N
N

N

HAL

open science

On The Analysis Of Sigmoid Time Parameters For
Dynamic Truncated BPTT Algorithm

Vincent Scesa, Patrick Henaff, Fethi Ben Ouezdou, Faycal Namoun

» To cite this version:

Vincent Scesa, Patrick Henaff, Fethi Ben Ouezdou, Faycal Namoun. On The Analysis Of Sigmoid Time
Parameters For Dynamic Truncated BPTT Algorithm. IEEE International Joint Conference on Neural
Networks, IJCNN 2006,, Jul 2006, Vancouver, Canada. pp.4498 - 4505, 10.1109/IJCNN.2006.247074 .
hal-00523039

HAL Id: hal-00523039
https://hal.science/hal-00523039

Submitted on 10 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00523039
https://hal.archives-ouvertes.fr

On The Analysis Of Sigmoid Time Parameters
For Dynamic Truncated BPTT Algorithm

V.Scesa, P.Henaff, F.B.Ouezdou, and F.Namoun

Abstract—The purpose of the research addressed in this
paper concerns a comparative study of two expressions of the
time scale parameter for Continuous Time Recurrent Neural
Network (CTRNN): a classical time constant expression, and a
sigmoid one. Their influence on the stability, the convergence
speed and the generalization ability of a BackPropagation
Through Time (BPTT) learning algorithm, will be discussed.
Firstly, three mathematical conclusions related to the
propagation and learning equations are deduced. Then these
conclusions are validated on experiments carried out on a real
biped robot. Through the identification of the balancing
behavior under different robot torso motions, the sigmoid
expression will be shown to get the best learning results.

1. INTRODUCTION

HE supporting project of this study was born from the
collaboration between a robotic research laboratory
(LIRIS) and an industrial company (BIA). This project aims
at shaping a smart architecture able to learn how to control
non linear multi actuators system including real time
constraints. Through the design and the implementation of
this controller, we want to evaluate the ability of neural
architectures and learning algorithms to achieve non linear
control needs in real time. The project also aims at analyzing
the capability of such algorithms to be adapted for a
particular system, by rising optimal control, but also to be
adaptive to changes in its environment, by generalizing the
knowledge learned. The experiments will be carried out on
two different structures: the ROBIAN biped robot from the
LIRIS [1], and the BIA 6 hydraulic axis road simulator. In
this paper, the experiments are limited to the ROBIAN robot.
The architecture of the developed controller is based on
recurrent neural network with leaky integrator neurons. This
allows the focusing of the net dynamics on time constant
parameters. Recurrent connections are used for merging the
neurons responses in a function able to contain oscillating
motions. In order to shape this architecture, a BPTT based
algorithm was chosen for its ability to integrate the learning
error [2], [3], [4], [5]. The gradient algorithms are mainly
used for system modeling, optimization applications, speech

V.Scesa is with the LIRIS laboratory, UVSQ (Versailles university)
CNRS, 10,12 av. de I’Europe 78140 Velizy France (phone: (33)139254957,
fax: (33)139254985, e-mail: vincent.scesa@liris.uvsq.fr)

P.Henaff is with the LIRIS-UVSQ-CNRS laboratory (e-mail:
patrick.henaff@liris.uvsq.fr)

F.B.Ouezdou is with the LIRIS-UVSQ-CNRS laboratory (e-mail:
ouezdou@liris.uvsq.fr)

Faycal Namoun is with the BIA company, 8 rue de I’Hautil 78700
Conflans France (e-mail: f.namoun@bia.fr)

recognition [6], or meta learning [7].

The using of recurrent networks with gradient based
learning algorithm is not obvious and may be unstable. As
time constants modifications have a strong influence over
network dynamics [8], it can intensify or eliminate this
problem, and the way they are modified needs a specific
attention. However, among all the studies based on
CTRNNSs, only a few are focused on the dynamic analysis of
the net parameters [9], [10].

The aim of this paper is to study the influence of the
expression of the time parameter over the algorithm stability,
on the learning performances and on the evolution of the net
dynamics. In a first part, the neural model and the learning
algorithm will be detailed and the two time scale parameters
expressions will be given. Then, their comparison will be
performed, in a mathematic way by focusing on the
propagation and learning equations, and on experimental
results. An experiment carried out on the identification of the
ROBIAN robot balancing will show the performance of the
two expressions.

II. NEURAL MODEL AND LEARNING ALGORITHM

A. Neurons and propagation

Following the leaky integrator equation (1), the input data
is propagated in the network to generate the neurons outputs.
The result belongs to the intrinsic parameters of the neurons
and the network: weights, biases and time parameters.
Classically, the propagation is written as follows:

a .
Tj'al;z —-yi+ f(z [Wij'yi]+ bjj (1)

The corresponding discrete expressions are :

1

x(t)= Z[w;j-yi(t—zlt)]+bj (2)

1

(0= 1)+ 1=] nle-ar) @
T T
Where y; corresponds to the j neuron activity, f is the
activation function (tanh) and 4¢ is the time step. The net
parameters wy, b; and T; are respectively the weights, biases
and time constants.

In (3), the A¢/Tj term is a scale parameter. Its value,

given within]0:1], expresses the response speed of the j
neuron. This expression is not the only one possible to define

the neuron dynamics. In [6] and [11], a sigmoid version of
the time scale parameter is proposed. Through this change,
the aim is to modify the way the neuron speed varies.

By defining a variable S; that will be called time scale
parameter, (3) can be written:

y(t)=S- fut)+ (=) yplt—ar) @

In this paper, we will compare the two expressions of the
time scale parameter:

At 1
SII— A\'A) S2=
T 7 1+e™?

)

The first one uses the classical time constant 7;. The
second one uses another parameter called the sigmoid time
parameter A;.

The A; parameter has no physical meaning, and it has
nothing to do with the neuron sigmoid activation function. It
expresses the neuron speed in another way, allowing a
smoother logarithmic modification of §; rather than the
classical linear one.

B. Learning process

The objective consists in modifying the parameters of the
network (weights, biases and time scale parameters) in order
to minimize a desired criterion. In a control application, this
criterion would be the gap between the desired state of the
system and the actual one. In an identification process, the
criterion would be the error between the neural model and
the taught system. In order to carry out this net parameters
adaptation while the system is running, BackPropagation
Through Time algorithm, detailed in [3], [4] and [5], is used.

At first, the algorithm computes an error function that
corresponds to the criterion to be minimized. This function is
the integral of the error expressed as follows:

E= j[e,-(r). dr| (6)

Where E represents the criterion and is equal to the error
integral between t, and the current time step t. e;(7) is the
output error of the neuron j stored at time 1, and t, is the
beginning of the integration window.

BPTT algorithm carries out a gradient based learning.
Thus, the modification of the parameters is following the
opposite value of the error gradient of each parameter:

Awjk =—11- oF (7
owik
by =2 2 (®)
ob;
oE oE
and: ATj=-p;-— OF Al=-13 —p
BRRONFTY IEROIPY RS

The learning speed is defined by the three different

2

learning rates 77; for the weights, 77, for the biases and 7; for
the time parameters.

The use of continuous time neurons implies a dynamic
BPTT learning [2]. Hence the gradient values giving the
influences of each parameter on the error are derived from

gradient equations (11) to (14) written with the
backpropagated error (10) :
oF

[

J @/_/(T) (10)
oF =I[Sk'Zk(T)'f,(Xk(T—At))'yj(T—Al)]'dT(ll)
ok

0E | ,

@zl[& #(0) Sl -an)]l-de (1
0E |
a—S=j[zf(f)~(f(xf(f—At))—yf(f—At))]-df (13)

and :
dE JE dS; 0E OJE JS;
- = . or —_ e (14)
oT; dS, 9T, oA, 9SS, A

Where z; is the backpropagated error of the j neuron, f” is
the derivative of the activation function (tanh), and 7 is the
current time step in the time window.

The backpropagated errors are computed as the classical
backpropagation by considering the network states at each
time step as successive layers. Thus, the algorithm
backpropagates the output errors in the network and in time.
Equation (15) details the z; calculus:

z,(1)=z2!(2)+2](2)+2)(2) (15)

J

Z;(T = [Zk(T+At)-Sk- f '(xk(T))-m'k]
(e)=2(+ 40)-(1-5)
z}(r)=e(z)- 4t

In (15), ij (z) represents the error coming from the other
neurons, while the error due to the dynamic of the neuron j
itself is given by z7(7), and z(7) is the output error.

In classical BPTT, the z; value is computed for each
neuron and for each time step since the beginning of the
learning. Nevertheless, to prevent the memory explosion
induced by the storage of every network states (z, = 0), a
truncated BPTT algorithm [12] (BPTT(h)) is used. Thus, the
algorithm only keeps in memory the past states included in a
time window that follows the current instant (¢) = ¢ — & with &
the time window width). The backpropagated error values
are only computed along this sliding time window (re/t-
h;t]). Hence only a gradient approximation is computed.
This approximation is as close to the exact gradient as the
time window is large.

III. MATHEMATICAL COMPARISON

A. Domain comparison

In gradient algorithms, each parameter is modified
incrementally. For the time scale parameter, the two different
expressions S/ and sz, lead to quite different modifications
during the learning.

, At
S’ new=——— (16)
T old + AT;
, 1
Si* new = 1 4 o Aeld+a% (17)

It is obvious that for the Sj] expression, the modification
may lead to value out of the allowed domain]0:1]. In order
to avoid this problem, the variations of 7; must be restricted
in a non continuous way (a strong limit on the minimum
value). On the other hand, the S values are naturally kept in
this interval with asymptotic limitations.

B. Temporal responses comparison

The way the neuron dynamic varies depends on the Sjl or
sz expressions. Starting from a slow neuron and going to a
faster one the speed evolution will be different for a linear
evolution on Tj or 4.

On Fig.1 the responses evolutions to an Heaviside input
for a linear variation of 7; and 4, are depicted. In the first
graph, T starts from a slow response (7;=200s, sz =5.10")
and varies linearly to a fast one (7;=0.0101s, Sj1: 0.99). In
the second graph, starting from the same slow response (4,=-
9.9, 5}2:5.10'4), A; varies linearly to the same faster one
(4=4.59, 57=0.99).

Neuron response

Time (s)

Linear variation of 7;

Neuron response

Time (s)

Linear variation of 4;

Fig 1 : Neuron responses to an Heaviside input for different speed values
varying linearly according to 7j (up) and 4j (down).

While the modification of the neuron behavior is quite
rough for S/, it is smoother for S;”. Actually, the second one
modifies the time scale parameter in a logarithmic plan. In a

3

gradient based algorithm, since the modifications of the
parameters are incremental, the use of the sigmoid time
parameter allows to expend the S; evolution on a larger
range. Thus, the temporal behavior of each neuron can vary
in a slower way.

A smoother and extended evolution is to be preferred
because it makes the variation more accurate. The same
range of the neuron speed corresponds to a small 7; range
with S;’, whereas it is contained in a larger 4 range with S;’.

C. Amplifying factor comparison in the learning

In the learning equations (14),
gradients can be developed as follows :

the time parameters

ai At OE (18)
o, T7 3S;
oE 1 (1 j oE
— = —. 1— (19)
oAl l+e™? l+e™) aS;

For the same value of dE/dS; a different multiplicative

coefficient amplifies the value of the gradient. This
amplification is much more important and bumpy with the §; !
expression (maximum=1/At), than with the S]
(maximum=1/4). This coefficient increases the rough change
of dynamics observed previously on Fig.l. Hence the
difference between the smooth evolution with the sigmoid
time parameter and the rough one with the time constant is
amplified.

D. Comparison of the neuron dynamic modification

The natural way for changing the dynamic of a system
governed by a first order equation is to modify its time
constant value. The physical meaning of a time constant
change, i.e. a change in the response time of the system,
makes the interpretation easier of this parameter variation. A
higher time constant value leads to a slower system.

Thus, for the neuron, considering a modification of the X;
parameter used, whatever it is (X/ZY} or XjZZEj),
interpretation will be easier by bringing 4X; to the
corresponding 47} value.

This transformation is straight for Xj] .
AT = AX ; (19)

For X , the transformation can be identified by equalizing
the S; new variable in (16) and (17):
X, 1)

The set of the two equations (19) and (20) expresses how

AT, = (1, - 4¢)-¢* 20)

the time constant and so the neuron dynamic are modified in
both cases. The differences between the two exhort the
contribution of ij (4, use compared to the Xj' (T)) use.

The contribution can be divided into five kinds according
to the AX; values. These different contributions can be
located by the A, B, C and D areas and the line E depicted
on the following graph:

47,

neuron T
deceleration

neuron
acceleration

Fig 2 : Localizations of the contributions of X use compared to X; use, in
the plan defined by the 4X; values and the corresponding A7;.

The five contributions corresponds respectively to :

A - an increase of the asked neuron acceleration

B — a decrease of the asked neuron acceleration

C — an increase of the asked neuron deceleration

D — a decrease of the asked neuron deceleration

E — a null contribution (the use of)(}2 brings the same
modifications than XjI)

In the graph Fig.3, (19) and (20) are plotted in the same
plan as the previous Fig.2.

slow neurons

neuron T
deceleration

B
>

neurons 3 neuron
acceleration
Fig 3 : Time constant variation corresponding to a variation X (thin

curves) or X/ (bold line). Each curve corresponds to a different initial time
constant value.

First, we can notice that, only with ij, the resulting time
constant variation is linked with the current 7; value. There
are several thin curves but only one bold line. Thus,
according to the value of 7; (slow or fast neuron) the
modification of the neuron dynamic will be different
according to the neuron speed.

Then, with Xf and according to the 7} values, if the neuron
is slow, the acceleration or deceleration caused by the
learning will be increased (thin curves are in the A and C

4

areas). On the other hand, if the neuron is fast, the variations
will be stifled (thin curves are in areas B or D).

Nevertheless, for a fast neuron, if a strong deceleration is
asked (great positive AX; value), the use of X,«Z will
accentuate this deceleration (the curve goes from area D to
area C).

Finally, with ij and whatever the neuron speed is, if a
strong acceleration is asked (great negative 4X; value), AT;
will be asymptotically limited. The limit is AT; = A¢-T,. It
leads to an instant response of the neuron (7,= 4¢).

To sum up, the use of a sigmoid time parameter rather than
a classical time constant one brings the 3 following
advantages:

e an asymptotic limit to the fastest behavior,

e a smoother and extended evolution of the neuron
dynamic,

e a mobility improvement of the time parameter for
slow neurons and a reduced mobility for faster ones.

1IV. EXPERIMENTAL COMPARISON

A. Experiment description

The main objective of this experiment is to validate our
mathematical deductions and to analyze the sigmoid use
influence on the learning convergence.

To focus on this point, a model identification rather than a
controller shaping will be used. Fig.4 shows how the
identification of ROBIAN’s torso influence on the ZMP
(Zero Moment Point) will be performed.

The ZMP is a key notion in the balance control of a
walking robot. It corresponds to the position of the center of
pressure on the ground. The ZMP control, introduced thirty
five years ago [13], consists in controlling the equilibrium of
the biped robot by keeping the ZMP inside the polygon
defined by the contact point with the ground.

—
NN mode o
'Y
Masses positions +
(Mx, My) /
ROBIAN blped 7ZMP x
18 dofs ZMPy
| -
E PR
P | T Mx=2Kg
i S My =1Kg
£ s Mz =1Ke
= B da
P) N
1| & =
Y Ly

Fig 4: Learning architecture for the identification (up) of ROBIAN robot
(down), with 2 legs and a 4 degrees of freedom torso.

The motion of the X and Y masses of the torso (Mx and

My) disturbs the robot equilibrium, leading to variations of
the X and Y ZMP positions. The neural network (NN) tries
to reproduce these influences by computing the gap between
the desired positions and its own outputs. During the
learning process, it will try to modify its parameters to vanish
this error, by minimizing a cost function. This function is the
normalized squared errors sum on the two axis, The output
errors can be derived from it as follows:

2 2
Cost = [ZMPX— yxj L[ZMPy =y (20)
maxZMP « maxZMP
dCost 2
glt)= =— (zMPj - (¢ 2n
()~ maxZiiP (ZMPj - yi(1))

Where y,, y, are the output activities on the axis and
maxZMP;is the maximum amplitude on the j axis (for
normalization).

Two different criteria will be analyzed to quantify the
ability of the algorithm to learn the ZMP positions:
convergence speed and generalization performance. The
observation of the Cost evolution during the learning will
inform us about the time needed for convergence and how it
occurs. After the learning, a test on another pattern will
reveal the learned model ability to generalize its knowledge.

Representative situations should be presented during the
learning. They must fully characterize the behavior of the
studied system. This implies to give the network patterns that
express the dynamic of the ZMP evolution with its
oscillations, damping and resonance for the 2 axis.

The learning pattern contains a succession of four
different excitations applied to the robot: squared commands
with varying amplitudes (0.01m to 0.20m) and with varying
frequencies (1Hz-3Hz, containing the resonance of the
robot), for both X and Y axis.

@© @ ©) @

0.2

02] 60's 1205 180's time
e |l J—
0.2 \‘ i ‘ ‘
My S il
0.01L | h mnmu.m\um\ U ‘ ‘* H
B %*W W‘H\ - \
0.01)
ZMPy W‘WMWWMWWWW e

Fig. 5: Masses positions (m) and ZMP positions (m) on the two axis during
the learning pattern (60x4 seconds with a sampling rate = 45Hz). In periods
1 and 4, the X mass and then the Y mass, are submitted to successive steps
with various amplitude. In the 2 and 3 periods, steps with varying
frequency are applied.

In the testing pattern a sine command with a varying
frequency that produces the resonance is applied on both X

5

and Y axis.

B. Learning without time parameters modification

The Cost evolution is depicted on the Fig.6. In this
experiment, the network (composed of 2 inputs 15 hidden
neurons and 2 outputs) was taught with one hundred loops on
the learning pattern (77,=7,=0.025, 77;=0 to fix the S; values)
and a time window width h=40.

First drop second drop
20 40
loops loops
[] | ‘
[111} MM | M M AAOARARRRRRANAL AN LU

tinle
Fig. 6: Cost evolution during the learning without modification of the time
scale parameters.

At the beginning of the learning, the network parameters
are randomly chosen to generate stable outputs. The time
scale parameters (S;) are taken in the interval [0.5;1], to
obtain neurons with speeds close to the dynamic of the
system.

Fig.6 shows the evolution of the cost during the learning.
In the zoom depicted on the top right corner, the four cost
peaks are due to the different kinds of command (amplitude
variations: peaks 1 and 4, or frequency variations: peaks 2
and 3) of the learning pattern.

During the experiment, two main drops happened. They
are respectively linked to a quick decrease of peak 3
(learning of the X behavior) and peak 2 (learning on Y axis).
The instant when the second drop occurred (SDI : Second
Drop Instant) is a good factor to quantify the convergence
speed. It occurs when the network found a correct answer on
the both two axis. Here it takes about 55 loops to arise.

SDI=55

After the learning, a relevant value for estimating the
generalization capacity of the learned network is the costs
sum during the test pattern (TES : Test Errors Sum). It
expresses the difference between an ideal model of the robot
and the learned one. With a perfect model, the TES value
would be zero. The remaining error is here 59.

TES=59

C. Learning with time constants variation Sj[

The learning is started again with the same initial values
for the network parameters and the same learning rate 77, and
17,. Two different values of learning rate 77; are compared for
the modification of the time constant. The first one will be
17;=0.0001, chosen for generating a slow learning on the time
constant. Then, a rate 77;=0.001, will be used for faster
learning.

20
loops

time]
0 LU

time|

Fig. 7: Cost evolution during the learning (up) and the corresponding
variations of the S/ values (down) through slow modification of the time
constants : 775=0.0001.

In this first learning, the modification of the time constant
is quite slow. The convergence speed obtained is
approximately the same as the previous learning, but the
generalization capacity at the end is better:

initial sigmoid time parameters that correspond to the
previous initial time constants. The same weights and biases
initial values are also used. The previous learning rates 7,
and 77, are kept. Two 77; values are used: 7;=1.25 and
1;=0.5. They were experimentally chosen to bring the same
time scale variation speed than in the previous section.

0.2

20
loops

time

AL LU LLLLLL

(=]

\miﬁj%xw

11T

ittty

AAANMRANAA]
i

time

e AR RAMRRRRRR R IRRRGARELLL LYY

T i
0

SDI=50 TES=35.1 Fig. 9: Cost evolution (up) and S/ variations (down) through slow
0.2 modification of the time constants : 7;=0.5.
During this slow learning, the convergence speed seems to
be a little faster, and the learned network answers correctly
P 20 on the test pattern:
oops
SDI=49 TES=37.6
0.2
time|
0 LA LA LLLLALALLALLALLLL
20
loops
@ time
0 A O L L LL
e e
[1
Fig. 8: Cost evolution (up) and sz variations (down) through fast m
modification of the time constants : 73=0.001. W
In a second learning, the modification of the time constant
is faster. The convergence speed obtained is, again, k
approximately the same, but the learned network shows a © e

better generalization capacity:

SDI=51 TES=329

D. Learning with sigmoid time parameter variation Sj2

For this experiment, the learning is modifying the time
scale values through the modification of the sigmoid time
parameters instead of the time constants. It starts with the

6

Fig 10: Cost evolution (up) and S,-2 variations (down) through fast
modification of the sigmoid time parameters : 7;=1.25.

In this experiment, the convergence speed reaches its
fastest value and the generalization test shows the best result.
SDI=32 TES=31.7

V. DISCUSSION

A. Validation of the 3 mathematic deductions

By observing the time scale modifications graphs, it is
possible to validate the mathematical deductions given in
section III.

1) Asymptotic limit to fastest behaviors

A neuron reaches its fastest dynamic when its time scale
value is 1. During the S/ learning (Fig.7 and Fig.8), the
algorithm drives several Sjl parameters to this maximum
value. One neuron answers instantaneously for slow learning,
and 6 neurons do so for fast learning (superposed on the
graph). Actually, the algorithm hardly blocks the
modification of the 7; parameters to this limit. The
consequence can easily be seen on graph Fig.8. The time
scale values, and, as a consequence, the neurons speed, are
not slowed down while approaching the instant limit. When
they reached it, they get stuck on it (after 20 loops, 9 neurons
are stuck and only 3 of them managed to slow down).

This phenomenon is troublesome because the range of
possible network dynamic behaviors decreases with the
number of neurons stuck. The problem is not the instant
responses (that could be useful) but the attracting power of
this limit that confines the network’s dynamic evolution.

This problem does not occur in the S,-2 (Fig.9 and Fig.10).
Some time scale parameters approach the instant limit but it
does not behave as an attractor. The first mathematical
deduction is thus experimentally confirmed.

2) Smoother and extended evolution of the dynamic

The network dynamic is strongly linked with the time
scale values. If all neurons are fast (time scale parameters
close to 1), the network will generate a fast response to its
input excitation. In the same way, if they all are slow, the
global response will be slow. But, if the speeds are
homogeneously distributed, the network could arise slow or
fast responses. The possible behaviors contained are more
varied. Thus, during the learning, it is important to allow the
S; to evolve in the same way for full possible range]0:1]. If
not, some ranges should be kept aside and some dynamic
behavior would be difficult to arise.

However it clearly appears in Fig.8 that sz learning
brutally jumps between a slow and a fast range (where the
parameters are getting stuck). The algorithm avoids the
interval [0.5:0.9[, because in this range, the speed variation
are very sensitive to little modifications of 7;.

With the sz modification, this not occurs (Fig.10).
Although this experiment presents approximately the same
modification speed, the time scale values are varying in an
homogeneous way along the whole range.

Thus, this remark meets the second mathematical

deduction. The time constant variation induces a brutal
modification of the time scale parameters whereas the
sigmoid time parameter modification is smoother and
extended on the whole range.

3) Mobility improvement or reduction

In the backpropagated error equation (15), the second
term behaves as a first order along the time window [2]. So,
the faster the neuron, the more the backpropagated error (z;)
variation on this neuron will be important. Moreover, if the
S; value of this neuron also varies, this will induce disturbing
variations of the weights and biases parameters (in (11) and
(12), z; and S; are multiplied). The convergence stability and
speed could be affected by this phenomenon.

The evolution of the time scale values of Fig.8 and Fig.10
shows that the compared methods have opposite behaviors.
On the one hand, the Sj[use implies oscillating values for
fast neurons and slow variation for slow neurons. On the
other hand, the sz expression induces a varying behavior for
slow neuron and smooth variations for fast neurons. This
observation validates to the third mathematical deduction.

B. Consequences

The study of the cost evolution graphs and the SDI and
TES values provides the experimental consequences of these
deductions.

Firstly, comparing the cost evolution graphs of Fig.7, 8, 9
and 10 to the one obtained during the no modification
experiment Fig.6, it is obvious to say that the time scale
modification brings a stabilization of the convergence.
Without modification of the neuron dynamic, the cost meets
a lot of difficulties to clearly converge to a minimum. It takes
more loops for the second drop: SDI=155, and the
convergence is less stable. More than 90 loops are needed to
reach the cost range obtained just after the SDI point in the
other experiments.

The convergence speed, expressed by the SDI values, is
approximately the same for all experiments except for the
last one where it’s better. There, the homogeneous
modifications help the weights modification to reach the
convergence in a better way. Whereas, in the other
experiments, it does not help enough or perturbs it.

Finally, the quality of the created nets can be evaluated
through the TES values. Although the TES values obtained
are not strongly different, it is possible to extract some
remarks from these results. The worst is the one obtained
with no modification of neurons dynamics. The best result is
achieved with strong modifications of the sigmoid time
parameters. This is probably due to the way the time scale
values vary. They explore a wide range of time scale values

smoothly and homogenously. As far as the two low rates
learning are concerned, the modification only seems able to
help the convergence stabilization but doesn’t manage to
find a good set of time scale value for decreasing the cost.

The experiments carried out validated the mathematical
deductions. It also highlights their influence on the learning
behavior. Actually, the use of a sigmoid time parameter
rather than a classical time constant one shows a faster
learning convergence, and more accurate neural networks.

VI. CONCLUSIONS

In this study, a comparison between two different ways of
expressing the time scale parameter in a leaky integrator
neural network (classical time constant and sigmoid time
parameter) was carried out. The approach focused on
identifying the one that fits best to the adopted learning
method based on truncated dynamic backpropagation though
time algorithm.

At first, a mathematical comparison of the influence on the
neuron behavior when time scale changes occur was made.
Next, an experimental study based on a real system
identification (a biped robot) was carried out.

It appears that the sigmoid expression brought the
following advantages:

e an asymptotic limit to an instantaneous response of
the neurons, which is important to avoid stuck
behaviors,

e a smoother and extended evolution of the neuron
dynamic, that provides a more homogeneous path in
the whole time scale range]0:1],

e a mobility improvement of the time parameter for
slow neuron and a stiffen mobility for faster one,
which brings a less oscillating convergence.

These advantages lead a faster convergence of the learning
algorithm and more accurate neural networks.

As a further development, the adopted learning algorithm
will be tried for controlling the equilibrium of the ROBIAN
biped robot and for generating force trajectories on the BIA
road simulator. Thus, the stability and speed of our learning
method will be tested on two different systems (electric and
hydraulic). Thus its limits will be shown, as far as real time
control, robustness and generalization are concerned.

REFERENCES

[1] B. Mohamed, F. Gravez, F.B. Ouezdou, “Emulation of the dynamic
effects of human torso during walking gait”, in Journal of Mechanical
Design, vol. 126, Issue 5, pp 830-841, Sept 2004.

[2] B.A. Pearlmutter, “Gradient calculation for dynamic recurrent neural
networks: a survey”, in Transactions on Neural Networks, 6(5):1212-
1228, 1995.

[3] P.J. Werbos, “Backpropagation through time: what it does and how to
do it”, Proceedings of the IEEE, vol. 78, no. 10, pp. 1550 1560, 1990.

8

(4]

[3]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

A.J. Robinson and F. Fallside, “Static and dynamic error propagation
networks with application to speech coding”, In Anderson pp. 632 —
641, 1987.

D.E. Rumelhart, G.E. Hinton, R.J. Williams, “Learning internal
representations by error propagation Parallel distributed processing:
explorations in the microstructure of cognition”, eds D E Rumelhart, J
L Mc- Clelland and the PDP Research Group (MIT Press, Cambridge
MA) pp 318-362, 1986.

Nguyen, M.H. and G.W. Cottrell, “Tau Net: A neural network for
modeling temporal variability”, in Neurocomputing 15 pp. 249-271,
1997.

S. Hochreiter, A.S. Younger, and P.R. Conwell, “Learning to learn
using gradient descent”, in lecture notes on Comp. Sci. 2130, proc.
Intl. Conf. on Artificial Neural Networks (ICANN-2001), pages 87-
94. Springer: Berlin, Heidelberg, 2001.

K. Doya. “Bifurcations of recurrent neural networks in gradient
descent learning”. Submitted to IEEE Transactions on Neural
Networks, 1993.

Draye, J., Pavisic, D., Libert, G, “Dynamic recurrent neural networks:
a dynamical analysis”, IEEE Trans. on Systems Man and Cybernetics,
Part B, vol 26, n 5, pp. 692-706. 1996

R.D. Beer, “Parameter space structure of continuous-time recurrent
neural networks”, submitted, the supplementary Mathematica
notebook, 2005.

F-S. Tsung. “Modeling Dynamical Systems with Recurrent Neural
Networks”. PhD thesis, Department of Computer Science. University
of California, San Diego, 1994.

R. J. Williams and D. Zipser, “Gradient-based learning algorithms for
recurrent connectionist networks”, In Y. Chauvin and D. E.
Rumelhart, editors, Backpropagation: Theory, Architectures, and
Applications, Erlbaum, Hillsdale, NJ, 1990.

Vukobratovic, M. and Borovac, B.. “Zero-moment point — thirty five
years of its life” in International Journal of Humanoid Robotics. 1(1):
157-173. 2004.

