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Abstract. Future large penetration of Distributed Energy Resources (DER) leads to explore the potential 
of technical integration of these dispersed small-size generators into the distribution network. New actors 
may emerge, devoted to the commercial or technical aggregation, in order to provide ancillary services or 
to gain global productivity. Aggregating a set of small producers into a commercial Virtual Power Plant 
could enable its market participation like a conventional power plant. The function of aggregation should 
be able to reduce imbalance risk in the market, by the means of an existing methodology based on 
stochastic programming. This methodology is described and extended to new generation characteristics, 
with a discussion about the necessary improvements and about its application to a real-size case, on a 
rural alpine area.  

Keywords: Day-ahead energy market, Distributed Energy Resources, imbalance penalties, steady state 
aggregation, stochastic programming, Virtual Power Plant. 

NOMENCLATURE 
CDF:   Cumulative distribution function 

CVPP:   Commercial Virtual Power Plant 

DER:   Distributed Energy Resources 

DG:   Distributed generation 

DSO:   Distribution System Operator 

ED:   Economic Dispatch 

HV/MV:   High Voltage / Medium Voltage 

MCP:   Market Clearing Price 

PDF:   Probabilistic density function 

RV:   Random variable 

SBP:   System Buy Price 

SSP:   System Sell Price 

TSO:   Transport System Operator 

TVPP:   Technical Virtual Power Plant 

UC:   Unit Commitment 

VPP:    Virtual Power Plant 

INTRODUCTION 

With the increasing penetration of Distributed Generation (DG) and the liberalization of the energy 
market, there are opportunities to the emergence of new actors and innovative structures on the transmission and 
distribution networks. One of these new concepts is the aggregation of DG and eventually, reportable loads, into 
a controllable Virtual Power Plant (VPP). Such a virtual power plant aggregates the capacity of many diverse 
DER: it creates a single operating profile from a composite of the parameters characterizing each DER. Due to 
this aggregation, the individual participants would reach the size and the characteristics of a transmission-
connected conventional producer, allowing them to access to the energy markets and to provide ancillary 
services to the network operators. Two kind of VPP are ordinary considered: the Commercial VPP (CVPP) and 
the Technical VPP (TVPP) with distinct roles [1] [2]. 

The new concept of aggregating a portfolio of DER requires coordinated management and control tools. 
A same DER can be part of both a CVPP and a TVPP. Within a CVPP, the energy provided by a producer can 
be sold to the wholesale market. The TVPP focuses on the network operation aspects. The TVPP is a part of the 
distribution network control system: it is composed of all the DER units of a distribution network area, fed from 
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the same HV/MV substation. One of its functions is to perform the validation of the day-ahead base schedules of 
all the locally interconnected DER units. In contrast, the impact on the distribution network is not considered in 
the CVPP operations. As a commercial VPP is composed of a portfolio of DER, with various generation 
characteristics, operating patterns and availability, the function of aggregation of characteristics is a key issue in 
evaluating the potential of market participation and in optimizing the revenue from contracting DER portfolio 
output. This paper focuses on the specific functions required within a Commercial VPP, and more precisely, on 
the question of the method of steady state aggregation of a portfolio of DER into a commercial plant on the day-
ahead market, following the imbalance penalties fixed by the market mechanisms [3]. This aggregation supposes 
a compromise between the risk of a contracted volume position and its expected benefits: it can be successfully 
expressed as an optimization problem. 

 

Figure 1. Inputs and outputs of the CVPP activities (from [7]) 

In power system operation and planning, there are many optimization problems that search, for the next 
24 hours or a smaller time horizon, solutions to determine the optimal production resources required at minimum 
cost within a set of constraints. This scheduling is done over time (hours, days, etc). These methods are well-
known, with an abundant research literature. For example, the hourly commitments of units, the decision 
whether a generation unit is on or off at a given hour, is referred to as Unit Commitment (UC). Daily or hourly 
production of various types of available generation plants is called the Economic Dispatch for all-thermal units 
(or the hydrothermal dual problem when it takes into account the flexibility of being able to manage water 
reserve levels) [4] [5] [6]. There are some common points: the expression of the function objective; the 
characteristics of the generation unit models; a time discretization of the scheduling operation variables. 

The CVPP aggregation problem differs by two main aspects. Firstly, there is no demand constraint: the 
optimal produced energy is dependent rather from the market price value, issued from the entirely external 
market fixing process. Secondly, the main limiting factor of the participation of individual small-scale DER in 
the day-ahead market (as we assume the total production capacity of the portfolio reaches the minimal size fixed 
by the market regulation authority) is a consequence of the uncertainties related to the output of the individual 
DER: a single producer cannot afford the cost and the risk of paying imbalance penalties. Therefore, it is 
necessary to include these uncertainty parameters. By aggregation of all generation characteristics and 
uncertainties, the performance of a portfolio of DER on the day-ahead market can be optimized, whatever the 
future electricity market clearing price will be. 

The energy exchange market is assumed to be a day-ahead market. The participants of the day-ahead 
market send their offers to sell and buy a specified amount of energy, for each hour of the next day. Then, at the 
daily fixing time, the blind fixing process occurred, operated by the coordinating authority: the hourly individual 
supply bids are sorted out, according to a growing marginal cost, and aggregated into a total supply function; 
reciprocally, the hourly aggregated demand function is built from the sorted supply bids. The hourly marginal 
price is calculated by linear interpolation, as the intersection between these two functions. This marginal price 
determines the hourly Market Clearing Price (MCP) and consequently, the set of accepted and rejected bids.  

COMMERCIAL VIRTUAL POWER PLANT AGGREGATION METHOD 

Assumptions: CVPP on the day-ahead wholesale market 
The following assumptions are necessary to formulate the model of optimal aggregation of the 

characteristics of the DER portfolio: 

• The generation characteristics of the CVPP portfolio and the probability distributions of all 
random parameters (relative to the production part) are supposed to be known by the CVPP 
dispatcher; 
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• Because of its accepted supply bid for the next day, the CVPP enters into contractual 

agreement to produce a certain volume of energy, and is exposed to the system balancing 
penalties. The CVPP is charged System Buy Price (SBP) for each MWh short of its contractual 
obligation; reciprocally, the CVPP is paid System Sell Price (SSP) for each MWh produced in 
excess of its contracted quantity. It will be assumed that the day-ahead price lie between 
System Sell Price and System Buy Price: SSP ≤ MCP ≤ SBP ; 

• The portfolio aggregation maximizes the expected profit for each possible value of market 
clearing price. 

The set of assumptions, concerning the market price and balancing mechanisms, are consistent with the 
rules of the French day-ahead electricity market EPEX Spot (previously POWERNEXT [3]). About the last 
assumption, risk-aversion preference is not considered here, in a first step. Moreover, the CVPP is supposed to 
have a limited and marginal capacity size, and then to be only a price-taker agent: its participation cannot 
substantially influence the fixing process of the hourly market clearing price, contrary to an oligopolistic agent. 

Formulation of the problem 
A previous study by Imperial College, within the European project FENIX [7] [8], proposed a 

formulation of the anticipated position of the portfolio, as a stochastic programming problem. This term refers to 
a problem class, and not to a choice of solution procedures. The use of stochastic programming is quite common 
in energy systems, dealing with unavoidable uncertainty. In this case, such kind of stochastic problems can be 
expressed as a two-stage stochastic mixed integer linear problem, with a classical formulation:  
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The interpretation of this expression is the following: the two-stage type refers to the number of time 
instances when the aggregator should take a decision (optimized by minimization). With its participation in the 
day-ahead market, the CVPP supervisor enters into contractual agreement to sell a certain quantity of electricity 
at a certain price (this bid is the first-stage of decision). The next day, during the concerned hourly period, the 
random events  ω  have been occurred (unavailability of a generator) – or are occurring (real-time intermittent 
power production output, different from the forecast value). Then the second-stage of decisions has to be made, 
by the means of corrective actions (load-following use of the available dispatchable generators): this second-
stage problem is a deterministic optimization problem. The stochastic programming has the following goal: first-
stage decision should be made taking into account its future effects, knowing the probabilistic distribution of the 
random events, and the expected performance of the corrective actions in each case. 

By superimposing all possible values of the available capacity of the individual DERs, with fixed 
market prices at a certain time, it is possible to construct a number of combinations, which in the context of 
stochastic optimization are called scenarios. The expected profit in each of the scenarios is found as the 
difference between the expected revenues from the day-ahead market on one side, and expected net payments in 
the balancing markets and expected generation cost on the other.  
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where DP+ and DP– represent the surplus or lack of energy (DP+, DP– ≥ 0) as compared to the contracted 
amount (c), and Pgi is the second-stage decision variable describing the generation level of generator i in the 
future period. Each generator is characterized by a constant value of production cost CGi ; it is assumed a 
constant efficiency, with respect to the produced power. The terms DP+, DP– and Pgi are second-stage variables, 
and depend on the outcome of the random event values ω. Eω here denotes mathematical expectation with 
respect to the probabilities of individual random events ω.  
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Offer quantities for the day-ahead market are then sought with respect to the maximum expected profit 
across all scenarios and their relative probabilities. 
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Study cases 
This formulation has been re-used and then extended to more various characteristics of generation, 

especially with diverse active power loading capability. A new resolution is proposed too for the specific case of 
a portfolio composed by a mix between several conventional small generators and intermittent renewable energy 
sources. 

The approach described in the previous section will be demonstrated on three study cases from [7], re-
used here in order to validate the results. Case A includes only conventional distributed generators that exhibit 
uncertainty through the possibility of suffering a power outage. In other words, each generator at the time of 
delivery can be found in one of two states – either fully available or unavailable, with the assigned probabilities. 
In Case B, an intermittent generator or a set of intermittent generators (for example, a wind park) is exposed to 
the day-ahead and balancing markets. As its production for the next day is hourly forecasted, the uncertainty of 
the generation output is modeled through the random variable of production power, with a normal probability 
distribution function (PDF). Case C represents the combination of A and B, i.e. a portfolio combining both 
conventional and intermittent generators. The same values of conventional generator capacities and state 
probabilities are retained to enable comparison between cases. The data on the generators for all cases are 
summarized in Table I. Conventional generators are characterized by their capacity, operating cost and 
availability, with total capacity of 30 MW. 

Table 1. Portfolio generator units characteristics – cases A – B - C

Generator characteristics - Case A: Conventional 
generators – source: [7] 

No.  Nominal capacity 
(MW)  

Gen. cost 
(€/MWh)  

Availability 
(%)  

1  5  50  65  

2  10  40  70  

3  8  45  55  

4  7  48  60  

 
 

Case B – Intermittent generator 

No. Output (MW) Standard deviation 

1 30 9  (– 4,5) 

 

Case C – Mixed   - idem case A + Intermittent 
generator with following characteristics: 

No. Output (MW) Standard deviation 

1 15 2 (– 1) 

Default prices used in this example are: MCP = 60 €/MWh, SBP = 100 €/MWh, SSP = 20 €/MWh 

RESULTS 

Results - case A  
Case A: the characteristics of a portfolio of “conventional” all-thermal generating units are described in 

Table I from [7]. As there are in total four generators with possible unavailabilities, the number of different 
combinations of available/unavailable generators is 24 = 16 scenarios. In the initial formulation, there is no 
generating constraints (case A-1): the unit can produce in an active power range from 0 to the nominal capacity, 
at the same efficiency. 

 
Figure 2. Expected profit of the portfolio as a function of contracted volume 

This initial set of portfolio characteristics has been re-used and then extended to other characteristics of 
generation, with diverse active power loading capability: A-2) with active power operating constraints (default 
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values of minimal generating power assumed to be 40% of the nominal power) and A-3) on/off running mode. 
Both generation characterization modes change the nature of the second-stage decision variables, and 
consequently, impose a second-stage resolution respectively, by integer programming and by mixed integer 
linear programming. 

If the expected profit across all scenarios is calculated for a whole range of contracted quantities, the 
dashed red line in Figure 2 is obtained. By using the stochastic approach, without power operating constraints, 
one gets the value of 15 MW as the optimal solution for the contracted volume, with an expected profit of €166.3 
per hour. We can observe the intuitive result that, better are the load-following capabilities of the four 
conventional generators of the portfolio, higher is the expected performance, as shown in Table 2.  

Table 2. Results (case A) for default price values 
Case A-2  Case A-1 

Without 
constraint Pmin:40% Pmin:80% 

Case A-3 
On/Off 

Optimal contracted volume 
(MW) 

15 15 15 15 

Corresponding expected profit 
(€) 

 
166,3 

 
166,3 

 
162,7 

(-2,2%) 

 
145,3 

(-7,2%) 

 

Same multiple curves are obtained by varying the value of market clearing price MCP. On each curve 
the highest point is marked as the optimal contracted volume (c*). As the expected profit can be maximized for 
each market clearing price and imbalance penalty price, then it is possible to calculate optimal contracted 
volumes for a whole range of day-ahead prices. This information would then enable the construction of the 
portfolio’s supply curve, determining the offered quantity for each level of day-ahead price. The step-wise 
supply curves are drawn for several values of imbalance penalty price (SBP). The result is identical to [7].  

 

  

Figure 3. Optimal contracted volume vs. market clearing price value – case A-1 (left) , case B (right) 

Results – case B 
Similarly to the conventional DER case, it is assumed that the generator (or a group of generators) with 

capacity Pmax has to enter into a contract to sell its output for the following period in the day-ahead market. The 
data available to the operator are its expected output PE, and the forecasting error (standard deviation) of the 
expected output σP. It will be assumed that the forecasted plant output P is a random variable with a normal 
distribution and parameters PE and σP: P ~ N(PE, σP). 

This means that its probability density function (PDF) is given by: 
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The initial study [7] proves that an exact analytical resolution is possible since P is a normally 
distributed variable. The optimal contracted quantity reaching the maximum of the objective function is given by 
the following formula: 

(7) 








−
−Φ= −

SSPSBP

SSPMCP
c 1*  



XI-th International Workshop on Optimization and Inverse Problems in Electromagnetism 
September 14 – 18, 2010, Sofia, Bulgaria 

 
with Φ(x) = P(P ≤ x),  its cumulative distribution function (CDF), which represents the probability that 

the random variable P takes the value less than or equal to x; Φ–1(p) denotes the inverse of Φ, representing the 
value that P is less than or equal to with a given probability p. Like for the case A, it is possible to calculate 
optimal contracted volumes for a whole range of day-ahead prices. 

The Figure 3 (right) where step-wise supply curves are drawn for several values of imbalance penalty 
price (SBP), is identical to the results in [7]. Dashed lines in Figure 3 describe the situation when standard 
deviation of wind output distribution is smaller (i.e. 4,5 MW compared to 9 MW). As expected, the curve of 
optimal contracted volume shows greater variations when the relevant standard deviation is larger. 

Results – case C 
By combining the analysis for conventional and for intermittent generators, it is also possible to 

characterize a portfolio consisting of intermittent DER generators and conventional generators with controllable 
output. Again, it is assumed that the total output of the intermittent generation part is a normally distributed 
random variable with mean value PE and standard deviation σP 

 

 

Figure 4. Optimal contracted volume vs. market clearing price value – case C 

As an exact analytical resolution is not possible in this case, a discretization of the PDF function is 
applied. It has been verified for the cases B and C that even a limited number of interval values (around 8-13) is 
sufficient to reach an acceptable precision (< 0,5%) and then, to avoid a multiplication of useless calculations. A 
process of verification with an increasing number of variation intervals of PDF values shows a rapid 
convergence of the maximal expected profit and the corresponding optimal contracted volume. Like the other 
cases it is possible to determine the optimal supply curve (see Figure 4). It can be seen that different standard 
deviation values of the intermittent power output do not change significantly the optimal contracted volume 
curve in function of the market clearing price. 

DISCUSSION 

Contributions of the work 
The methodology to calculate optimal contracted volumes for a whole range of spot prices by stochastic 

programming has been successfully applied: a portfolio aggregator can determine its optimal supply curve (price 
vs. quantity), in order to reach the maximal expected profit on the market. With this method, the influence of 
each input parameter and of each generator unit can also be examined. The method has been extended to include 
generating constraints of thermal-type units. A new resolution has been proposed too for the specific case of a 
portfolio composed by a mix between several conventional small generators and intermittent renewable energy 
sources. 

The final goal of the CVPP portfolio aggregation is the definition of the optimal supply bid. Therefore, 
an additional step of linearization of the supply curve is necessary: the CVPP will offer a step-wise supply bid 
with increments of supply power at different growing prices. This step-wise supply bid has to approximate at the 
best the aggregated supply curve as function of day-ahead price. 

Otherwise the simulation of the different cases show that the value of the System Buy Price is very 
influential (contrary to SSP which is of little influence, as long as it is lower than individual generation costs, 
since it is not reasonable to expect that the portfolio owner, once the availability status of its generators is 
known, would use them in such a way to generate more than the contracted volume). SBP corresponds to one of 
the imbalance prices which are known only after realization of the day: it seems essential to include now the 
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uncertainties about SBP values. This can be easily done, if there is some information on the probability 
distribution of this price, relatively to the day-ahead market clearing price. In such a case, there will be price 
scenarios too during the aggregation calculations. An example of result (case A – MCP = 60€) is shown in 
Figure 5. The grey curve represents the optimal contracted volume: as the short imbalance overcost (SBP minus 
MCP) is small, it is more interesting to offer a greater supply power quantity, but this position will be riskier: the 
gradient of the expected profit is higher too. The final choice of the volume position will depend on the risk 
preference strategy of the CVPP aggregator. For example, the function objective could be modified, by addition 
of a negative penalty term, relative to the risk of the day-ahead contracted volume position, with respect of a 
variation of imbalance prices. 

 

Figure 5. Expected profit of the portfolio as a function of contracted volume and SBP overcharge (case A-1) 

Application case 

An application case of this work is a VPP demonstration for the European project ALPENERGY, on a 
rural alpine area. The energy mix of local DERs is presently the following: run-of-river hydraulic, photovoltaic 
and Diesel peaking plants. Free-access time series of historical French hourly day-ahead and imbalance prices 
are used [3]. The simulation of commercial VPP is applied on a period of one year, in order to evaluate the long-
term commercial performance from energy market real prices. The simulation details and results will not be 
described in this paper, but several limiting points have been noted. 

Firstly, this addition of the new uncertainty parameter leads to the resolution limits of the method which 
impose an optimization calculation for each scenario: the number of second-class sub-problems will increase 
exponentially. Secondly, during an annual period, different values of intermittent generation power are expected. 
In practice, calculation of the aggregated profile has been done for different possible values of the parameters PE 
and σP. Then, an interpolation of the optimal contracted volume rather than a new update is done for intermediate 
input values. 

Another limitation concerns the extension of the portfolio. As mentioned, the CVPP aggregation 
problem could be compared with the classical problems of the generation operational planning. As in the simple 
all-thermal Economic Dispatch problem (ED), optimal generation points are calculated independently at each 
hourly time interval, without dynamic consideration. New generation resources may imply time-related decisions 
and a larger time horizon (day, week): for example, hydraulic plants with storage capability or CHP units 
supplying thermal demand. 

CONCLUSIONS 
This work described a general methodology for the aggregation function of a portfolio of DER into a 

CVPP, in order to maximize the performance in the day-ahead market. The method is successfully extended to 
different load-following capability of the dispatchable generators of the CVPP portfolio. However this time-
consuming method reaches its limits. An addition of other generation characteristics, particularly time-relative 
constraints, will impose the use of another class of algorithms, like for example, stochastic dynamic 
programming. 

The portfolio aggregation function can also be extended to the balancing market participation and other 
ancillary services. As eventual restrictions of generation, due to network constraints, are not taken into account 
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at this level, a step of validation of the scheduling program by a distribution operator could be added, in order to 
examine eventual consequences on the performance of the portfolio. 
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