 4-vector position-speed in § 3.3.

Numerical integrations are also provided in order to show the qualitative behavior of the solutions. In all cases, the Lax-Friedrichs method, see [10, § 12.5], with dimensional splitting was used for the conservation law and Euler polygonals to integrate the ordinary differential equation.

The Pied Piper

As a first toy application we consider the situation described in [7, n. 246]. To lure rats away, the city of Hamelin (now Hamel) hires a rat-catcher who, playing his magic pipe, attracts all mice out of the city. In this case, ρ = ρ(t, x) is the mice density and p = p(t) is the position of the piper. Rats move with a speed v(ρ) v(px), with the scalar v and the vector v having the qualitative behavior in Figure 1. More precisely, at density 0 mice have the fastest speed while at density R their speed vanishes. The term v accounts for the attraction of the mice towards the piper. The magic musician has a speed q(ρ * η) ψ(t), i.e. he moves faster when the average density of mice around him is higher. On the contrary, when only few rats are near to him, he slows down.

0 v ρ → v(ρ) R ρ 0 x v x → v(x) 0 q ρ → q(ρ) R ρ
Lemma 3.1 Let N x = 2, N p = 2, N r = 1 and fix a positive R. Assume v ∈ C 2 ([0, R]; R), v ∈ C 2 (R 2 ; R 2 ), q ∈ W 1,∞ ([0, R]; R), ψ ∈ W 1,∞ (R + ; R 2 ), η ∈ C 2 c (R 2 , R) with R 2 η dx = 1. Assume that v(R) = 0. Define f (t, x, ρ, p) = ρ v(ρ) v(p -x) ϕ(t, p, r) = q(r) ψ(t) Aρ = ρ * x η . (3.1)
Then, this setting fits in the framework of Corollary 2.5 as soon as ρ vanishes outside a compact set.

The proof is immediate and, hence, omitted.

Numerical example: To fix a specific situation, we choose the following functions in (1.1): Thanks to the stability estimates in Theorem 2.2, the proof of this proposition directly follows from Ascoli-Arzelà Theorem that allows to prove the compactness of K.

v(ρ) = V max 1 -ρ R V max = 9 R = 1 v(x) = x e -x 2 q(r) = v p + Vp-vp R r V p = 7 v p = 1 ψ(t) = cos ωt -sin ωt ω = 1 η(x) =

Shepherd Dogs

On the plane, consider a herd of, say, sheeps controlled by n shepherd dogs. Then, ρ is the density of sheeps and p ≡ (p 1 , . . . , p n ) is the vector of the positions of the dogs, so that each p i is in R 2 . We assume that initially the sheeps are distributed around, say, the origin and tend to disperse moving radially with a speed directed by v r (x). The duty of the dogs is to prevent this dispersion and they pursue this goal moving around sheeps or, more precisely, with a speed ϕ orthogonal to the gradient of the sheeps' density. The sheeps modify their speed escaping from the dogs with a repulsive speed v d (x, p) = i v(xp i ), where v behaves qualitatively as in Figure 1. Finally, the speed of the sheeps is then given by v(ρ) ( v r (x) + n i=1 v(xp i )) where v is maximal at the density zero and vanishes at the maximal density R. This last fact means that the sheeps can not move when their density is maximal.

Lemma 3.3 Let n ∈ N, N x = 2, N p = 2n, N r = 2n and fix a positive R. Assume v ∈ C 2 ([0, R]; R), v r ∈ C 2 (R 2 ; R 2 ) v ∈ C 2 (R 2 ; R 2 ), η ∈ C 2 c (R 2 , R) with R 2 η dx = 1. Assume that v(R) = 0. Define f (t, x, ρ, p) = ρ v(ρ) v r (x) + n i=1 v(x -p i ) , ϕ(t, p, r) = V d r ⊥ √ 1+ r 2 , Aρ = ρ * x ∇η . (3.3)
Then, this setting fits in the framework of Corollary 2.5 as soon as ρ vanishes outside a compact set.

Here, r ≡ (r 1 , . . . , r n ) is a vector in (R 2 ) n and we set r ⊥ ≡ (r ⊥ 1 , . . . , r ⊥ n ), with

a b ⊥ = b -a .
Numerical Integration: To fix a specific situation, we choose n = 2 and the following functions in (1.1):

v(ρ) = V max 1 - ρ R V max = 1 R = 1 v(x) = α √ ℓ e -x 2 /ℓ x α = 20 ℓ = 0.2 v r (x) = β x 1 + x 2 β = 1 η(x) = 3 πr p 6 max 0, r p 2 -x 2 2 r p = 1 V d = 100 (3.4)
At time zero, sheeps are uniformly distributed at the maximal density R = 1 in the circumference centered at (0, 0) with radius 0.2. Dogs start moving from (0.7, 0) and (-0.7, 0) Graphs of the corresponding solution are in Figure 3.

Merely technical modifications may allow to pass to various other problems. For instance, dogs may be asked to constrain the movement of all sheeps towards a certain area.

Predator and Preys

We consider here a predator attacking a group of preys. We think for example at a hawk pursuing a flock of smaller birds or at a shark attacking a group of sardines. Here, ρ is the density of the preys with x ∈ R 3 , p is now the pair (P, V ) ∈ R 6 , where P ∈ R 3 is the position of the predator, V ∈ R 3 is its speed and we postulate below an equation for the acceleration P = V of the predator. Indeed, the framework in Theorem 2.2 allows to consider also second, or higher, order ordinary differential equations for the single agents. The initial density of the preys is assumed to have a compact, connected support. The aim of the predator is to divide this connected group into two smaller (disconnected) groups. Hence, its acceleration is directed along the gradient of the preys' density, say P = αρ(t) * x ∇η for a suitable α > 0. The preys have a speed V max (1ρ/R)V 0 , for a fixed V 0 ∈ R 2 , and modify it trying to escape from the predator. The resulting speed of the preys is thus

v(t, x, ρ, p) = V max (1 -ρ/R) V 0 + B e -C x-p(t) x -p(t) (3.5)
where B, C are positive constants. The former one is related to the speed at which preys escape the predator and the latter to the distance at which preys feel the presence of the predator. Once again, v is maximal at zero density and vanishes at the maximal density R, which means that the preys can not move when their density is maximal.

Lemma 3.4 Let N x = 3, N p = 6, N r = 3 and fix a positive R. Assume v is as in (3.5), η ∈ C 2 c (R 2 , R) with R 2 η dx = 1. Denote p = (P, V ) and define f (t, x, ρ, p) = ρ v(t, x, ρ, p), ϕ   t, P V , r   = V r , Aρ = ρ * x ∇η . (3.6)
Then, this setting fits in the framework of Corollary 2.5 as soon as ρ vanishes outside a compact set. Numerical Integration: For graphical purposes, we limit the numerical integration to the 2D case. With reference to (1.1)-(3.5)-(3.6), we choose the following parameters

V max = 2 , C = 5.25 , V 0 = [0 -0.5] T , B = 40 , A = 400 η(x) = 3 πr p 6 max 0, r p 2 -x 2 2 r p = 0.5 . (3.7) 
and the initial datum

P o = 0 -0.8 , V o = 0 1 , ρ o (x, y) = χ [-0.2,0.2] (x) χ [-0.2,-0.1] (y) . (3.8) 
The result is in Figure 4. Note that the predator succeeds in splitting the support of the preys.

Technical Details

Throughout, we let W Nx = π/2 0 (cos θ) Nx dθ. We state below a Grönwall-type lemma for later use.

Lemma 4.1 Let the functions α ∈ C 0 (I; R), β ∈ W 1,1 (I; R), γ ∈ C 0 (I; R + ), ∆ ∈ C 0 (I; R) be such that ∆(t) ≤ α(t) β(t) + t 0 γ(τ ) ∆(τ ) dτ .
Then, for all t ∈ I,

∆(t) ≤ α(t)   β(0) exp t 0 α(τ ) γ(τ ) dτ + t 0 β ′ (τ ) exp t τ α(s) γ(s) ds dτ   .
Proof. Using the following straightforward computations, we have:

γ(t)∆(t) ≤ α(t) β(t) γ(t) + α(t) γ(t) t 0 γ(τ )∆(τ ) dτ , e -t 0 α(τ )γ(τ )dτ t 0 γ(τ )∆(τ ) dτ ′ ≤ α(t) β(t) γ(t) e -t 0 α(τ )γ(τ )dτ .
Then, by integration we obtain

t 0 γ(τ )∆(τ ) dτ ≤ t 0 α(t) β(t) γ(t) e t τ α(s)γ(s)ds dτ .
Consequently, we have

∆(t) ≤ α(t) β(t) + t 0 e t τ α(s)γ(s)ds α(τ )β(τ )γ(τ ) dτ .
Integrating by part the last integral, we have finally the desired estimate.

Proof of Lemma 2.3. This proof consists in applying to the scalar conservation law ∂ t ρ + div x f * (t, x, ρ) = 0 with flux f * (t, x, ρ) = f t, x, ρ, p(t) first the classical Kružkov result [8, Theorem 5] and then the stability estimates in [START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF].

To apply Kružkov Theorem, it is sufficient to verify condition (H1) in [5, Theorem 2.5] or the slightly weakened form in [START_REF] Mercier | Stability estimates on general scalar balance laws[END_REF]. Note that: f * is C 2 in x and ρ by (f.1), and is C 0 in t by the regularity of π. This regularity is sufficient in the proof of [5, Theorem 2.5], see also [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]Remark 4 in § 5] and [START_REF] Mercier | Stability estimates on general scalar balance laws[END_REF]. Moreover, for any t ∈ I

(f.3) ⇒ ∂ ρ f * ∈ L ∞ ([0, t] × R Nx × [0, R]; R Nx ) and div x f * ∈ L ∞ ([0, t] × R Nx × [0, R]; R) .
Kružkov Theorem can then be applied on any interval [0, t].

Observe that by (f.2), the constant functions ρ(t, x) ≡ 0 and ρ(t, x) ≡ R solve the conservation law (2.4), independently from π. Then, by the Maximum Principle [8, Theorem 3], we have that any solution ρ to (2.4) satisfies ρ(t, x) ∈ [0, R] for a.e. (t, x) ∈ I × R Nx and for all π ∈ C 0 (I; R Np ).

To prove the L 1 continuity in time and the TV bound, we apply [5, Theorem 2.5] in the weaker form in [START_REF] Mercier | Stability estimates on general scalar balance laws[END_REF]. To this aim, we verify also (H2) therein on the time interval [0, t], for any t ∈ I. By (f.4) and the continuity of π,

∇ x ∂ ρ f * ∈ L ∞ ([0, t] × R Nx × [0, R]; R Nx×Nx ).
Note also that, by (f.5), 

t 0 R Nx ∇ x div x f * (τ, x, ρ) L ∞ dx dτ < +∞,
R Nx ∇ x div x f τ, x, •, π(τ ) L ∞ ([0,R])
dx dτ where κ t = (2N x + 1) ∇ x ∂ ρ f L ∞ (Ωt) . This implies (2.6).

The L 1 -continuity in time of ρ follows from [START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF]Remark 2.4], thanks to (f.6) and to the bound on the total variation, see also [START_REF] Colombo | Control of the continuity equation with a non-local flow[END_REF]Proof of Lemma 5.3].

To estimate the dependence of the solution from the initial datum, we check the hypotheses (H3) in [START_REF] Mercier | Stability estimates on general scalar balance laws[END_REF] or [START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF] and apply [START_REF] Mercier | Stability estimates on general scalar balance laws[END_REF]Theorem 2.3] or [START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF]Theorem 2.6].

Let f 1 and f 2 satisfy (f.1), . . ., (f.5). Assume that π 1 and π 2 are in C 0 ([0, t], R Np ). Let f * 1 and f * 2 be the corresponding compositions. With obvious notation, define

K = K 1 t ∪ K 2 t and compute sup τ ∈[0,t],x∈R Nx ,ρ∈[0,R] ∂ ρ f * 1 τ, x, ρ, π 1 (τ ) -∂ ρ f * 2 τ, x, ρ, π 2 (τ ) ≤ ∂ ρ f 1 -∂ ρ f 2 L ∞ (Ωt) + ∂ ρ ∇ p f 2 L ∞ (Ωt) π 1 -π 2 L ∞ ([0,t])
which is bounded by (f.3) and (f.7).

To complete (H3), it remains only to estimate the quantity

t 0 R Nx div x f 1 τ, x, •, π 1 (τ ) -f 2 τ, x, •, π 2 (τ ) L ∞ ([0,R];R) dx dτ ≤ t 0 R Nx div x (f 1 -f 2 ) τ, x, •, π 1 (τ ) L ∞ ([0,R]) dx dτ + t 0 R Nx ∇ p div x f 2 (x) L ∞ π 1 (τ ) -π 2 (τ ) dx dτ
which is bounded thanks to (f.6) and (f.7). Now, we compare ρ 1 and ρ 2 , obtaining

(ρ 1 -ρ 2 )(t) L 1 ≤ ρ1 -ρ2 L 1 + e κtt -1 κ t TV(ρ) + N x W Nx t 0 e κt(t-τ ) -1 κ t R Nx ∇ x div x f 1 τ, x, •, π 1 (τ ) L ∞ ([0,R]) dx dτ × ∂ ρ f 1 -∂ ρ f 2 L ∞ (Ωt) + ∂ ρ ∇ p f 2 L ∞ (Ωt) π 1 -π 2 L ∞ ([0,t]) + t 0 R Nx div (f 1 -f 2 ) τ, x, •, π 1 (τ ) L ∞ ([0,R]) + ∇ p div x f 2 (τ, x, •, •) L ∞ ([0,R]×Kt) π 1 (τ ) -π 2 (τ ) dx dτ (4.1)
which gives the final estimate.

Proof of Lemma 2.4. By (ϕ), we may apply [6, theorems 1 and 2, Chap. 1] to (2.8) and get the local in time existence and uniqueness of the solution. The bound (2.9) follows from a standard application of Grönwall Lemma and ensures that the solution can be extended to the whole interval I. Assume for simplicity that ϕ 1 and ϕ 2 satisfy (ϕ) with the same function C ϕ . Using the representation formula

p i = pi + t 0 ϕ i τ, p i (τ ), A r i (τ ) (p i (τ )) dτ , we get (p 1 -p 2 )(t) ≤ p1 -p2 + t 0 ϕ 1 τ, p 1 (τ ), A 1 r 1 (τ ) (p 1 (τ )) -ϕ 2 τ, p 2 (τ ), A 2 r 2 (τ ) (p 2 (τ )) dτ ≤ p1 -p2 + t 0 (ϕ 1 -ϕ 2 )(τ, p 1 (τ ), A 1 (r 1 (τ ))(p 1 (τ ))) dτ + t 0 C ϕ (τ ) (p 1 -p 2 )(τ ) + A 1 r 1 (τ ) (p 1 (τ )) -A 2 r 2 (τ ) (p 2 (τ )) dτ ≤ p1 -p2 + t 0 C ϕ (τ ) 1 + ∇ p A 1 (r 1 ) L ∞ (p 1 -p 2 )(τ ) dτ + t 0 C ϕ (τ ) A 1 L(L 1 ,W 1,∞ ) (r 1 -r 2 )(τ ) L 1 + A 1 -A 2 L(L 1 ,W 1,∞ ) r 2 (τ ) L 1 dτ + t 0 (ϕ 1 -ϕ 2 )(t, •, •) L ∞ dτ .
An application of Lemma 4.1 with

∆(t) = p1 -p2 , α(t) =1 , β(t) = p1 -p2 + t 0 (ϕ 1 -ϕ 2 )(τ, •, •) L ∞ dτ , γ(t) =C ϕ (t) 1 + A 1 L(L 1 ,W 1,∞ ) r 1 L 1 + t 0 C ϕ (τ ) A 1 L(L 1 ,W 1,∞ ) (r 1 -r 2 )(τ ) L 1 + A 1 -A 2 L(L 1 ,W 1,∞ ) r 2 (τ ) L 1 dτ .
completes the proof of (2.11).

Proof of Theorem 2.2. The proof is divided in several steps. For any positive R, with R Nx ρ dx ≤ R, and for any T ∈ 0, T , define the complete metric spaces and the distance

X ρ = ρ ∈ C 0 [0, T ]; L 1 (R Nx ; [0, R]) : sup t∈[0,T ] R Nx ρ(t, x) dx ≤ R , X = X ρ × C 0 [0, T ]; B R Np (0, δ) , d (ρ 1 , p 1 ); (ρ 2 , p 2 ) = sup t∈[0,T ] ρ 1 (t) -ρ 2 (t) L 1 + sup t∈[0,T ] p 1 (t) -p 2 (t) .
Define the map T : X → X by T (r, π) = (ρ, p) if and only if ρ and p solve the problems

∂ t ρ + div x f t, x, ρ, π(t) = 0 ρ(0, x) = ρ(x) and    ṗ = ϕ t, p, Ar(t) (p) p(0) = p . (4.2) 
Note that both problems admit a unique solution, by lemmas 2.3 and 2.4. Moreover, by the conservative form of the former problem in (4.2), R Nx ρ(t, x) dx = R Nx ρ(x) dx ≤ R, so that T is well defined. Moreover, Lemma 2.4 shows that the solution to the latter problem in

(4.2) is in W 1,∞ [0, T ]; B R Np (0, δ) ⊂ C 0 [0, T ]; B R Np (0, δ) .
To prove that T is a contraction, fix (r 1 , π 1 ) and (r 2 , π 2 ) and call (ρ i , p i ) = T (r i , π i ). Then, define K T = B R Np (0, δ) and apply Lemma 2.3 with t = T . Note that

K T ⊆ K T . The former problem in (4.2) is then solvable in C 0 [0, T ]; L 1 (R Nx ; [0, R]) and the stability estimate (2.7) yields sup t∈[0,T ] ρ 1 (t) -ρ 2 (t) L 1 ≤ T C( T ) sup t∈[0,T ] π 1 (t) -π 2 (t) . Apply now (2.11) sup t∈[0,T ] p 1 (t) -p 2 (t) ≤ C A T 0 C ϕ (τ ) e F (T )-F (τ ) dτ sup t∈[0,T ] r 1 (t) -r 2 (t) L 1 ,
where F is defined as in (2.10) and can here be bounded as

F (t) ≤ (1 + C A R) t 0 C ϕ (τ ) dτ . (4.3) Hence, d T (ρ 1 , p 1 ), T (ρ 2 , p 2 ) ≤ max T C( T ), C A (e F (T ) -1) d (ρ 1 , p 1 ), (ρ 2 , p 2 ) .
Choose now a sufficiently small T so that T is a contraction. Then, its unique fixed point is the unique solution to (1.1) defined on the time interval [0, T ].

2. Global Uniqueness: Let now (ρ 1 , p 1 ) and (ρ 2 , p 2 ) be two solutions to the same problem (1.1) and defined at least on a common time interval [0, Ť ] ⊆ I. Define

T * = sup T ∈ [0, Ť ] : (ρ 1 , p 1 )(t) = (ρ 2 , p 2 )(t) for all t ∈ [0, T ] .
By the uniqueness of the fixed point, (ρ 1 , p 1 )(t) = (ρ 2 , p 2 )(t) for all t ∈ [0, T ], so that the set in the right hand side above is not empty. Repeat Step 1 with initial datum (ρ * , p * ) = (ρ 1 , p 1 )(T * ) = (ρ 2 , p 2 )(T * ), which is possible since p is bounded on [0, T * ] and TV(ρ * ) is bounded, by (2.6). Thus, we obtain that (ρ 1 , p 1 )(t) = (ρ 2 , p 2 )(t) also on a right neighborhood of T * . This contradicts the maximality of T * , unless T * = Ť . C ϕ (τ ) dτ , p is also uniformly continuous. Hence the limit p * = lim t→T - * p(t) exists and is finite. Apply now Lemma 2.3 on the interval [0, T * ], obtaining that the solution ρ to (2.4) is defined on all [0, T * ] and, together with p, also solves (1.1). Now, we repeat Step 1 with initial datum (ρ * , p * ) = (ρ, p)(T * ), which is possible thanks to (2.6). In turn, this allows to extend (ρ, p) to a right neighborhood of T * . This contradicts the maximality of T * , unless T * = T max .

4. Stability Estimates: Fix t > 0 and let τ ∈ [0, t]. Let R ≥ max R Nx ρ1 dx , R Nx ρ2 dx . Then, by (2.7) and (2.11), the solutions to (2.3) satisfy

(ρ 1 -ρ 2 )(t) L 1 ≤ ρ1 -ρ2 L 1 + t C(t) p 1 -p 2 L ∞ ([0,t]) + ∂ ρ (f 1 -f 2 ) L ∞ (Ωt) + div (f 1 -f 2 ) L 1 (R Nx )×L ∞ ([0,t]×[0,R]×Kt) , (p 1 -p 2 )(t)
≤ e F (t) p1 -p2 + 

× ∂ ρ (f 1 -f 2 ) L ∞ (Ωτ ) + div (f 1 -f 2 ) L 1 (R Nx )×L ∞ ([0,τ ]×[0,R]×Kτ ) , γ(t) = C A t C ϕ (t) C(t)e F (t) ,
obtaining, with H(τ, t) = exp 

× ∂ ρ (f 1 -f 2 ) L ∞ ([0,R]×R Nx ×Kt) + div x (f 1 -f 2 ) L 1 (R Nx )×L ∞ ([0,R]×Kt) .
Then, we immediately get the other bound 

ρ 1 -ρ 2 L 1 ≤ ρ1 -ρ2   1 +

Theorem 2 . 2

 22 is a Caratheodory solution to the ordinary differential equation ṗ = ϕ t, p, A ρ(t) (p) ; (2.2) (iii) ρ(0) = ρ and p(0) = p. For the standard definition of Kružkov solution we refer to [8, Definition 1], for that of Caratheodory solution, see [6, § 1]. Under conditions (f ), (ϕ) and (A), for any initial datum p ∈ R Np and ρ ∈ (L 1 ∩ BV)(R Nx ; [0, R]), problem (1.1) admits a unique solution in the sense of Definition 2.1.

Figure 1 :

 1 Figure 1: Left, v is assumed C 2 and decreasing. Center, v describes the attraction felt by the mice towards the piper. Right, q accounts for the acceleration of the piper when surrounded by a high mice density.

2 )

 2 At time t = 0, we assume that rats are uniformly distributed with density R = 1 in the rectangle [-0.5, 0] × [0.35, 0.85]. The piper starts moving at the point (-1, 0.5).

Figure 2 :

 2 Figure 2: The pied piper and the rats, at times 0, when p = (0, 0.5); 0.171, 0.543, 0.945, 1.447 and 1.930, when the rats almost completely left the rectangle and p = (0.366, -0.983). Several optimization problems can now be stated with reference to (1.1)-(3.1)-(3.2). Referring to the situation [7, n. 246], a first natural question is the following. Let the compact set K be the area of the city and fix a finite positive time T max . Then, find the initial position p and the trajectory ψ of the piper so that the amount of mice left in the city at time T max is minimal. In other words, we want to minimize the functional

Figure 3 :

 3 Figure 3: Solution to (1.1)-(3.3)-(3.4) at times t = 0, t = 0.044, t = 0.067, t = 0.111, t = 0.156, t = 0.200. Sheeps are initially uniformly distributed at the maximal density R = 1 in the circumference centered at (0, 0) with radius 0.2. Dogs start moving from (0.7, 0) and (-0.7, 0), they succeed in confining the dispersion of the sheeps, at least for the tie interval considered.

Figure 4 :

 4 Figure 4: Solution obtained through the numerical integration of (1.1)-(3.5)-(3.6)-(3.8) computed at times 0, 0.091, 0.267, 0.358, 0.449 and 0.491. Note that the predator succeeds in splitting the support of the preys.

1 .

 1 Local Existence. Here we rely on an application of Banach Fixed Point Theorem. Fix first the initial data ρ ∈ (L 1 ∩ BV)(R Nx ; [0, R]) and p ∈ R Np . Choose a positive T ∈ I and, motivated by (2.9), call δ = p + 1 e T 0 Cϕ(τ )dτ -1 .

3 . 2 t 1 C

 321 Global Existence: Define now T * = sup T ∈ I : ∃ a solution to (1.1) defined on [0, T ] and assume that T * < +∞. By (2.9), p is bounded on [0, T * [ and since p(t 2 )p(t 1 ) ≤ t ϕ (τ ) 1 + p(τ ) dτ ≤ 1 + sup t∈[0,T * ]

t 0 eF 0 eF0 0 (ϕ 1 -

 0001 (t)-F (τ ) (ϕ 1ϕ 2 )(τ, •, •) L ∞ dτ + t (t)-F (τ ) C ϕ (τ ) C A (ρ 1ρ 2 )(τ ) L 1 + R A 1 -A 2 L(L 1 ,W 1,∞ ) dτ .with C as in Lemma 2.3, F as in (4.3), K t = B(0, δ t ) and δ t = p + 1 e t Cϕ(τ )dτ -1. Insert now the former estimate in the latter one and apply Lemma 4.1 with∆ = (p 1p 2 )(t) , α(t) = e F (t) , β(t) = p1 -p2 + R 1 + C A R 1e -F (t) A 1 -A 2 L(L 1 ,W 1,∞ ) + t ϕ 2 )(τ, •, •) L ∞ e -F (τ ) dτ + C A t 0 e -F (τ ) C ϕ (τ ) ρ1 -ρ2 L 1 dτ +C A t 0 τ C(τ ) C ϕ (τ ) e -F (τ )

tτ 1 -dτ ϕ 1 -R t 0 CC 1 + C A t 0 τ

 11010 C ϕ (s) 1 + C A R + C A s C(s) ds, p ϕ 2 L ∞ ([0,t]×Kt×[0,C A ] + ϕ (τ )H(τ, t) dτ A 1 -A 2 L(L 1 ,W 1,∞ ) ϕ (τ ) H(τ, t) dτ ρ1 -ρ2 L C ϕ (τ )C(τ )H(τ, t) dτ

  1) t → ϕ(t, p, r) is measurable for all p ∈ R Np and all r ∈ R Nr ;(ϕ.2) there exists a function C ϕ ∈ L 1 (I; R + ) such that for a.e. t ∈ I, p 1 , p 2 ∈ R Np and r 1 , r 2 ∈ R Nr , ϕ(t, p 1 , r 1 )ϕ(t, p 2 , r 2 ) ≤ C ϕ (t) p 1p 2 + r 1r 2 ;

	(ϕ.3) there exists a function C

ϕ ∈ L 1 (I; R + ) such that for a.e. t ∈ [0, T ], for all p ∈ R Np and for all r ∈ R Nr , ϕ(t, p, r) ≤ C ϕ (t) 1 + p . These hypotheses are motivated by the standard theory of Caratheodory ordinary differential equations, see [6, § 1]. All the above assumptions (f ), (A) and (ϕ) are satisfied in the applications considered in Section 3. As a first step in the analytical treatment of (1.1), we rigorously state what we mean by solution to (1.1).

  with an upper bound that depends on π.We denote belowΩ t = [0, t]×R Nx ×[0, R]×Kt where K t is as above. By [11, Theorem 2.2] or [5, Theorem 2.5] we obtain the estimate TV ρ(t) ≤ TV(ρ)e κtt + N x W Nx

	t	e κt(t-τ )
	0	

  tC(t) exp F (t) + C A

					
					t
					τ C ϕ (τ )C(τ ) dτ	
					0
		t		
	+ tC(t)	0	H(τ, t) dτ	ϕ 1 -ϕ 2 L ∞ ([0,t]×Kt×[0,C A ]
			t	
	+ RtC(t)	0	C ϕ (τ )H(τ, t) dτ	A 1 -A 2 L(L 1 ,W 1,∞ )

+C A tC(t) exp F (t) + C A 1 + TV(ρ 1 ) t 0 τ C ϕ (τ )C(τ ) dτ p1 -p2 L 1
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completing the proof.

We need below the following consequence of Kružkov Theorem [8, Theorem 5]. Proposition 4.2 Let N x ∈ N and T > 0. Consider the conservation law

Above, f is assumed to satisfy the usual Kružkov conditions, see [11, (H1)], or [START_REF] Colombo | Stability and total variation estimates on general scalar balance laws[END_REF][START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]. The proof essentially relies on [8, Theorem 1].

Theorem 1], with u = ρ and v = 0, we have that

Proof of Corollary 2.5. Fix any positive T ∈ I. Let d be such that ρ vanishes outside B R Nx (0, d) and call

) be such that χ(x) = 1 for all x ∈ K. Define the convolution in the space variable f * = f * x χ, so that f * has compact support in x. Then, thanks also to the a priori bound (2.9), f * satisfies (f ) on the interval [0, T ]. Hence to the problem