

OPTIMIZATION OF A MAGNETIC DEFORMABLE NANO SWITCH BASED ON SEMI-ANALYTICAL MODEL

Phuong Pham Quang, Benoît Delinchant, Jean-Louis Coulomb, Bertrand Du Peloux de Saint Romain

▶ To cite this version:

Phuong Pham Quang, Benoît Delinchant, Jean-Louis Coulomb, Bertrand Du Peloux de Saint Romain. OPTIMIZATION OF A MAGNETIC DEFORMABLE NANO SWITCH BASED ON SEMI-ANALYTICAL MODEL. XI-th International Workshop on Optimization and Inverse Problems in Electromagnetism (OIPE 2010), Sep 2010, Sofia, Bulgaria. pp.ISBN 978-954-438-855-3. hal-00523041

HAL Id: hal-00523041 https://hal.science/hal-00523041

Submitted on 4 Oct 2010 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

OPTIMIZATION OF A MAGNETIC DEFORMABLE NANO SWITCH BASED ON SEMI-ANALYTICAL MODEL

P. Pham Quang*, **, B. Delinchant *, J.L. Coulomb* and B. Du Peloux**

* Grenoble Electrical Engineering Laboratory, G2ELab, UMR 5529 INPG/UJF-CNRS,

F-38402 St Martin d'Hères Cedex, France,

**Cedrat SA, 15 Chemin de Malacher, F-38246 Meylan Cedex, France E-mail: pham-quang, benoit.delinchant, @g2elab.grenoble-inp.fr

Abstract. This paper is about the optimization of magnetic nano switch. A tool based on semi analytical model is presented. It allows realizing the magnetic structural coupling considering contact analysis. The optimization methodology using a direct method and successive response surfaces is discussed.

Keywords: Contact analysis, magnetic nano switch, magnetic structural coupling, reponse surface.

I. INTRODUCTION

Magnetic nano switches have many applications as power switches, nanomechanical memory ... Their working principle is based on the deflection of a beam with magnet under the influence of the field created by a ferromagnetic/antiferromagnetic (F/A) association, which is able to create more than 2T fields without power supply [4] [5]. The switching is achieved by reversing the magnetization of the F/A using conductors.

In this paper, the virtual design of a magnetic nano switch -and especially its preliminary sizing- is addressed, using two non-commercial software realized in our laboratory. As no known tool can manage the magnetic-structural simulation with contact analysis, we developed in our Macmmems software [2] a dedicated semi-analytical model for this coupling. FGOT software [3] is then used for the optimization using direct or successive response surface method.

Figure 1. Magnetic nano switch: Operating principle (left) and modelling in MacMMems (right)

II.2 Semi-analytical modelling

II.2.1 Magnetic modelling

Thanks to basic geometries, magnetic fields radiated by permanent magnets and conductors are computed by using pure algebraic equations through Coulombian equivalent surface charge approach and Biot-Savart law. Surface and volume numerical integrations are used to compute magnetic forces and torques applied on the beam (in magnet) [2].

II.2.2 Structural-contact modelling

We developed and validated a semi-analytical model structure-contact to compute the deflection of the cantilever beam in the presence of contact [1]. The model is based on three hypotheses: 1) small displacement (Bernoulli hypothesis) which allows reducing the 3D cantilever beam to 1D, 2) linear and isotropic materials, 3) neglecting the secondary deformations.

The principle of superposition is used due to elastic linear deflection. Total deflection is equal to the sum of the deflection created by each forces and torques. Contact analysis is realized by several state decompositions, which can be superposed. Model of contact is inherently coupled with the structural model by replacing the contact by a distribution of forces. As this forces distribution is unknown, an iterative method is used.

II.2.3 Magnetic – structural coupling

A add-on in [2] has been developed, which generates automatically equations to describe the sequential magnetic-structural coupling. The interaction is accomplished via the load vectors of forces, torques and

positions. The magnetic model requires position to compute forces and torques. These forces and torques are used in the structural-contact model to compute positions.

III. OPTIMIZATION SPECIFICATIONS

Two magnetization structures of the magnetic nano switch are proposed: Horizontal magnetization or vertical magnetization of magnets.

Figure 2. Two magnetization structures of magnetic nano switch and parameters to be optimized

The optimization aims to determine the dimensions of both fixed and mobile magnets and their positions on beam, to minimize the volume of magnets, while respecting constraints such as length of contact and contact force (to ensure the quality of contact or contact resistances below a desired value).

Inputs	Comments	Type of constraint	Units
Ym	Width magnets (mobile and fixed)	[100;800]	nm
Zm	Mobile magnet height	[50;500]	nm
Zf	Fixed magnet height	[50;500]	nm
Y_offset	Positions of magnets (mobile and fixed)	[2500;3500]	nm
Outputs			
L_contact	Contact's length	≥ 300	nm
F_contact	Contact's force	≥ 1.0E-8	Ν
V_magnet	Volume of magnets	Objective function (to be minimized)	nm ³

Table 1. Optimization specifications

IV. OPTIMIZATION RESULTS AND CONCLUSIONS

Considering direct optimization, a standard genetic algorithm is used, with a population of 1000 individuals, and during 5000 generations, corresponding to 20 hours computing and about 120000 model evaluations.

Our second approach uses a response surface, based on polynomial approximation using a latin hypercube sampling. Then a combination of a gradient based algorithm (SQP) and a standard genetic algorithm are used to optimize on the response surface. The space is also reduced and centred arround the solution, repeating iteratively this process. Ten iterations were done, leading to 308 evaluations of the model in about 3 minutes.

	Initial values	Optimized values			
		Horizotal magnetization (My)		Vertical magnetization (Mz)	
		Direct	Response surface	Direct	Response surface
Ym	500	230	228	203	204
Zm	200	212	219	146	143
Zf	200	222	219	142	145
Y_offset	3200	3 500	3500	3500	3500
L_contact (constraint)		310,86	311,13	311,07	311,45
F_contact (constraint)		1,0001E-8	1,0009E-8	1,0009E-8	1,0056E-8
V_magnet (objective)	1,0E8	4,991E7	4,9932E7	2,9232E7	2,9376E7

Table 2. Optimized results

In conclusions, the direct method with genetic algorithm can find a good result but with a long time. The indirect method with successive response surfaces is faster, and leads to the same solution which is accurate enough for preliminary sizing. The structure comparison shows that structure with vertical magnetization is better than horizontal one.

REFERENCES

- P. Pham Quang, B. Delinchant, J.L. Coulomb, B. du Peloux "Semi-analytical Magnetic-Structural coupling with contact analysis for MEMS/NEMS", CEFC 2010, Chicago, IL USA – May 9th-May 12th 2010.
- [2] H. L. Rakotoarison, B. Delinchant, O. Cugat "Methodology and tool for generating semi-analytical models used to pre-design electromagnetic MEMS", CEFC 2006, Miami, FL USA - April 30th - May 3rd 2006.
- [3] http://forge-mage.g2elab.grenoble-inp.fr/project/got.
- J. Sort, B. Dieny and J. Nogués "Exchange bias in antiferromagnetic-ferromagnetic-antiferromagnetic structures with out-of-plane magnetization", Physical Review B, Vol. 72, No. 10, 104412, 2005.
- [5] L. Bilhaut, P. Andreucci, L. Duraffourg and B. Viala "Nano-commutateur magnétique bistable", European patent filed under the registration number 08 52061 by the CEA, March 28th 2008.