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Abstract. The purpose of the research addressed in this paper is to study the in-

fluence of the time window width in dynamic truncated BackPropagation 

Through Time BPTT(h) learning algorithms. Statistical experiments based on 

the identification of a real biped robot balancing mechanism are carried out to 

raise the link between the window width and the stability, the speed and the ac-

curacy of the learning. The time window width choice is shown to be crucial for 

the convergence speed of the learning process and the generalization ability of 

the network. Although, a particular attention is brought to a divergence problem 

(gradient blow up) observed with the assumption where the net parameters are 

constant along the window. The limit of this assumption is demonstrated and 

parameters evolution storage, used as a solution for this problem, is detailed.  

1   Introduction 

Born from the collaboration between a robotic research laboratory (LISV) and an 

industrial company (BIA), the supporting project of this study aims to shape a smart 

architecture able to learn to control non linear multi actuators system under real time 

constraints. Through the design and the implementation of this controller, we want to 

evaluate the ability of neural architectures to achieve the non linear control needs in 

real time. The project experiments are carried out on two structures: the ROBIAN 

biped robot from the LISV [1], and the BIA road simulator (www.bia.fr). The archi-

tecture of the developed algorithm is based on continuous time recurrent neural net-

works (CTRNN). To shape this architecture, a truncated BPTT algorithm was chosen 

for its ability of integrating the learning error and for its simplicity to be implemented 

for real time online applications. This well known gradient algorithm is widely used 

for system modeling and control [2], optimization applications, speech recognition 

[3], or meta learning [4]. A detailed description of this algorithm is given in [5], [6] 

and [7]. Nevertheless, as far as we know, no study aimed to extract the important role 

of the truncation width on the success of the learning. Obviously, the truncation width 

influences deeply the learning speed and quality. Our real time experimentations on 

ROBIAN biped also show us that, when the net parameters are considered as constant 

along a large window, the learning stability could be hardly spoiled. 



Thus, through a statistical analysis of learning results, the links between the width of 

the time window, the stability of the learning, the “constant parameters” assumption, 

the convergence speed and the generalization abilities of the learned networks, have to 

be raised. To focus on this influence, a first experiment dealing with direct model 

identification rather than a controller shaping will be considered. 

The next section details the neural model and the BPTT(h) learning algorithm used. 

The experimental plant is described in section 3. In section 4, the influence of the 

window width will be studied. The “constant parameters” assumption with its influ-

ence on the learning stability will be discussed. A stabilizing modification of the learn-

ing equation, to take into account the parameters evolution history, will be proposed. 

It will allow raising the dependencies between the window width and the learning 

results. Finally, discussions about the parameters evolution storage and the window 

choice to find a compromise between learning speed and nets accuracy will be given. 

2   Dynamic truncated Backpropagation Through Time algorithm 

2.1   Neural Model  

Following the classical CTRNN equation (1), the input data are propagated in the 

network to generate the neurons outputs. The net activities belong to the intrinsic 

neurons and network parameters : weights (wij), biases (bj) and time parameters (Tj). 

[ ] 







+⋅+−=

∂

∂
⋅ ∑

i

jiijj
j

j bywfy
t

y
T  

Where yj corresponds to the j neuron activity, f is the activation function (tanh). Using 

a time scale parameter Sj ( classically Sj=∆t/Tj , ∆t is the time step ), the discrete corre-

sponding equation can be written as follows: 

( ) [ ] ( ) ( )∆ttySb∆ttywfSty jjj

i

iijjj −⋅−+







+−⋅⋅= ∑ 





 1  

As the network is fully recurrent, each neuron receives the outputs of all the other 

ones. The weights, biases and time constants shape the temporal response of the net. 

2.2   Learning algorithm 

The objective of the parameters modification consists in minimizing a desired cri-

terion. For an identification process, the criterion would be the gap between the neural 

model and the taught system. To carry out the adaptation of network parameters, 

BackPropagation Through Time algorithm, detailed in [5], [6] and [7], can be used. 

This algorithm is computing an error function that corresponds to the criterion to be 

minimized. The error function (E) is defined as the integral of each net output errors. 

The parameters modification (∆param) is leaded by the error gradient inverse value. 

The following equations give the error function and the parameters modification law: 
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Where ej(τ) is the output error of the neuron j stored at the current time step in the time 

window (τ). During the learning, to minimize E, the algorithm modifies the net pa-

rameters following the gradient descent (4), where param is wij, bj or Sj and η is the 
corresponding learning rate. To compute these “delta” values for continuous time 

neurons, a dynamic BPTT learning algorithm [5] is needed. The gradient values giv-

ing the influence of each parameter are computed with equations (5), (6) and (7): 
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The backpropagated errors ( zj(τ) ) for a j
th
 neuron can be written as following: 
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Where f’ is the derivative of the activation function (tanh). For each neuron, the zj is 

computed by considering the network states at each time step as successive layers. 

Thus, the output errors are backpropagated in the network and in time. In BPTT learn-

ing, zj is computed for each neuron and each time step since the starting. To prevent a 

memory explosion induced by the storage of every network states, a truncated BPTT 

algorithm (BPTT(h)) is proposed in [8]. This algorithm is keeping in memory only the 

past states included in a window following the current instant (t0 = t – h with h the 

window width). The zj values are computed along this sliding window (τ∈[t-h;t]). 

Hence, only a gradient approximation is computed. The previous (5) to (8) equations 

are constructed on the assumption that the parameters are constant along the time 

window. This assumption presented in [9] and [10] minimizes the process memory 

needs as the parameters history is not stored. In our study, these algorithms are ex-

perimented on the ROBIAN biped robot described in the next section. 

3 ROBIAN identification description 

3.1   Plant description and perturbation signals 

To focus on the time window width influence, a model identification rather than a 

controller shaping will be carried out. Fig.1 shows how the identification of 

ROBIAN’s torso influence on the ZMP (Zero Moment Point) will be performed. For 

more details concerning the ROBIAN biped and its torso mechanism see [1]. 

(6) 

(7) 

(8) 

(5) 



The ZMP is a key notion in the balance control of walking robot. It corresponds to the 

position of the center of pressure on the ground. The ZMP algorithm, introduced thirty 

five years ago [11], consists of controlling the equilibrium of the biped robot by keep-

ing the ZMP inside the polygon defined by the contact points with the ground. 

 

 

 

 

 

 

 

Fig. 1. Learning architecture for the identification (left) of ROBIAN robot (right) 

The motion of the X and Y masses of the torso (Mx and My) are perturbing the robot 

balancing, leading to variations of the X and Y ZMP positions. During the learning 

process, the neural network (NN) computes the gap between the measured positions 

and its own outputs and modifies its parameters to vanish this error, by minimizing a 

cost function. This function is defined as the normalized squared errors sum on the 

two axes and the output errors (ej(t)) can be expressed as following: 

 

  

 

Where yx, yy are the output activities and maxZMPaxis is the maximum amplitude on 

each axis (for normalization). 

Representative situations should be given during the learning. They must fully charac-

terize the behavior of the studied system. This implies to give the network patterns 

that express the dynamic of the ZMP for the X and Y axis. Fig 2 represents the learn-

ing pattern adopted. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Masses positions and ZMP positions on the two axis for the learning pattern (sampling 

rate = 45Hz). In periods 1 and 4, the X and then the Y mass, are submitted to successive steps 

with various amplitudes. In the 2 and 3 periods, steps with varying frequency are applied 

The learning pattern contains a succession of four different excitations applied to the 

robot: squared commands with varying amplitudes (0.01m to 0.20m) and with varying 
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frequencies (1Hz-3Hz, containing the resonance of the robot), for both X and Y axes. 

In the test pattern, a sine command with a varying frequency is applied on both axes. 

3.2   Example of learning 

The cost function evolution is depicted on Fig. 3. In this experiment, the network 

(composed of 2 inputs, 15 hidden neurons and 2 outputs) was taught with one hundred 

loops on the learning pattern (learning rates: η1 = 0.025 for weights and biases, 

η2 = 1.25 for time constants) and a time window width h=20. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Cost evolution, and a zoom on the first loop (top right corner), 1 loop =10200 iterations 

At the beginning of the learning, the network parameters are randomly chosen to gen-

erate stable outputs. The time scale parameters (Sj) are taken in the interval [0.5;1], to 

obtain neurons with speeds close to the dynamic of the system. 

Fig.3 gives the evolution of the cost during the learning. In the zoom area, the four 

peaks are due to the different kinds of command (amplitude changes: peaks 1 and 4, or 

frequency variation: peaks 2 and 3) of the learning pattern. 

 

During the experiment, two main drops happened. They are respectively linked to a 

quick decrease of peak 3 (learning of the X direction behavior) and peak 2 (learning 

on Y direction). The instant when the second drop happened (SDI : Second Drop 

Instant) is a good factor to quantify the convergence speed. It happens when the net-

work identifies correctly the behavior of ROBIAN torso in the both two directions. 

Here it takes about 64 loops to arise. The SDI value can be interpreted as a physical 

expression of the convergence for our experiments. It can be related to the choice of a 

threshold below which the cost is considered as satisfactory. 

 

After the learning, a relevant value for estimating the generalization ability of the 

learned network is the costs sum along the whole test pattern (TES : Test Errors Sum). 

It expresses the difference between an ideal model of the robot and the learned one. 

With a perfect model, the TES value is equal to zero. For the considered example, 

before the learning, TES = 363, and at the end of the learning process (after the 100
th
 

loop), the remaining error decreases to TES = 40. 
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4   Time window width influence 

4.1   Stability limit with the “constant parameters” assumption 

In the usual gradient calculus, the parameters are considered as constant along the 

time window [9], [10]. This approximation can be seen in the gradient equations (5) to 

(8) where the parameters (wij, bj or Sj) are not indexed by time. The time window 

width reduces the use of this assumption by destabilizing the learning. 

The identification of the ROBIAN’s torso influence on the ZMP positions is carried 

out for different time window width values (TW) from 5 to 60 states stored. For each 

TW, ten learning courses are carried out for a statistical analysis of the results. Each 

network is evaluated on the test pattern after learning. The learning and test results are 

depicted on the following figure: 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 4. Learning and test results following TW with η1=0.025 for weights and biases, η2=1.25 

for time constants. The average value of SDI and TES are plotted. The error bars correspond to 

the standard deviation measured. They express the iteration range of convergence. If not all the 

10 trials lead to a convergence, a mark is added on the graph giving the percentage of success. 

Here, it happens for TW=35 where there was only 10% of success 

This graph can be decomposed in three parts. When TW is less than 15, the learning is 

so slow that it doesn’t manage to converge (no results on the graph). For 

TW∈[15;35], the SDI, and TES seem to decrease proportionally to TW, thus the 

convergence speed and the generalization ability are better for larger TW. Finally, if 

TW is greater than 35 states stored, the algorithm is diverging with a gradient blow 

up. For a stronger learning rate (η=0.1) the gradient blow up occurs since TW=15. 

4.2   Gradient blow up divergence and parameters evolution storage 

We called this divergence problem gradient blow up since it’s caused by a sudden 

explosion of the neurons gradient values. In Fig. 5, the evolution in time of the gradi-



ent values for each neuron are depicted. In this experiment, the time window width is 

TW=100 states stored (with a sampling rate=45Hz, it corresponds to an interval of 

2.22s). The three graphs represent the initiation of the gradient blow up. Just after the 

last graph, all the gradient values are exploded. 
 

 

 

 

 

 

 

 

Fig. 5. Gradient blow up initiation. The little waves correspond to the “normal” backpropaga-

tion of the error in the time window on the neurons. The strong drops and jumps in the third 

graph correspond to the “abnormal” divergence called gradient blow up 

The blow up begins with a divergence of the oldest past values. Through the recur-

rent links raised in the network, the explosion is spread in the entire network. Finally, 

the divergence is so important that the parameters take infinite values and the algo-

rithm is stopped. Our guess is that the divergence of the farer gradients is due to the 

“constant parameter” assumption. This assumption means that the parameters are the 

same along the entire time window. However, if the window width is large compared 

to the parameters variation, it’s obviously false. Actually, if the width is important, the 

parameter values that contribute to create the farer past states stored could be strongly 

different from the current ones. This happens when either the first or the second drop 

is initiated, i.e. when the parameters are strongly modified. That’s why the divergence 

is initiated in the oldest part of the time window. Hence, the assumption could only be 

used with short window or small learning rates. 

A way to avoid this blow up problem is to store the parameters history along the time 

window. So, the gradient equations will take into account their evolutions as in (5’), 

(6’) and (7’). The weights, biases and time scale parameters become a function of time 

τ. The storage of the parameter history along the sliding time window implies an in-

crease of memory needs. The number of stored values is multiplied by TW. 

 

 

 

 

 

 

 

 

 

Equation (7) is not changed since no parameter is involved. This modification of the 

classical BPTT learning equations will be used for the analysis of TW influence on 

the speed and accuracy of the learning in next section. 
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4.3   Influence on the convergence speed and on the accuracy of the learned nets 

The same identification process is carried out with the modified learning 

algorithm, for time window width values from 5 to 60 states stored, and with 10 initial 

random nets for each TW value. The learning and test results are depicted on the fig 6: 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Learning and test results following the TW values with η1=0.025 and η2=1.25. All the 

learning succeed for TW≤45, for TW= 50 and 55, only 40% of the nets reach a convergence 

The previous graph can be decomposed in three parts depending on the TW value. If 

TW<15 states stored, the algorithm is not able to converge to a correct solution. Next, 

for TW varying between from 15 to 35, the convergence speed average is increased 

while the average TES is decreased. Then, with TW>35, the convergence process is 

more oscillating. The standard deviations are thus larger, and not all the 10 initial 

random networks lead to a correct solution. But, for these TW values, in case of con-

vergence, the algorithm finds better solutions (i.e. the TES values are smaller). This is 

due to the amount of data taken into account. The modified algorithm allows also 

increasing the learning rates. Figure 7 represents the results obtained with η1=0.1: 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 7. Learning and test results with η1=0.1 for weights and biases and η2=1.25 for time con-

stants. All the learning succeed for TW≤35, for TW= 40, 45, 50 and 55, the percentages of 

success are respectively 70%, 40%, 40%, 30% and 0% for 55 

Compared to the experiments done with η1=0.025, the convergence speed gets faster 

since a TW = 15 states stored. Nevertheless, the learning is more unstable with this 



higher learning rate, and the algorithm meets convergence difficulties earlier. For 

larger TW values, the number of success is less important as the learning is oscillat-

ing, due to a too important learning rate. But, when they converge, the networks 

learned are more accurate. Here again, the TES obtained are the best for the biggest 

TW. As far as our experiment is concerned, the best configuration ensuring maximum 

speed, best quality and high percentage of success, is TW=30 and η1=0.1. 

5   Discussion and conclusion 

5.1   Storing the parameters evolution? 

The comparison between the results of the “constant parameters” assumption and 

those presented for the modified algorithm, shows that the second one is better for our 

identification experiment. First, the classical one is only valid for small TW values 

whereas the second one allows larger ones. Next, for the same TW range, the classical 

method finds networks with worst generalization abilities. The only advantage of the 

classical one seems to be a faster convergence speed. Nevertheless, as a stronger 

learning rate is not prohibited with the modified method, this speed advantage can be 

overcome. In that case, the modified algorithm results are comparable to the ones 

achieved with a smaller learning rate and a larger TW value. With the modified algo-

rithm, for the largest TW values, the convergence is not always met. The algorithm 

fails to find a correct solution. But no gradient blow up occurs. 

The TW limit that leads to a gradient blow up for the classical method is probably 

linked to the dynamic of the studied system and the convergence speed defined by the 

learning rates values. If the learning rates are strong, the parameters modification will 

be fast and they couldn’t be approximated as constant along the time window. In the 

same way, if the system is fast, the learning will tend to bring the time constants and 

the network to a faster dynamic. Thus, the errors will be quickly backpropagated in 

the time window, and the algorithm will behave as if the time window was bigger and 

will diverge for smaller TW. So, the choice between using or not the “constant pa-

rameters” assumption will depend on the dynamic of the system. 

5.2   Convergence speed VS generalization ability 

 

The comparison of the convergence speeds and the quality of the learned networks 

demonstrates that the TW value choice must be a trade-off between these two results. 

Choosing the largest one, i.e. the best quality, the speed could be strongly decreased 

or the convergence not guaranteed. Choosing the fastest convergence, with a shorter 

TW, could lead to non suitable networks. There is no general rule for optimizing the 

learning. The choice must be done following the needs and criteria fixed for the learn-

ing process. Here again, the dynamic of the studied system will act upon the TW that 



leads to the fastest convergence. For the same criteria, the chosen TW could be differ-

ent for a slow or fast system. But, allowing the use of larger TW is obviously useful. 

5.3   Conclusions 

In this paper, we studied the influence of the time window width parameter upon 

the stability, the learning speed and the quality of the networks obtained. Based on 

statistical experiments, aiming to identify the links between the balancing of a biped 

robot and its torso motion, we discussed the net parameters evolution storage and the 

choice of an optimal TW value. We found that it could be useful to enlarge the win-

dow to reach faster and more accurate learning. As the “constant parameter” assump-

tion classically adopted for BPPTT(h) is not adapted for larger window, a modified 

algorithm taking into account the parameters history can be advantageous. 

In the future, we will first carry out similar experiments on faster or slower systems to 

find out the influence of the system dynamic on the learning. Next, we will perform a 

mathematical analysis of the modified algorithm. The learning algorithm will be also 

applied to carry out inverse model identification and control. 
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