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ASYMPTOTICS FOR SOME SEMILINEAR HYPERBOLIC EQUATIONS

WITH NON-AUTONOMOUS DAMPING

A. CABOT AND P. FRANKEL

ABSTRACT. Let V and H be Hilbert spaces such that V ⊂ H ⊂ V′ with dense and
continuous injections. Consider a linear continuous operator A : V → V′ which is
assumed to be symmetric, monotone and semi-coercive. Given a function f : V →
H and a map γ ∈ W1,1

loc (R+,R+) such that limt→+∞ γ(t) = 0, our purpose is to
study the asymptotic behavior of the following semilinear hyperbolic equation

(E)
d2u

dt2
(t) + γ(t)

du

dt
(t) + Au(t) + f (u(t)) = 0, t ≥ 0.

The nonlinearity f is assumed to bemonotone and conservative. Condition
∫ +∞

0 γ(t) dt = +∞

guarantees that some suitable energy function tends toward its minimum. The
main contribution of this paper is to provide a general result of convergence for
the trajectories of (E): if the quantity γ(t) behaves as k/tα, for some α ∈]0, 1[,
k > 0 and t large enough, then u(t) weakly converges in V toward an equilibrium
as t → +∞. Strong convergence in V holds true under compactness or symmetry
conditions. We also give estimates for the speed of convergence of the energy un-
der some ellipticity-like conditions. The abstract results are applied to particular
semilinear evolution problems at the end of the paper.

1. INTRODUCTION

Throughout this paper, V stands for a real Hilbert space, whose scalar product
and norm are respectively denoted by ((·, ·)) and ‖ · ‖. Let H be another real
Hilbert space with scalar product (·, ·) and norm | · |. Suppose that V is dense
in H with continuous injection. By duality, the topological dual space H′ of H is
identified with a dense subspace of the topological dual V′ of V. Identifying H
with H′, we obtain V ⊂ H ⊂ V′, where each space is dense in the next one, each
injection being continuous. We denote by 〈·, ·〉V′ ,V the duality pairing between V′

and V. Let a : V ×V → R be a continuous bilinear form satisfying

(h1) a(., .) is symmetric, positive,

(h2) ∃λ ≥ 0, µ > 0 such that ∀u ∈ V, a(u, u) + λ|u|2 ≥ µ‖u‖2.
This last property is known as the semi-coercivity of the form a. We associate with
a(., .) the continuous operator A : V → V′ defined by 〈Au, v〉V′ ,V = a(u, v) for
all u, v ∈ V. We denote by D(A) the domain of the operator A, i.e. D(A) = {v ∈
V; Av ∈ H}. Given a function f : V → H and a map γ ∈ W1,1

loc (R+,R+), we

1991Mathematics Subject Classification. 34G10, 34G20, 35B40, 35L70.
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2 A. CABOT AND P. FRANKEL

consider the following semilinear evolution equation of second-order in time

(E)
d2u

dt2
(t) + γ(t)

du

dt
(t) + Au(t) + f (u(t)) = 0, t ≥ 0.

The nonlinearity f is assumed to be conservative, i.e. derives from some potential

F ∈ C1(V,R). The main purpose of the paper is to investigate the asymptotic
behavior of the trajectories of (E) for a vanishing damping term, i.e. γ(t) → 0 as
t → +∞. It is clear that the decay properties of the map γ play a central role in
the analysis. In particular, if the quantity γ(t) tends to 0 too rapidly as t → +∞,
convergence of the trajectories may fail. To motivate our study, let us show how it
is connected to other questions of interest.

Case of a constant damping. If γ(t) ≡ γ, existence and uniqueness are well-
known in the framework of damped wave equations. More precisely, if the map
f : V → H is Lipschitz continuous on the bounded sets of V and if the map F
satisfies suitable growth conditions, then for any (u0, v0) ∈ D(A)×V, there exists

a unique solution u ∈ W1,∞
loc (R+,V) ∩W2,∞

loc (R+,H) of (E) such that u(0) = u0
and du

dt (0) = v0, see [12, Theorem II.3.2.1] or [20, Ch. IV, Theorem 4.1]. The tra-
jectories of (E) are known to converge toward an equilibrium point u∞ ∈ {v ∈
V, Av+ f (v) = 0} under assumptions like monotonicity or analyticity. In the case
of a monotone map f , convergence is obtained for the weak topology of V and the
main ingredient of the proof is the Opial lemma, cf. [3]. When the nonlinearity
is analytic, convergence of the trajectories relies on the Lojasiewicz inequality, see
[15, 16] and the pioneering work [19] for parabolic problems.

Averaged heat equation. With the same assumptions as above, consider the ab-
stract heat equation

dv

ds
(s) + Av(s) = 0, s ≥ 0. (1.1)

It may be of interest to examine the case where the velocity dv
ds (s) is proportional,

not to the instantaneous vector Av(s), but to some average taken over the interval
[0, s]. The simplest such equation is

dv

ds
(s) +

1

s

∫ s

0
Av(σ) dσ = 0, s > 0. (1.2)

After multiplying this equality by s and differentiating, we obtain the following
second-order in time equation

s
d2v

ds2
(s) +

dv

ds
(s) + Av(s) = 0, s > 0.

The change of variable s = t2

4 allows to rewrite the above equation as

d2u

dt2
(t) +

1

t

du

dt
(t) + Au(t) = 0, t > 0,

where the map u is defined by u(t) = v
(
t2

4

)
for every t ≥ 0. This is exactly

equation (E) with γ(t) = 1
t and f ≡ 0. Assuming that the injection V →֒ H is

compact, there exists a nondecreasing sequence (λi)i≥1 of eigenvalues of A, along
with a complete orthonormal basis of H, (ei)i≥1 consisting of the corresponding
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eigenvectors. Let u(t) = ∑
+∞
i=1 ui(t) ei be the decomposition of the solution u(t) on

the basis of eigenfunctions. Every component ui satisfies the following equation

üi(t) +
1

t
u̇i(t) + λi ui(t) = 0, t > 0.

It ensues that each kernel component ui, i ∈ {1, . . . , dim(ker A)} verifies ui(t) =
ai ln t+ bi, for some ai, bi ∈ R. In particular, it cannot converge as t → +∞, unless
it is stationary. When the eigenvalue λi is positive, we let the reader check that

ui(t) = a′i J0
(√

λi t
)

+ b′i Y0
(√

λi t
)
, for some a′i, b

′
i ∈ R,

where J0 and Y0 denote respectively the zeroth Bessel functions of the first and

second kind1. Recalling that

J0(t) ∼
√

2

π t
cos

(
t− π

4

)
and Y0(t) ∼

√
2

π t
sin

(
t− π

4

)
as t → +∞,

we deduce that ui(t) ∼ ci√
t
cos(

√
λi t− ϕi) as t → +∞, for some ci, ϕi ∈ R. Com-

ing back to the averaged heat equation (1.2), we then obtain for each component vi

vi(s) ∼
ci√
2
s−

1
4 cos

(
2

√
λi s− ϕi

)
as s → +∞.

It converges toward zero much more slowly than the corresponding component

of the “pure” heat equation, equal to vi(0) e
−λi s. The above discussion shows that

the global behavior of (1.2) -or more generally (E)- differs considerably from the
one of equation (1.1).

Heavy ball with asymptotically small friction. Given a continuous map γ : R+ →
R+ and a potential Φ : H → R of class C1 with a locally Lipschitz gradient, let us
consider the following ordinary differential equation in the Hilbert space H

ẍ(t) + γ(t) ẋ(t) + ∇Φ(x(t)) = 0, t ≥ 0. (1.3)

When γ(t) ≡ γ > 0, the above equation is known under the terminology of
“Heavy Ball with Friction” system, (HBF) for short. From a mechanical point
of view, (HBF) corresponds to the equation describing the motion of a material
point subjected to the conservative force −∇Φ(x) and the viscous friction force
−γ ẋ. The (HBF) system can be studied in the classical framework of the theory
of dissipative dynamical systems, cf. [11, 13]. The trajectories of (HBF) are known
to converge toward a critical point of Φ under various assumptions (see [2, 4] for
convex potentials and [14] for analytic ones). In the recent papers [8, 9], it is con-
sidered the case of a vanishing damping γ(t) → 0 as t → +∞. The corresponding
equation is typically obtained from a first-order gradient system involving some
memory aspects, see [7]. If the function Φ is convex and has a unique minimum

x, condition
∫ +∞

0 γ(t) dt = +∞ is sufficient to ensure (weak) convergence of the
trajectories of (1.3) toward x. When the function Φ has a continuum of equilib-

ria, the more stringent condition
∫ +∞

0
e−

∫ t
0 γ(s) dsdt < +∞ is necessary to obtain

convergence of the trajectories. In the one-dimensional case, the slightly stronger

condition
∫ +∞

0
e−θ

∫ t
0 γ(s) dsdt < +∞, for some θ ∈]0, 1[ is shown to be sufficient.

1See [1, 5] for standard references on Bessel equations.
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In the higher-dimensional case, the general question of convergence is left open in
[8, 9]. The new techniques developed in the present paper allow to address this
question and to fill partially the gap between necessary and sufficient conditions
for convergence, see comments below.

Let us come back to equation (E) and precise now the framework of the paper.
The nonlinearity f is assumed to be monotone and conservative, i.e. derives from

some convex potential F ∈ C1(V,R). The set of equilibria S = {v ∈ V, Av +
f (v) = 0} is supposed to be nonempty. It is not our purpose to develop the well-
posedness of equation (E) for given initial conditions. Throughout the paper, we
assume the existence of a solution to equation (E) in the class

u ∈ W1,1
loc (R+,V) ∩W2,1

loc (R+,H). (1.4)

We define the energy function E along each trajectory by

E(t) =
1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+
1

2
a(u(t), u(t)) + F(u(t)).

The major contribution of this paper is to provide a result of (weak) conver-
gence in V for the trajectories of (E): if the quantity γ(t) behaves as k/tα, for some
α ∈]0, 1[, k > 0 and t large enough, there exists an equilibrium u∞ ∈ S such that
u(t) ⇀ u∞ weakly in V as t → +∞. The exact statement is in fact slightly more
general, see Theorem 3.10. The main ingredients of the proof are the Opial lemma
along with accurate estimates of the energy decay, cf. Proposition 3.7. Strong con-
vergence inV holds true under compactness or symmetry conditions, see Theorem
3.13. We stress the fact that the result and the technique of the proof are new, and
they are also applicable to the differential equation (1.3).

The second contribution of the paper is to give sharp estimates for the speed of
convergence of the energy E(t) as t → +∞. In the linear case ( f = 0) and under
some ellipticity-like condition, we obtain the following estimate

E(t) ∼ K e−
∫ t
0 γ(s)ds as t → +∞, for some K > 0. (1.5)

Notice that this estimate fails to be true if the trajectory is contained in ker A, see
Theorem 2.7 for a precise statement. In the nonlinear case, the same kind of esti-

mate is obtained at a slightly lower degree of precision2, cf. Theorem 3.15.

Outline of the paper. Section 2 is concerned with the linear hyperbolic equation
(E0) obtained by taking f = 0 in (E). We analyze the behavior of the trajectories
by studying respectively their components with respect to the spaces ker A and

(ker A)⊥. A sharp estimate of the energy decay is given under some ellipticity-
like condition. In section 3, we deal with the general equation (E) by assuming
that the nonlinearity f is monotone. It is shown in paragraph 3.1 that the energy
E(t) vanishes as t → +∞, which allows to prove (weak) convergence of the trajec-
tories in the case of a unique minimum. The general problem of convergence for
a continuum of minima is treated in paragraph 3.2, which is the core of the paper.
Additional results of strong convergence in V are given under some compactness
or symmetry assumptions. Finally, the abstract results are applied to particular
semilinear evolution problems in section 4.

2In this case, a factor 2
3 has to be introduced in the exponent of formula (1.5).



ASYMPTOTICS FOR SOME SEMILINEAR HYPERBOLIC EQUATIONS 5

2. LINEAR HYPERBOLIC EQUATION

Let a : V×V → R be a continuous bilinear form satisfying (h1)-(h2) and let A :

V → V′ be the associate operator. Given a map γ ∈ W1,1
loc (R+,R+), we consider

the following linear hyperbolic equation

(E0)
d2u

dt2
(t) + γ(t)

du

dt
(t) + Au(t) = 0, t ≥ 0.

We assume the existence of a solution to equation (E0) in the class (1.4). We define
the energy function E along each trajectory by

E(t) =
1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+
1

2
a(u(t), u(t)).

We have E ∈ W1,1
loc (R+) and

Ė(t) =

(
d2u

dt2
(t),

du

dt
(t)

)
+

〈
Au(t),

du

dt
(t)

〉

V′ ,V

= −γ(t)

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ 0 a.e. on R+,

hence the function E is a Lyapunov function for the system (E0). The purpose
of this section is to establish results of convergence for the trajectory u, along with
estimates of the energy decay. The key assumptions on themap γ are the following

(l1) lim
t→+∞

γ(t) = 0

(l2) γ̇ ∈ L1(0,+∞).

For every t ≥ 0, we set û(t) = Pu(t), where P denotes the orthogonal projection

onto the subspace3 ker A in the sense of H. Since û(t) ∈ ker A for every t ≥ 0, we
have

∀t ≥ 0,
d2û

dt2
(t) + γ(t)

dû

dt
(t) = 0.

By integrating this equality twice, we find

∀t ≥ 0, û(t) = û(0) +

(∫ t

0
e−

∫ s
0 γ(τ)dτds

)
dû

dt
(0) (2.1)

= Pu0 +

(∫ t

0
e−

∫ s
0 γ(τ)dτds

)
Pv0.

If Pv0 6= 0, the above equality shows that the asymptotic behavior of the compo-

nent û is strongly related with the convergence of the integral
∫ +∞

0 e−
∫ s
0 γ(τ)dτds.

The next proposition summarizes the different possible cases.

Proposition 2.1. Let us set ω =
∫ +∞

0 e−
∫ s
0 γ(τ)dτds ∈ R+ ∪ {+∞}.

• If v0 ∈ (ker A)⊥, then û(t) = Pu0 for every t ≥ 0.

3By using assumptions (h1)-(h2), it is easy to check that ker A is closed in H. See also Remark 3.2.
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• If v0 /∈ (ker A)⊥, then the solution û converges if and only if ω < +∞. More
precisely, we have lim

t→+∞
|û(t)| = +∞ if ω = +∞ while lim

t→+∞
û(t) = P(u0 +

ωv0) if ω < +∞.

Our purpose is now to evaluate the energy decay along each trajectory u(.). We
start with a preliminary result corresponding to the case ker A = {0}.
Lemma 2.2. Assume that the bilinear form a(., .) satisfies (h1)-(h2) and that

∃η > 0, ∀u ∈ V, a(u, u) ≥ η|u|2. (2.2)

Let γ ∈ W1,1
loc (R+,R+) be a function satisfying (l1)-(l2). Let u be a solution in the class

(1.4) to equation (E0). Then, either the solution u is stationary, or there exists K > 0 such
that

E(t) ∼ Ke−
∫ t
0 γ(s)ds as t → +∞.

Proof. The main idea of the proof consists in using the function F defined by4

F (t) =
1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+
1

2
a(u(t), u(t)) +

γ(t)

2

(
du

dt
(t), u(t)

)

= E(t) +
γ(t)

2

(
du

dt
(t), u(t)

)
.

We have F ∈ W1,1
loc (R+) and by differentiating the function F , we find for almost

every t ≥ 0

Ḟ (t) = Ė(t) +
γ̇(t)

2

(
du

dt
(t), u(t)

)
+

γ(t)

2

(
d2u

dt2
(t), u(t)

)
+

γ(t)

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

= −γ(t)

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

− γ(t)

2
a(u(t), u(t)) +

(
γ̇(t)

2
− γ(t)2

2

) (
du

dt
(t), u(t)

)
.

Therefore we have

Ḟ (t) + γ(t)F (t) =
γ̇(t)

2

(
du

dt
(t), u(t)

)
a.e. on R+. (2.3)

Since
∣∣∣
(
du
dt (t), u(t)

)∣∣∣ ≤ 1
2

∣∣∣ dudt (t)
∣∣∣
2
+ 1

2 |u(t)|2 and a(u(t), u(t)) ≥ η |u(t)|2 by as-

sumption (2.2), we have
∣∣∣∣
(
du

dt
(t), u(t)

)∣∣∣∣ ≤ C E(t), for some C > 0. (2.4)

Recalling that limt→+∞ γ(t) = 0, the expression of F shows that

F (t) ∼ E(t) as t → +∞. (2.5)

We deduce from (2.3), (2.4) and (2.5) the existence of D > 0 and t0 ≥ 0 such that
∣∣Ḟ (t) + γ(t)F (t)

∣∣ ≤ D |γ̇(t)|F (t) a.e. on [t0,+∞[.

Let usmultiply eachmember of this inequality by e
∫ t
0 γ(s)ds and set G(t) = e

∫ t
0 γ(s)dsF (t).

We obtain
|Ġ(t)| ≤ D |γ̇(t)|G(t) a.e. on [t0,+∞[. (2.6)

4The use of such an auxiliary function is classical, see for example [13, Lemma 3.2.6] in the case of

an autonomous damping.
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Observe that if G(t1) = 0 for some t1 ≥ t0, then we have F (t1) = 0 and E(t1) = 0.
Since the map E is nonincreasing, we conclude that E(t) = 0 for every t ≥ t1, i.e.
the solution u is stationary. Now assume that G(t) > 0 for every t ≥ t0 and divide

each member of equality (2.6) by G(t). Since γ̇ ∈ L1(0,+∞) by assumption, we
deduce that ∣∣∣∣

d

dt
lnG

∣∣∣∣ (t) =
|Ġ(t)|
G(t)

∈ L1(0,+∞).

It ensues that lim
t→+∞

lnG(t) exists in R. We deduce that lim
t→+∞

e
∫ t
0 γ(s)dsF (t) =

K > 0. The conclusion immediately follows from estimate (2.5). �

Remark 2.3. A result similar to Lemma 2.2 can be obtained by eliminating the first

order term in (E0) via the change of variable v(t) = e
1
2

∫ t
0 γ(s)dsu(t). The details are

left to the reader.

Remark 2.4 (Case γ constant). Assuming that γ(t) ≡ γ > 0 and that a(u, u) ≥
η |u|2 for every u ∈ V, the estimate E(t) = O

(
e−γ t

)
remains true as t → +∞ if

γ < 2 η1/2, see [13, Lemma 3.2.6]. However, it fails to be valid if γ ≥ 2 η1/2, see
[13, Proposition 3.2.5].

We now assume the following ellipticity-like condition

∀u ∈ V, a(u, u) ≥ η |u− Pu|2, for some η > 0. (2.7)

Remark 2.5. Under (h2), this condition is equivalent to the following one5

∀u ∈ V, a(u, u) ≥ η′ ‖u− Pu‖2, for some η′
> 0. (2.8)

Indeed, assume that condition (2.7) is satisfied. Recalling that Pu ∈ ker A, we
deduce from (h2) that

∀u ∈ V, a(u, u) + λ |u− Pu|2 ≥ µ ‖u− Pu‖2.

It ensues that
(
1+ λ

η

)
a(u, u) ≥ µ ‖u− Pu‖2 for every u ∈ V and finally (2.8) is

fulfilled with η′ = η µ
η+λ .

Remark 2.6. Suppose that the injection V →֒ H is compact and that (h1)-(h2) hold
true. The eigenvalues of A then define an nondecreasing sequence of nonneg-
ative scalars tending to +∞ and there exists an orthonormal basis of H consist-
ing of the corresponding eigenvectors, see for example [17, 20]. If η denotes the

smallest eigenvalue of A greater than 0, it is clear that a(u, u) ≥ η|u|2 for every

u ∈ (ker A)⊥ ∩V and therefore condition (2.7) holds true.

The next result allows to estimate the energy decay under condition (2.7).

Theorem 2.7. Assume that the bilinear form a(., .) satisfies conditions (h1)-(h2) and

(2.7). Let γ ∈ W1,1
loc (R+,R+) be a function satisfying (l1)-(l2). Let u be a solution in

the class (1.4) to equation (E0). Then, either the trajectory is contained in ker A, or there
exists K > 0 such that

E(t) ∼ K e−
∫ t
0 γ(s)ds as t → +∞. (2.9)

5Condition (2.8) is used in [21, Section 4], where estimates of the energy decay are provided in the

case of an autonomous damping.
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Proof. For every t ≥ 0, we set û(t) = Pu(t) and ũ(t) = u(t) − Pu(t). Since û(t) ∈
ker A, dû

dt (t) ∈ ker A and dũ
dt (t) ∈ (ker A)⊥, we have for every t ≥ 0

E(t) =
1

2

∣∣∣∣
dû

dt
(t) +

dũ

dt
(t)

∣∣∣∣
2

+
1

2
a(û(t) + ũ(t), û(t) + ũ(t))

=
1

2

∣∣∣∣
dû

dt
(t)

∣∣∣∣
2

+
1

2

∣∣∣∣
dũ

dt
(t)

∣∣∣∣
2

+
1

2
a(ũ(t), ũ(t)). (2.10)

From equality (2.1), we deduce that for every t ≥ 0
∣∣∣∣
dû

dt
(t)

∣∣∣∣
2

= e−2
∫ t
0 γ(s)ds

∣∣∣∣
dû

dt
(0)

∣∣∣∣
2

. (2.11)

Let us now set V1 = (ker A)⊥ ∩V, a1 = a|V1×V1
and A1 = A|V1

. It is clear that ũ is

a solution of
d2ũ

dt2
(t) + γ(t)

dũ

dt
(t) + A1ũ(t) = 0.

On the other hand, condition (2.7) implies that a1(u, u) ≥ η |u|2 for every u ∈
V1. By applying Lemma 2.2 to the solution ũ, we obtain that either the map ũ is
stationary or there exists K1 > 0 such that

1

2

∣∣∣∣
dũ

dt
(t)

∣∣∣∣
2

+
1

2
a(ũ(t), ũ(t)) ∼ K1 e

−
∫ t
0 γ(s)ds as t → +∞. (2.12)

We now combine equalities (2.10), (2.11) with estimate (2.12). If
∫ +∞

0 γ(s)ds = +∞,

we immediately obtain (2.9) with K = K1. If
∫ +∞

0 γ(s)ds < +∞, then

lim
t→+∞

E(t) =
1

2
e−2

∫ +∞

0 γ(s)ds

∣∣∣∣
dû

dt
(0)

∣∣∣∣
2

+ K1 e
−

∫ +∞

0 γ(s)ds,

hence (2.9) is satisfied with K = 1
2 e

−
∫ +∞

0 γ(s)ds
∣∣∣ dûdt (0)

∣∣∣
2
+ K1. �

Remark 2.8. If the trajectory u(.) is contained in ker A, estimate (2.9) is no more

valid. In this case, we infer from equality (2.11) that E(t) = 1
2 e

−2
∫ t
0 γ(s)ds

∣∣∣ dûdt (0)
∣∣∣
2

for every t ≥ 0.

Corollary 2.9. Under the hypotheses of Theorem 2.7, assume moreover that6

(l3) γ 6∈ L1(0,+∞).

Then we have limt→+∞ E(t) = 0. If ker A = {0}, then u(t) → 0 strongly in V as
t → +∞.

Proof. The first assertion is an immediate consequence of estimate (2.9), while the
second one follows from

∀t ≥ 0, E(t) ≥ 1

2
a(u(t), u(t)) ≥ η′

2
‖u(t)‖2,

see inequality (2.8). �

6Assumption (l3) expresses that the quantity γ(t) tends rather slowly toward 0 as t → +∞.
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When ker A 6= {0}, convergence of the trajectories is obtained under the fol-
lowing stronger assumption

∫ +∞

0
e−

1
2

∫ s
0 γ(τ)dτds < +∞. (2.13)

Corollary 2.10. Under the hypotheses of Theorem 2.7, assume moreover that condition
(2.13) is satisfied. Then, there exists u∞ ∈ ker A such that u(t) → u∞ strongly in V as
t → +∞.

Proof. First assume that the trajectory is contained in ker A. Observing that ω =∫ +∞

0 e−
∫ s
0 γ(τ)dτds < +∞, we deduce from Proposition 2.1 that u(t) converges

strongly in H as t → +∞. If the trajectory is not contained in ker A, we derive
from estimate (2.9) that

∣∣∣∣
du

dt
(t)

∣∣∣∣ = O
(
e−

1
2

∫ t
0 γ(s)ds

)
as t → +∞,

hence du
dt ∈ L1(R+,H) in view of condition (2.13). The trajectory u has a finite

length, hence strongly converges in H toward some u∞ ∈ ker A. Using now the
semi-coercivity condition (h2), we have

µ‖u(t)−u∞‖2 ≤ λ|u(t)−u∞|2 + a(u(t)−u∞, u(t)−u∞) = λ|u(t)−u∞|2 + a(u(t), u(t)).

Since limt→+∞ |u(t)− u∞| = 0 and limt→+∞ a(u(t), u(t)) = 0 in view of Corollary
2.9, we conclude that limt→+∞ ‖u(t) − u∞‖ = 0.

�

Example 2.11. Suppose that there exist α, k > 0 such that γ(t) = k
tα for t large

enough. The assumptions (l1)-(l2) are clearly satisfied. If the bilinear form a(., .)
satisfies conditions (h1)-(h2) and (2.7), we deduce from Theorem 2.7 and Corollary
2.10 that

• if α > 1, then lim
t→+∞

E(t) > 0;

• if α = 1, then E(t) ∼ K
tk

as t → +∞ and the trajectory u(.) strongly con-

verges in V as soon as k > 2;

• if α ∈ (0, 1), then E(t) ∼ Ke−
k

1−α t
1−α

as t → +∞ and the trajectory u(.)
strongly converges in V for every k > 0.

Other results of convergence will be provided in the more general framework
of semilinear equations.

3. MONOTONE CONSERVATIVE NONLINEARITY

The assumptions concerning the spaces V, H, the linear operator A : V → V′

and the map γ : R+ → R+ are the same as in section 2. We consider the following
semilinear hyperbolic equation

(E)
d2u

dt2
(t) + γ(t)

du

dt
(t) + Au(t) + f (u(t)) = 0, t ≥ 0.

We suppose that the nonlinearity f : V → H is conservative, i.e.

(k1) ∃F ∈ C1(V,R) such that ∀u, v ∈ V, 〈F′(u), v〉V′ ,V = ( f (u), v).
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Moreover, we assume that the map f is monotone

(k2) ∀u, v ∈ V, ( f (u) − f (v), u− v) ≥ 0,

which is equivalent to the convexity of the potential F. Defining Φ : V → R by

Φ(v) = 1
2 a(v, v) + F(v),

we obtain a function of class C1 whose first derivative is given by 〈Φ′(u), v〉V′ ,V =
a(u, v) + ( f (u), v), or equivalently Φ′(u) = Au + f (u). Moreover, Φ is convex,
which amounts to

∀u, v ∈ V, a(u, v− u) + ( f (u), v− u) ≤ Φ(v) − Φ(u). (3.1)

Consequently, minimum and stationary points of Φ coincide, i.e.

argminΦ = {v ∈ V | Av + f (v) = 0}, (3.2)

where argminΦ = {v ∈ V | Φ(v) = infΦ}. It is clear in view of equation (E) that
nothing is changed if some constant is added to the potential Φ. Without loss of
generality, we will systematically assume that infΦ = 0. Suppose moreover that

(k3) S = argminΦ 6= ∅.

Remark 3.1. Assume that a is coercive, i.e. (h2) holds with λ = 0. Then the map
u 7→ a(u, u) is strongly convex and since the function F is convex, the map Φ is
also strongly convex. This implies immediately that the set argminΦ is a singleton,
hence the non-vacuity condition (k3) holds true. Now assume that (h2) holds with
λ > 0. To overcome the lack of coercivity, suppose that there exist ε > 0 and C ≥ 0

such that F(u) ≥ ε |u|2 − C for every u ∈ V. Without loss of generality, we can

assume that ε ≤ λ
2 . For every u ∈ V, we have

Φ(u) =
1

2
a(u, u) + F(u) ≥ ε

λ
a(u, u) + F(u)

≥ ε µ

λ
‖u‖2 − ε |u|2 + ε |u|2 − C

=
ε µ

λ
‖u‖2 − C,

which shows that lim‖u‖→+∞ Φ(u) = +∞. Since the function Φ is convex and

continuous, this classically implies condition (k3).

It is immediate to check that the set S is convex, closed in V and that S ⊂ D(A).

Remark 3.2. Under assumption (h2), let us show that S is closed in H. Let (un) be a
sequence in S such that limn→+∞ un = u strongly in H, for some u ∈ H. Since the
function F is convex, there exist b, c ∈ R such that, for all u ∈ V, F(u) ≥ −b|u| − c.
Therefore we have for all u ∈ V,

1

2
a(u, u) ≤ Φ(u) + b|u| + c. (3.3)

Recalling that Φ(un) = 0 for every n ∈ N, we deduce that 1
2 a(un, un) ≤ b|un| + c,

hence the sequence (a(un, un)) is bounded. From hypothesis (h2), we infer that the
sequence (un) is bounded in V. It ensues that there exist û ∈ V and a subsequence
(unk ) such that limk→+∞ unk = û weakly in V. We immediately have û = u and
the weak lower semicontinuity of Φ implies that Φ(u) ≤ lim infk→+∞ Φ(unk ) = 0,
hence u ∈ S.
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Remark 3.3 (Case f (0) = 0). If f (0) = 0 then we have

S = ker A ∩ {v ∈ V | f (v) = 0} 6= ∅.

Indeed, if w ∈ S then in particular (Aw,w) + ( f (w),w) = 0, and by monotonicity
of f we have ( f (w) − f (0),w) ≥ 0, hence (Aw,w) = ( f (w),w) = 0 and therefore
Aw = 0.

In the sequel, we assume the existence of a solution to equation (E) in the class
(1.4). We define the energy function E along each trajectory by

E(t) =
1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+ Φ(u(t)).

We have E ∈ W1,1
loc (R+) and

Ė(t) =

(
d2u

dt2
(t),

du

dt
(t)

)
+

〈
Au(t) + f (u(t)),

du

dt
(t)

〉

V′ ,V

= −γ(t)

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ 0 a.e. on R+,

hence the function E is a Lyapunov function for the equation (E). We deduce that
for every t ≥ 0

1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ E(t) ≤ E(0) and Φ(u(t)) ≤ E(t) ≤ E(0). (3.4)

In particular, we have du
dt ∈ L∞(R+,H). In the sequel, we will consider only

solutions which are bounded in H, i.e. satisfying u ∈ L∞(R+,H).

Remark 3.4. Under assumption (h2), it is easy to see that u ∈ L∞(R+,H) implies
u ∈ L∞(R+,V). Indeed, let us assume that {u(t); t ≥ 0} is bounded in H. From

inequality (3.3), we have 1
2 a(u(t), u(t)) ≤ Φ(u(t)) + b|u(t)| + c for all t ∈ R+.

Recalling that Φ(u(t)) ≤ E(0) in view of (3.4), we infer that {a(u(t), u(t)); t ≥ 0}
is bounded. From hypothesis (h2), we conclude that {u(t); t ≥ 0} is bounded inV.

3.1. Summability of the energy. Case of a unique equilibrium. We now prove
that the map γ E is summable over R+ and that limt→+∞ E(t) = 0.

Proposition 3.5. Assume that the bilinear form a(., .) and the function f satisfy respec-

tively hypotheses (h1)-(h2) and (k1)-(k3). Let γ ∈ W1,1
loc (R+,R+) be a map satisfy-

ing (l1)-(l3). Let u be a solution in the class (1.4) to equation (E) and assume that
u ∈ L∞(R+,H). Then

(i)
∫ +∞

0 γ(t) E(t) dt < +∞.
(ii) lim

t→+∞
E(t) = 0, hence

lim
t→+∞

∣∣∣∣
du

dt
(t)

∣∣∣∣ = 0 and lim
t→+∞

Φ(u(t)) = 0. (3.5)

Proof. (i) The proof follows the same arguments as those of [8, Prop. 3.1]. Let us

take v ∈ S and define the function p : R+ → R+ by p(t) = 1
2 |u(t) − v|2 . By

differentiating, we find for every t ≥ 0

ṗ(t) =

(
du

dt
(t), u(t) − v

)
.
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Since du
dt ∈ W1,1

loc (R+,H) by assumption, it is immediate to check that ṗ ∈ W1,1
loc (R+).

Hence the map ṗ is differentiable almost everywhere on R+ and we have

p̈(t) =

(
d2u

dt2
(t), u(t) − v

)
+

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+.

By combining the expressions of ṗ, p̈ and by using the convexity of the function
Φ, we obtain

p̈(t) + γ(t) ṗ(t) = a(u(t), v− u(t)) + ( f (u(t), v− u(t)) +

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ −Φ(u(t)) +

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+. (3.6)

It follows that

p̈(t) + γ(t) ṗ(t) + E(t) ≤ 3

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+. (3.7)

Let us multiply this inequality by γ(t) and integrate on [0, t]. By using the fact that

Ė(t) = −γ(t)
∣∣∣ dudt (t)

∣∣∣
2
almost everywhere on R+, we derive that

∫ t

0
γ(s) E(s) ds ≤ 3

2
(E(0) − E(t)) −

∫ t

0
γ(s) p̈(s)ds−

∫ t

0
γ(s)2 ṗ(s)ds. (3.8)

Then, remark that
∫ t

0
γ(s) p̈(s)ds = γ(t) ṗ(t) − γ(0) ṗ(0) −

∫ t

0
γ̇(s) ṗ(s)ds.

Recall that the map u is bounded in H by assumption. On the other hand, the

energy function E is nonincreasing hence majorized. We deduce that the map du
dt

is bounded in H. Hence we infer the existence of M > 0 such that p(t) ≤ M and
| ṗ(t)| ≤ M for every t ≥ 0. Therefore

∣∣∣∣
∫ t

0
γ(s) p̈(s)ds

∣∣∣∣ ≤ Mγ(t) + Mγ(0) + M
∫ t

0
|γ̇(s)| ds.

Since γ̇ ∈ L1(0,+∞) by assumption, the right-hand side is majorized by some

M′ ≥ 0. In the same way, there exists M′′ ≥ 0 such that
∣∣∣
∫ t
0 γ(s)2 ṗ(s)ds

∣∣∣ ≤ M′′ for
every t ≥ 0. The expected estimate is then a consequence of inequality (3.8).
(ii) Let us argue by contradiction and assume that limt→+∞ E(t) = l > 0. The

map E is nonincreasing, hence E(t) ≥ l for every t ≥ 0. Since γ 6∈ L1(0,+∞), we
deduce that ∫ +∞

0
γ(t) E(t) dt ≥ l

∫ +∞

0
γ(t) dt = +∞,

a contradiction with the result of (i). The last assertion is immediate. �

In view of the previous result, we can prove weak convergence of the trajecto-
ries in the case of a unique equilibrium. The general case of multiple equilibria is
more delicate and will be discussed in section 3.2.
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Corollary 3.6 (Case of a unique equilibrium). Under the hypotheses of Proposition
3.5, assume moreover that argminΦ = {u} for some u ∈ V. Then the solution u(t)

weakly converges in V toward u as t → +∞. Furthermore, if u(t) strongly converges7

in H then it strongly converges in V.

Proof. By assumption, the solution u is bounded in H. In view of hypothesis (h2)
and Remark 3.4, it is also bounded in V. Hence there exist u∞ ∈ V and a subse-
quence (tn) tending to +∞ such that limn→+∞ u(tn) = u∞ weakly in V. Since Φ is
convex and continuous for the strong topology ofV, it is lower semicontinuous for
the weak topology of V. Hence, we have Φ(u∞) ≤ lim infn→+∞ Φ(u(tn)). From
the second part of (3.5) we deduce that Φ(u∞) ≤ 0, i.e. u∞ ∈ argminΦ = {u}.
Hence u is the unique limit point of the map t 7→ u(t) as t → +∞ for the weak
topology of V. It ensues that limt→+∞ u(t) = uweakly in V. Let us now prove the
second point. The argument is given in [3, p. 548-549] but we recall it for the sake
of completeness. From (h2), we have

µ ‖u(t) − u‖2 ≤ λ |u(t) − u|2 + a(u(t) − u, u(t) − u) (3.9)

= λ |u(t) − u|2 + 2Φ(u(t)) − 2 F(u(t)) − 2 a(u(t), u) + a(u, u).

Since u(t) → u strongly in H and weakly in V, we have limt→+∞ |u(t) − u|2 = 0
and limt→+∞ a(u(t), u) = a(u, u). On the other hand, by weak lower semicontinu-
ity of the continuous convex function F : V → R, we infer that lim inft→+∞ F(u(t)) ≥
F(u). Recalling finally property (3.5), we deduce from inequality (3.9) that

µ lim sup
t→+∞

‖u(t)− u‖2 ≤ −2 F(u) − a(u, u) = 0.

We conclude that u(t) → u strongly in V. �

3.2. Convergence of the trajectories. When the damping coefficient γ(t) is con-
stant, i.e. γ(t) ≡ γ, the solutions of (E) weakly converge in V toward an equilib-
rium point, see [3]. We are going to show that this property still holds true if the
quantity γ(t) behaves as k/tα, for some α ∈]0, 1[, k > 0 and t large enough.

The first step consists in establishing an improved version of Proposition 3.5.
The corresponding estimates are obtained by strengthening the assumptions on
the map γ.

Proposition 3.7. Assume that the bilinear form a(., .) and the function f satisfy respec-

tively hypotheses (h1)-(h2) and (k1)-(k3). Let γ ∈ W1,1
loc (R+,R+) be a function satisfy-

ing (l1). Assume that there exists t0 > 0 such that γ(t) ≥ 3
t for every t ≥ t0 and that∫ +∞

0
t1−( 1

2 )
n

|γ̇(t)| dt < +∞ for some n ∈ N. Let u be a solution in the class (1.4) to

equation (E) and assume that u ∈ L∞(R+,H). Then we have

(i)
∫ +∞

0
t1−( 1

2 )
n

E(t) dt < +∞.

(ii) lim
t→+∞

t2−( 1
2 )

n

E(t) = 0.

(iii)
∫ +∞

0
t2−( 1

2 )
n

γ(t)

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

dt < +∞.

7This assumption is satisfied if the injection V →֒ H is compact.
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If moreover there exists k > 0 such that γ(t) ≥ k

t
1−( 1

2 )
n+1 for t large enough, then

(iv)
∫ +∞

0
t1−( 1

2 )
n+1

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

dt < +∞.

Proof. It is divided into two steps.
Step A. First we establish a preliminary result that will be used recursively in the

second step. We assume that there exist θ ∈ [0, 1[ and k > 0 such that
∣∣∣ dudt (t)

∣∣∣ ≤ k
tθ

for every t > 0. Suppose moreover that
∫ +∞

0 tθ |γ̇(t)| dt < +∞. Let us consider the

map p defined by p(t) = 1
2 |u(t)− v|2 for some v ∈ S, see the proof of Proposition

3.5. Recall that we have from inequality (3.7)

E(t) ≤ 3

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

− p̈(t) − γ(t) ṗ(t) a.e. on R+. (3.10)

Now define the map Eθ : R+ → R+ by Eθ(t) = t1+θ E(t). It is clear that Eθ ∈
W1,1

loc (R+). Since Ė(t) = −γ(t)
∣∣∣ dudt (t)

∣∣∣
2
for almost every t ≥ 0, we have

Ėθ(t) = (1+ θ) tθ E(t) − t1+θ γ(t)

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+. (3.11)

From the assumption γ(t) ≥ 3
t for every t ≥ t0, we deduce that

tθ
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ 1

3
(1+ θ) tθ E(t) − 1

3
Ėθ(t) a.e. on [t0,+∞[. (3.12)

By combining inequalities (3.10) and (3.12), we infer that

1

2
(1− θ) tθ E(t) ≤ −1

2
Ėθ(t) − tθ p̈(t) − tθ γ(t) ṗ(t) a.e. on [t0,+∞[.

Let us integrate this inequality on [t0, t]; we find

1

2
(1− θ)

∫ t

t0
sθ E(s)ds ≤ 1

2
Eθ(t0) −

∫ t

t0
sθ p̈(s) ds−

∫ t

t0
sθ γ(s) ṗ(s) ds. (3.13)

For the last two integrals, let us use a technique of integration by parts.

−
∫ t

t0
sθ p̈(s) ds = −tθ ṗ(t) + tθ0 ṗ(t0) + θ

∫ t

t0
sθ−1 ṗ(s) ds

= −tθ ṗ(t) + tθ0 ṗ(t0) + θ tθ−1 p(t) − θ tθ−1
0 p(t0) − θ (θ − 1)

∫ t

t0
sθ−2 p(s) ds.

The map u is bounded in H by assumption, hence there exist M, M′
> 0 such that

p(t) ≤ M and | ṗ(t)| ≤ M′
∣∣∣ dudt (t)

∣∣∣ for every t ≥ 0. Therefore we deduce from the

above equality that

−
∫ t

t0
sθ p̈(s) ds ≤ M′ tθ

∣∣∣∣
du

dt
(t)

∣∣∣∣+M′ tθ0

∣∣∣∣
du

dt
(t0)

∣∣∣∣+ θ M tθ−1 + θ (1− θ) M
∫ t

t0
sθ−2 ds.

By using the assumption
∣∣∣ dudt (t)

∣∣∣ ≤ k
tθ
for every t > 0, we obtain

−
∫ t

t0
sθ p̈(s) ds ≤ 2 k M′ + θ M tθ−1 + θ M (tθ−1

0 − tθ−1) = 2 k M′ + θ M tθ−1
0 .

(3.14)
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On the other hand, we have

−
∫ t

t0
sθ γ(s) ṗ(s) ds = −tθ γ(t) p(t) + tθ0 γ(t0) p(t0) + θ

∫ t

t0
sθ−1 γ(s) p(s) ds +

∫ t

t0
sθ γ̇(s) p(s) ds

≤ M tθ0 γ(t0) + θ M
∫ t

t0
sθ−1 γ(s) ds + M

∫ t

t0
sθ |γ̇(s)| ds.

From the assumption
∫ +∞

0 sθ |γ̇(s)| ds < +∞ and Lemma 3.8 (i) below8, we deduce
that

−
∫ t

t0
sθ γ(s) ṗ(s) ds ≤ M tθ0 γ(t0)+ θ M

∫ +∞

t0
sθ−1 γ(s) ds+M

∫ +∞

t0
sθ |γ̇(s)| ds < +∞.

(3.15)
By combining inequalities (3.13), (3.14) and (3.15), we conclude that the quantity∫ t
t0
sθ E(s)ds is uniformly majorized with respect to t, hence

∫ +∞

0
sθ E(s) ds < +∞. (3.16)

Lemma 3.8. Let γ ∈ W1,1
loc (R+,R+) be a map satisfying (l1). For every θ > 0, we have

(i) If
∫ +∞

0 tθ |γ̇(t)| dt < +∞, then
∫ +∞

0 tθ−1 γ(t) dt < +∞.

(ii) If the map γ is nonincreasing and if
∫ +∞

0 tθ−1 γ(t) dt < +∞, then
∫ +∞

0 tθ |γ̇(t)| dt < +∞.

The proof of Lemma 3.8 is postponed to the appendix. Let us now come back to
equation (3.11). By taking the positive part of each member, we find (Ėθ)+(t) ≤
(1+ θ) tθ E(t). This implies that (Ėθ)+ ∈ L1(0,+∞) and therefore l = limt→+∞ t1+θ E(t)
exists in R+. If l > 0, this implies that tθ E(t) ∼ l/t as t → +∞, a contradiction
with estimate (3.16). Hence we have

lim
t→+∞

t1+θ E(t) = 0. (3.17)

Finally, by integrating equality (3.11) on [0, t], we obtain
∫ t

0
s1+θ γ(s)

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds = (1+ θ)
∫ t

0
sθ E(s) ds + Eθ(0) − Eθ(t)

≤ (1+ θ)
∫ +∞

0
sθ E(s) ds + Eθ(0) < +∞,

hence ∫ +∞

0
s1+θ γ(s)

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds < +∞. (3.18)

Step B. The function E is nonincreasing, hence majorized. We deduce the existence

of k1 > 0 such that
∣∣∣ dudt (t)

∣∣∣ ≤ k1 for every t ≥ 0. Since
∫ +∞

0 |γ̇(t)| dt < +∞, we

can apply the result of Step A with θ = 0. We then obtain from assertion (3.17)

that lim
t→+∞

t E(t) = 0. Hence there exists k2 > 0 such that
∣∣∣ dudt (t)

∣∣∣ ≤ k2
t1/2

for every

t > 0. Since
∫ +∞

0 t1/2 |γ̇(t)| dt < +∞ as soon as n ≥ 1, we can apply the result of

Step A with θ = 1
2 . We obtain in particular that lim

t→+∞
t3/2 E(t) = 0. By iterating

8Lemma 3.8 applies only for θ > 0. When θ = 0, the corresponding term to be majorized in the

above inequality is equal to 0.
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the above arguments, we let the reader check that lim
t→+∞

t2−( 1
2 )

n−1

E(t) = 0. This

implies the existence of kn+1 > 0 such that
∣∣∣ dudt (t)

∣∣∣ ≤ kn+1

t
1−( 1

2 )
n for every t > 0. Since

∫ +∞

0
t1−( 1

2 )
n

|γ̇(t)| dt < +∞ by assumption, assertions (3.16), (3.17) and (3.18) ap-

plied with θ = 1−
(
1
2

)n
respectively yield conclusions (i), (ii) and (iii). Finally, by

combining (iii) with the additional assumption γ(t) ≥ k

t
1−( 1

2 )
n+1 , we immediately

find (iv). �

In the sequel, we denote by (l4) the following condition

(l4)
∫ +∞

0
t1−( 1

2 )
n

|γ̇(t)| dt < +∞ and ∀t ≥ t0, γ(t) ≥ k

t1−( 1
2 )

n+1
,

for some n ∈ N, k > 0 and t0 > 0. Hypothesis (l4) automatically implies (l2)
together with (l3).

Remark 3.9. Assume that the map γ : R+ → R+ is nonincreasing. If the integer n

arising in (l4) is equal to 0, condition
∫ +∞

0
t1−( 1

2 )
n

|γ̇(t)| dt < +∞ is automati-

cally satisfied. If n ≥ 1, we deduce from Lemma 3.8 that
∫ +∞

0
t1−( 1

2 )
n

|γ̇(t)| dt

converges if and only if
∫ +∞

0

γ(t)

t(
1
2 )

n dt is finite. This last condition is realized if

there exist θ > 1−
(
1
2

)n
and k′ > 0 such that γ(t) ≤ k′

tθ
for t large enough. It can

be easily seen that condition (l4) is satisfied if the following assertion holds true

∀t ≥ t0,
k

tα
≤ γ(t) ≤ k′

tα
, for some α ∈]0, 1[ and k, k′ > 0.

The integer n is then uniquely9 defined by the inclusion α ∈
]
1−

(
1
2

)n
, 1−

(
1
2

)n+1 ]
.

Notice that if α ∈
]
0, 12

]
, we have n = 0 and one may take k′ = +∞ (no required

upper bound).

Let us now state the main result of this section.

Theorem 3.10. Assume that the bilinear form a(., .) and the function f satisfy respec-

tively (h1)-(h2) and (k1)-(k3). Let γ ∈ W1,1
loc (R+,R+) be a map satisfying (l1) and (l4).

Let u be a solution in the class (1.4) to equation (E) and assume that u ∈ L∞(R+,H).
Then, there exists u∞ ∈ S such that u(t) ⇀ u∞ weakly in V as t → +∞. Furthermore,

if u(t) strongly converges10 in H then it strongly converges in V.

Proof. Let v ∈ S and define the map p : R+ → R+ by p(t) = 1
2 |u(t) − v|2 as in the

proof of Proposition 3.5. Inequality (3.6) implies that

p̈(t) + γ(t) ṗ(t) ≤
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+.

9Its explicit expression is given by n = −
[
ln(1−α)

ln 2

]
− 1, where [x] denotes the integer part of x ∈ R.

10This assumption is satisfied if the injection V →֒ H is compact.
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Let us multiply each member of this inequality by e
∫ t
0 γ(τ) dτ and integrate on [0, t].

Recalling that ṗ ∈ W1,1
loc (R+), we obtain

ṗ(t) ≤ e−
∫ t
0 γ(τ) dτ ṗ(0) + e−

∫ t
0 γ(τ) dτ

∫ t

0
e
∫ s
0 γ(τ) dτ

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds. (3.19)

We now show that the right member of the above inequality is a summable func-

tion. From Lemma 3.11 (i) below applied with θ = 1−
(
1
2

)n+1
, we have

∫ +∞

0
e−

∫ t
0 γ(τ) dτ dt < +∞. (3.20)

Lemma 3.11. Let us assume that there exist θ ∈]0, 1[, k > 0 and t0 > 0 such that

γ(t) ≥ k
tθ
for every t ≥ t0. Then we have

(i)
∫ +∞

0
e−

∫ t
0 γ(τ) dτ dt < +∞;

(ii)
∫ +∞

s
e−

∫ t
0 γ(τ) dτ dt ≤ 2

k
sθ e−

∫ s
0 γ(τ) dτ for s large enough.

The proof of Lemma 3.11 is postponed to the appendix. On the other hand, by
applying Fubini theorem, we find

∫ +∞

0
e−

∫ t
0 γ(τ) dτ

∫ t

0
e
∫ s
0 γ(τ) dτ

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds dt =
∫ +∞

0

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

e
∫ s
0 γ(τ) dτ

∫ +∞

s
e−

∫ t
0 γ(τ) dτ dt ds.

(3.21)

In view of Lemma 3.11 (ii) applied with θ = 1−
(
1
2

)n+1
, this implies that

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

e
∫ s
0 γ(τ) dτ

∫ +∞

s
e−

∫ t
0 γ(τ) dτ dt ≤ 2

k
s1−( 1

2 )
n+1

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

.

Since
∫ +∞

0
s1−( 1

2 )
n+1

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds < +∞ in view of Proposition 3.7 (iv), we deduce

from equality (3.21) that

∫ +∞

0
e−

∫ t
0 γ(τ) dτ

∫ t

0
e
∫ s
0 γ(τ) dτ

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds dt < +∞. (3.22)

By combining inequality (3.19) with estimates (3.20) and (3.22), we infer that [ ṗ]+ ∈
L1(0,+∞) and hence lim

t→+∞
p(t) exists. The end of the proof is the same as in [3,

Theorem 3.1] but the arguments are given for the sake of completeness. Since
u ∈ L∞(R+,H) by assumption, we deduce from hypothesis (h2) and Remark 3.4
that u ∈ L∞(R+,V). Let u ∈ V be a weak cluster point of {u(t); t → +∞} for
the weak topology of V. There exists a sequence tn → +∞ such that u(tn) ⇀ u
weakly in V as n → +∞. Since the function Φ is lower semicontinuous for the
weak topology of V, we have in view of assertion (3.5)

Φ(u) ≤ lim inf
n→+∞

Φ(u(tn)) = lim
t→+∞

Φ(u(t)) = 0,

which implies that u ∈ S. Let us prove that {u(t); t → +∞} has a unique cluster
point for the weak topology in V. We apply the following argument due to Opial
[18]. Let u1, u2 ∈ S be two cluster points of {u(t); t → +∞} for the weak topology
of V. According to the first part of the proof, we can assert that limt→+∞ |u(t) −
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ui|2 = li exists for each i = 1, 2. Moreover there exists a sequence tn → +∞ such
that u(tn) ⇀ u1 weakly inV as n → +∞. Since the injectionV →֒ H is continuous,
u(tn) ⇀ u1 weakly in H as n → +∞. From the equality

|u(t) − u1|2 − |u(t) − u2|2 = |u1 − u2|2 + 2(u1 − u2, u2 − u(t)),

we infer that l1 − l2 = −|u1 − u2|2. On the other hand, if we take tm → +∞ such
that u(tm) ⇀ u2 weakly in V as m → +∞, we find l1 − l2 = |u1 − u2|2. As a

consequence, |u1 − u2|2 = 0. This establishes the uniqueness of the cluster points
of {u(t); t → +∞} for the weak topology of V. Hence u(t) ⇀ u∞ weakly in V as
t → +∞ for some u∞ ∈ V.

For the second point, the reader is referred to the corresponding argument in
the proof of Corollary 3.6. �

In view of Remark 3.9, we obtain directly the following corollary of Theorem 3.10.

Corollary 3.12. Assume that the bilinear form a(., .) and the function f satisfy the same

hypotheses as in Theorem 3.10. Let γ ∈ W1,1
loc (R+,R+) be a nonincreasing map and

suppose that there exist α ∈]0, 1[, k, k′ > 0 and t0 > 0 such that11

∀t ≥ t0,
k

tα
≤ γ(t) ≤ k′

tα
.

Then we have the same conclusions as in Theorem 3.10.

An interesting situation ensuring strong convergence in V is the case where the
non-linearity satisfies the symmetry property F(−u) = F(u) for all u ∈ V.

Theorem 3.13. Under the hypotheses of Theorem 3.10, assume moreover that the function
F is even, i.e. F(−u) = F(u) for all u ∈ V. Then there exists u∞ ∈ S such that
u(t) → u∞ strongly in V.

Proof. The argument was originated by Bruck, see [6, Theorem 5]. It has been
adapted to the framework of second-order in time equations, see for example [2,
Theorem 2.4 (i)] or [3, Remark 3.2] in the case of a constant damping parameter γ.
Let us fix t0 > 0 and define the map q : [0, t0] → R by

q(t) = |u(t)|2 − |u(t0)|2 −
1

2
|u(t) − u(t0)|2.

A first differentiation gives for all t ∈ [0, t0]

q̇(t) =

(
du

dt
(t), u(t) + u(t0)

)
.

Since du
dt ∈ W1,1

loc (R+,H) by assumption, it is immediate to check that the map q̇
is absolutely continuous, hence differentiable almost everywhere on [0, t0] and we
have

q̈(t) =

(
d2u

dt2
(t), u(t) + u(t0)

)
+

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on [0, t0].

11This condition is satisfied if there exists k′′ > 0 such that γ(t) ∼ k′′
tα as t → +∞. On the other

hand, one can take k′ = +∞ if α ∈
]
0, 12

]
, see Remark 3.9.
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By combining the expressions of q̇, q̈, we obtain for almost every t ∈ [0, t0]

q̈(t) + γ(t)q̇(t) = −a(u(t), u(t) + u(t0)) − ( f (u(t)), u(t) + u(t0)) +

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

= −〈Φ′(u(t)), u(t) + u(t0)〉V′ ,V +

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

. (3.23)

Since the function Φ is convex and even, we have for all u, v ∈ V

Φ(v) − Φ(u) = Φ(−v) − Φ(u) ≥ −〈Φ′(u), v + u〉V′ ,V .

Hence inequality (3.23) gives

q̈(t) + γ(t)q̇(t) ≤ Φ(u(t0)) − Φ(u(t)) +

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on [0, t0]. (3.24)

Recalling that the energy function E(t) is nonincreasing, we have 1
2

∣∣∣ dudt (t)
∣∣∣
2

+

Φ(u(t)) ≥
∣∣∣ dudt (t0)

∣∣∣
2
+ Φ(u(t0)) for every t ∈ [0, t0]. Therefore

∀t ∈ [0, t0], Φ(u(t0)) − Φ(u(t)) ≤ 1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

.

Using inequality (3.24), we deduce that

q̈(t) + γ(t)q̇(t) ≤ 3

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on [0, t0].

Let us multiply each member of this inequality by e
∫ t
0 γ(τ) dτ and integrate on [0, t].

Since the map q̇ is absolutely continuous, we find

q̇(t) ≤ e−
∫ t
0 γ(τ) dτ q̇(0) +

3

2
e−

∫ t
0 γ(τ) dτ

∫ t

0
e
∫ s
0 γ(τ) dτ

∣∣∣∣
du

ds
(s)

∣∣∣∣
2

ds.

Let us integrate this inequality on [t, t0], we obtain

−q(t) ≤ q̇(0)
∫ t0

t
e−

∫ s
0 γ(τ) dτ ds +

3

2
(h(t0) − h(t)),

where we have set

h(t) =
∫ t

0
e−

∫ s
0 γ(τ) dτ

∫ s

0
e
∫ σ
0 γ(τ) dτ

∣∣∣∣
du

dt
(σ)

∣∣∣∣
2

dσ ds.

We deduce from the previous inequality that

1

2
|u(t) − u(t0)|2 ≤ |u(t)|2 − |u(t0)|2 + q̇(0)

∫ t0

t
e−

∫ s
0 γ(τ) dτ ds +

3

2
(h(t0) − h(t)).

(3.25)
In the proof of Theorem 3.10, we showed that lim

t→+∞
|u(t) − v|2 exists for all v ∈

argminΦ. Since Φ is convex and even, we have 0 ∈ argminΦ, hence lim
t→+∞

|u(t)|2

exists. On the other hand, from Lemma 3.11 (i) applied with θ = 1−
(
1
2

)n+1
, we

have
∫ +∞

0
e−

∫ s
0 γ(τ) dτ ds < +∞. Finally, in view of estimate (3.22), we can assert

that lim
t→+∞

h(t) exists. We then deduce from inequality (3.25) that {u(t); t → +∞}
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is a Cauchy net in H hence strongly converges in H. It suffices to use the second
part of Theorem 3.10 to obtain the strong convergence in V. �

Corollary 3.14 (Linear case). Assume that the bilinear form a(., .) satisfies (h1)-(h2)

and take f = 0. Let γ ∈ W1,1
loc (R+,R+) be a map satisfying (l1) and (l4). Let u be a

solution in the class (1.4) to equation (E) and assume that u ∈ L∞(R+,H). Then, there
exists u∞ ∈ ker A such that u(t) → u∞ strongly in V as t → +∞.

Proof. Use Theorem 3.13 with F = 0. �

3.3. Decay estimates for a strong set of minima. Recall that the set S = argminΦ

is convex and closed in H, see Remark 3.2. Let us denote by PS the projection
operator onto the set S in the sense of H. In this paragraph, we assume that the

function Φ : V → R satisfies12

∃η > 0 such that ∀u ∈ V, Φ(u) ≥ η

2
|u− PS(u)|2. (3.26)

If γ 6∈ L1(0,+∞), we know from Proposition 3.5 (ii) that limt→+∞ E(t) = 0. Under
assumption (3.26), we are able to evaluate the speed of convergence of E(t) as
t → +∞.

Theorem 3.15. Assume that the bilinear form a(., .) and the function f satisfy respec-

tively (h1)-(h2) and (k1)-(k3). Let γ ∈ W1,1
loc (R+,R+) be a function satisfying (l1) and

γ̇(t) = o (γ(t)) as t → +∞. We suppose that the function Φ : V → R defined by

Φ(u) = 1
2 a(u, u) + F(u) satisfies condition (3.26). Let u be a solution in the class (1.4)

to equation (E). Then, for all m ∈]0, 23 [, there exist C > 0 and t0 ≥ 0 such that:

∀t ≥ t0, E(t) ≤ Ce−m
∫ t
0 γ(s)ds.

Proof. Define the map ϕ : R+ → R by ϕ(t) = 1
2d

2
H(u(t), S), where dH(., S) stands

for the distance function from the set S in the sense of H. By differentiating, we
find for every t ≥ 0

ϕ̇(t) =

(
du

dt
(t), u(t)− PS(u(t))

)
. (3.27)

Since du
dt ∈ W1,1

loc (R+,H) by assumption, it is immediate to check that ϕ̇ ∈ W1,1
loc (R+),

hence the map ϕ̇ is differentiable almost everywhere on R+. Consider now some

t > 0 where the maps ϕ̇ and du
dt are both differentiable, and let us majorize the

quantity ϕ̈(t). For that purpose, we use a technique of differential quotient. For
all h 6= 0, we have

1

h
(ϕ̇(t + h) − ϕ̇(t)) =

1

h

(
du

dt
(t), u(t + h) − PS(u(t + h))− u(t) + PS(u(t))

)

+
1

h

(
du

dt
(t + h) − du

dt
(t), u(t + h) − PS(u(t + h))

)
.

The monotonicity of PS implies that

−1

h

(
du

dt
(t), PS(u(t + h)) − PS(u(t))

)
≤ 1

h2

(
u(t + h) − u(t) − h

du

dt
(t), PS(u(t + h))− PS(u(t))

)
.

12If f = 0, the set S coincides with ker A and we recover condition (2.7) of section 2.
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Hence we obtain

1

h
(ϕ̇(t + h) − ϕ̇(t)) ≤ 1

h

(
du

dt
(t), u(t + h) − u(t)

)

+
1

h2

(
u(t + h) − u(t) − h

du

dt
(t), PS(u(t + h)) − PS(u(t))

)

+
1

h

(
du

dt
(t + h) − du

dt
(t), u(t + h) − PS(u(t + h))

)
.

Taking the limit as h → 0, we derive that

ϕ̈(t) ≤
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+

(
d2u

dt2
(t), u(t) − PS(u(t))

)
. (3.28)

By combining formulae (3.27) and (3.28), and using the convexity of the function
Φ, we deduce that for almost every t ∈ R+

ϕ̈(t) + γ(t)ϕ̇(t) ≤
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+

(
d2u

dt2
(t) + γ(t)

du

dt
(t), u(t) − PS(u(t))

)

=

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

− a (u(t), u(t) − PS(u(t))) − ( f (u(t)), u(t)− PS(u(t)))

≤
∣∣∣∣
du

dt
(t)

∣∣∣∣
2

− Φ(u(t)) + Φ(PS(u(t))) =

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

− Φ(u(t)).

It follows that

ϕ̈(t) + γ(t)ϕ̇(t) + E(t) ≤ 3

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

a.e. on R+.

Multiplying this formula by 2
3γ(t) and recalling that Ė(t) = −γ(t)

∣∣∣ dudt (t)
∣∣∣
2
for

almost every t ∈ R+, we obtain

2

3
γ(t) (ϕ̈(t) + γ(t)ϕ̇(t)) + Ė(t) +

2

3
γ(t) E(t) ≤ 0 a.e. on R+. (3.29)

This suggests to define the function F : R+ → R by

F (t) = Φ(u(t)) +
1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

+
2

3
γ(t)

(
du

dt
(t), u(t) − PS(u(t))

)
(3.30)

= E(t) +
2

3
γ(t) ϕ̇(t).

In view of inequality (3.29), we immediately find

Ḟ (t)+
2

3
γ(t)F (t) ≤ 2

3

(
γ̇(t) − 1

3
γ(t)2

) (
du

dt
(t), u(t)− PS(u(t))

)
a.e. on R+.

(3.31)

Since
∣∣∣
(
du
dt (t), u(t) − PS(u(t))

)∣∣∣ ≤ 1
2

∣∣∣ dudt (t)
∣∣∣
2
+ 1

2 |u(t) − PS(u(t))|2 and Φ(u(t)) ≥
η
2 |u(t) − PS(u(t))|2 by assumption, we have

∣∣∣∣
(
du

dt
(t), u(t)− PS(u(t))

)∣∣∣∣ ≤ C E(t), for some C > 0. (3.32)
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Recalling that limt→+∞ γ(t) = 0, the expression of F shows that

F (t) ∼ E(t) as t → +∞. (3.33)

Let us fix some m ∈]0, 23 [. Using the fact that γ̇(t) = o(γ(t)) and γ(t)2 = o(γ(t))
as t → +∞, we deduce from (3.31), (3.32) and (3.33) the existence of t0 ≥ 0 such
that,

Ḟ (t) +
2

3
γ(t)F (t) ≤

(
2

3
−m

)
γ(t)F (t) a.e. on [t0,+∞[,

hence Ḟ (t) +mγ(t)F (t) ≤ 0 for almost every t ≥ t0. Let us multiply by em
∫ t
0 γ(s)ds

and integrate on [t0, t]. Since the function F is absolutely continuous, we find

F (t) ≤ D e−m
∫ t
0 γ(s)ds, with D = em

∫ t0
0 γ(s)ds F(t0). Conclusion follows from esti-

mate (3.33). �

Remark 3.16. Under the hypotheses of Theorem 3.15, assume that there exists k > 3

such that γ(t) ≥ k
t for t large enough. Fix m ∈

]
2
k ,

2
3

[
. From Theorem 3.15, there

exist C > 0 and t0 ≥ 0 such that

∀t ≥ t0,
1

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

≤ E(t) ≤ C

tmk
.

Hence we have
∣∣∣ dudt (t)

∣∣∣ ≤ (2C)1/2

tmk/2 and since mk > 2, we deduce that
∣∣∣ dudt

∣∣∣ ∈
L1(0,+∞). The trajectory u has a finite length, therefore it strongly converges
in H toward some u∞ ∈ S.

4. APPLICATION TO PARTICULAR SEMILINEAR EVOLUTION PROBLEMS

We suppose that Ω is a bounded open subset of R
n with boundary ∂Ω suffi-

ciently regular.

4.1. Hyperbolic problems of order two in space.

Example 4.1. Given amap γ : R+ → R+ and a function f ∈ C1(R), let us consider
the following damped wave equation

d2u

dt2
+ γ(t)

du

dt
− ∆u + f (u) = 0 on Ω×]0,+∞[, (4.1)

with Dirichlet boundary condition:

u = 0 on ∂Ω×]0,+∞[. (4.2)

The functional setting of the evolution problem (4.1)-(4.2) is given by

H = L2(Ω), V = H1
0(Ω) and a(u, v) =

∫

Ω
∇u(x)∇v(x)dx.

Hypothesis (h1) is trivially verified while hypothesis (h2) is satisfied with λ = 0,
since the bilinear form a is coercive. On the other hand, we assume that the func-
tion f satisfies the following properties:

(i) There exist C, α ≥ 0 such that (n− 2)α ≤ 2 and | f ′(r)| ≤ C (1+ |r|α) ∀r ∈ R.

(ii) f is nondecreasing.
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Define the function F ∈ C2(R) by F(r) =
∫ r
0 f (s) ds for every r ∈ R. For simplicity

of notation, we write F(u) for
∫

Ω
F(u(x)) dx. Hypothesis (k1) is a consequence of

assumption (i) above, see for example [10, pp. 73-75]. The monotonicity hypothe-
sis (k2) is ensured by point (ii). Finally the coercivity of the bilinear form a implies
that the equilibrium set is a singleton {u}, see Remark 3.1. In particular, the non-

vacuity condition (k3) is satisfied. If the map γ ∈ W1,1
loc (R+,R+) satisfies (l1)-(l3),

we derive from Corollary 3.6 that u(t) ⇀ uweakly in H1
0(Ω) as t → +∞. Since the

injection H1
0(Ω) →֒ L2(Ω) is compact, the second part of Corollary 3.6 shows that

the convergence is strong in H1
0(Ω). On the other hand, the coercivity of a implies

that condition (3.26) is fulfilled. If the map γ satisfies (l1) and γ̇(t) = o(γ(t)) as

t → +∞, Theorem 3.15 then shows that for every m ∈
]
0, 23

[
,

1

2

∫

Ω

{∣∣∣
∂u

∂t
(t, x)

∣∣∣
2
+ |∇u(t, x)|2

}
dx+

∫

Ω
F(u(t, x)) dx = O

(
e−m

∫ t
0 γ(s) ds

)
as t → +∞.

Example 4.2. Let us consider the damped wave equation (4.1) with Neumann

boundary condition ∂u
∂n = 0 on ∂Ω×]0,+∞[. The functional setting of the evolu-

tion problem is given by:

H = L2(Ω), V = H1(Ω) and a(u, v) =
∫

Ω
∇u(x).∇v(x)dx.

The bilinear form a is semi-coercive, hypothesis (h2) is satisfied with λ = µ = 1.
To overcome the lack of coercivity, assumptions (i)-(ii) above are supplemented
with the following one

(iii) There exist ε > 0 and D ≥ 0 such that F(r) ≥ ε r2 − D for every r ∈ R.

Assumption (iii) implies that condition (k3) is verified, see Remark 3.1. Hypothe-

ses (k1)-(k2) are fulfilled as in the previous example. If the map γ ∈ W1,1
loc (R+,R+)

satisfies (l1) and (l4), we derive from Theorem 3.10 that there exists a solution u∞

of { −∆u + f (u) = 0 in Ω
∂u
∂n = 0 on ∂Ω

such that u(t) ⇀ u∞ weakly in H1(Ω) as t → +∞. Since the injection H1(Ω) →֒
L2(Ω) is compact, the second part of Theorem 3.10 shows that the convergence is

strong in H1(Ω).

Example 4.3. Let us consider the following equation

d2u

dt2
+ γ(t)

du

dt
− ∆u− λ1u + f (u) = 0 on Ω×]0,+∞[, (4.3)

with Dirichlet boundary condition. Here λ1 stands for the smallest eigenvalue of
the Laplacian-Dirichlet operator. The functional setting of the evolution problem
is given by:

H = L2(Ω), V = H1
0(Ω) and a(u, v) =

∫

Ω
[∇u(x).∇v(x) − λ1u(x)v(x)] dx.

It is immediate to check that (h1)-(h2) are satisfied. Under the above assumptions
(i), (ii) and (iii), we obtain as previously that conditions (k1)-(k3) hold true. If the
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map γ ∈ W1,1
loc (R+,R+) satisfies (l1) and (l4), we derive from Theorem 3.10 that

there exists a solution u∞ of
{

−∆u− λ1 u + f (u) = 0 in Ω

u = 0 on ∂Ω

such that u(t) → u∞ strongly in H1
0(Ω) as t → +∞.

Example 4.4. The equation arising in the previous example can be generalized as
follows

d2u

dt2
+ γ(t)

du

dt
− ∆u−

+∞

∑
i=1

ηiPiu + f (u) = 0 on Ω×]0,+∞[,

see [21, Example 4.5]. We still assume Dirichlet boundary conditions. Let us ex-
plicit the notations: (λi)i≥1 (respectively (ei)i≥1) is the sequence of eigenvalues

(respectively eigenfunctions normalized in L2(Ω)) of (−∆) in H1
0(Ω). For each

i ≥ 1, Pi denotes the orthogonal projection on span{ei} in the sense of L2(Ω). We
assume that the nonnegative sequence (ηi)i≥1 is bounded and that ηi ≤ λi for
every i ≥ 1. The functional setting of the evolution problem is given by

H = L2(Ω), V = H1
0(Ω) and a(u, v) =

∫

Ω
∇u(x).∇v(x)dx−

+∞

∑
i=1

ηi

∫

Ω
Piu(x).Piv(x)dx.

It is easy to check that hypotheses (h1)-(h2) hold true. Under the additional as-

sumptions (i), (ii) and (iii), we then obtain (k1)-(k3). If the map γ ∈ W1,1
loc (R+,R+)

satisfies (l1) and (l4), we obtain as in the previous example the existence of an

equilibrium u∞ such that u(t) → u∞ strongly in H1
0(Ω) as t → +∞.

4.2. A higher-order example.

Example 4.5. Let us consider the following equation

d2u

dt2
+ γ(t)

du

dt
+ ∆2u + f (u) = 0 on Ω×]0,+∞[, (4.4)

with the boundary condition:

u =
∂u

∂n
= 0 on ∂Ω×]0,+∞[. (4.5)

The functional setting of the evolution problem (4.4)-(4.5) is given by:

H = L2(Ω), V =

{
u ∈ H2(Ω), u =

∂u

∂n
= 0 on ∂Ω

}
and a(u, v) =

∫

Ω
∆u(x).∆v(x)dx.

Hypothesis (h1) is trivially verified. Moreover, from the regularity results rela-
tive to the Laplacian-Dirichlet problem, there exists κ > 0 such that ‖u‖H2(Ω) ≤
κ |∆u|L2(Ω). Hence condition (h2) is satisfied with λ = 0, i.e. the bilinear form a is

coercive. We assume that the function f satisfies assumption (ii) along with the
following variant of (i)

(i’) There existC, α ≥ 0 such that (n− 4)α ≤ 4 and | f ′(r)| ≤ C (1+ |r|α) ∀r ∈ R.

By using Sobolev’s imbedding theorem, we let the reader check that hypothesis
(k1) is a consequence of assumption (i’) above. The monotonicity hypothesis (k2)
is ensured by (ii). Finally in view of Remark 3.1, the coercivity of the bilinear form a
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implies that the equilibrium set is a singleton {u} and in particular (k3) holds true.

If the map γ ∈ W1,1
loc (R+,R+) satisfies (l1)-(l3), we derive from Corollary 3.6 that

u(t) → u strongly in H2(Ω) as t → +∞. On the other hand, the coercivity of
a implies that condition (3.26) is fulfilled. If the map γ satisfies (l1) and γ̇(t) =
o(γ(t)) as t → +∞, Theorem 3.15 then shows that for every m ∈

]
0, 23

[
,

1

2

∫

Ω

{∣∣∣
∂u

∂t
(t, x)

∣∣∣
2
+ |∆u(t, x)|2

}
dx+

∫

Ω
F(u(t, x)) dx = O

(
e−m

∫ t
0 γ(s) ds

)
as t → +∞.

APPENDIX

Proof of Lemma 3.8. (i) Let us first prove that limt→+∞ tθγ(t) = 0. Since the map

s 7→ sθ is nondecreasing on R+, we have for every t ≥ 0
∫ +∞

t
sθ |γ̇(s)| ds ≥ tθ

∫ +∞

t
|γ̇(s)| ds ≥ tθ

∫ +∞

t
−γ̇(s) ds = tθγ(t),

the last equality being a consequence of the fact that limt→+∞ γ(t) = 0. In view

of assumption
∫ +∞

0 sθ |γ̇(s)| ds < +∞, we infer from the above inequality that

limt→+∞ tθγ(t) = 0. On the other hand, the absolute continuity of the map γ
allows to write that

θ
∫ t

0
sθ−1 γ(s) ds = tθ γ(t) −

∫ t

0
sθ γ̇(s) ds (4.6)

≤ tθ γ(t) +
∫ t

0
sθ |γ̇(s)| ds.

Taking the limit as t → +∞, we obtain θ
∫ +∞

0 sθ−1 γ(s) ds ≤
∫ +∞

0 sθ |γ̇(s)| ds < +∞.

(ii) Since γ̇(s) ≤ 0 for almost every s ≥ 0, we derive from (4.6) that
∫ t

0
sθ |γ̇(s)| ds = −

∫ t

0
sθ γ̇(s) ds ≤ θ

∫ t

0
sθ−1 γ(s) ds,

and the conclusion immediately follows. �

Proof of Lemma 3.11. (i) From the assumption γ(t) ≥ k
tθ
, we deduce the existence

of c ∈ R such that
∫ t
0 γ(τ) dτ ≥ k

1−θ t
1−θ + c for every t ≥ t0. Therefore, we have

∫ +∞

0
e−

∫ t
0 γ(τ) dτ dt ≤ e−c

∫ +∞

0
e−

k
1−θ t

1−θ
dt < +∞.

(ii) By using the assumption γ(t) ≥ k
tθ
, we find

∫ +∞

s
e−

∫ t
0 γ(τ) dτ dt ≤ 1

k

∫ +∞

s
tθ γ(t) e−

∫ t
0 γ(τ) dτ dt. (4.7)

An integration by parts in the right-hand side then yields
∫ +∞

s
tθ γ(t) e−

∫ t
0 γ(τ) dτ dt =

[
−tθ e−

∫ t
0 γ(τ) dτ

]+∞

s
+ θ

∫ +∞

s
tθ−1 e−

∫ t
0 γ(τ) dτ dt.

(4.8)

Remark that tθ e−
∫ t
0 γ(τ) dτ ≤ e−ctθ e−

k
1−θ t

1−θ
, hence limt→+∞ tθ e−

∫ t
0 γ(τ) dτ = 0.

Therefore, we deduce from (4.7) and (4.8) that
∫ +∞

s
e−

∫ t
0 γ(τ) dτ dt ≤ 1

k
sθ e−

∫ s
0 γ(τ) dτ +

θ

k

∫ +∞

s
tθ−1 e−

∫ t
0 γ(τ) dτ dt.
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The right term is clearly negligible with respect to the left one, hence
θ

k

∫ +∞

s
tθ−1 e−

∫ t
0 γ(τ) dτ dt ≤

1

2

∫ +∞

s
e−

∫ t
0 γ(τ) dτ dt for s large enough. The conclusion follows immediately. �

REFERENCES

[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions. Dover, New York, 1972.
[2] F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces,

SIAM j.control optim., vol. 38, no. 4, pp. 1102-1119.
[3] F. Alvarez, H. Attouch, Convergence and asymptotic stabilization for some damped hyperbolic

equations with non-isolated equilibria, ESAIM, 6 (2001), pp. 539-552.
[4] H. Attouch, X. Goudou, P. Redont, The heavy ball with friction method: I the continuous dynam-

ical system, Communications in Contemporary Mathematics, 2 (2000), pp. 1-34.
[5] F. Bowman, Introduction to Bessel Functions. Dover, New York, 1958.
[6] R.E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, Journal

of Functional Analysis, 18 (1975), pp. 15-26.
[7] A. Cabot, Asymptotics for a gradient system with memory term, Proc. of the Amer. Math. Soc., 137

(2009), 3013-3024.
[8] A. Cabot, H. Engler, S. Gadat, On the long time behavior of second order differential equations

with asymptotically small dissipation, Trans. Amer. Math. Soc., 361 (2009), no. 11, pp. 5983-6017.
[9] A. Cabot, H. Engler, S. Gadat, Second order differential equations with asymptotically small dis-

sipation and piecewise flat potentials, Electronic Journal of Differential Equations, 17 (2009), 33-38.
[10] T. Cazenave, A. Haraux, An introduction to semilinear evolution equations, Oxford Lecture Series

in Mathematics and its Applications 13 (1998).
[11] J.K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs

25, Amer. Math. Soc., Providence (1988).
[12] A. Haraux, Semilinear hyperbolic problems in bounded domains, Mathematical reports, Vol 3,

Harwood Academic Publishers, Gordon & Breach, 1987.
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