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come    

Asymptotics for some semilinear hyperbolic equations with non-autonomous damping

INTRODUCTION

Throughout this paper, V stands for a real Hilbert space, whose scalar product and norm are respectively denoted by ((•, •)) and • . Let H be another real Hilbert space with scalar product (•, •) and norm | • |. Suppose that V is dense in H with continuous injection. By duality, the topological dual space H ′ of H is identified with a dense subspace of the topological dual V ′ of V. Identifying H with H ′ , we obtain V ⊂ H ⊂ V ′ , where each space is dense in the next one, each injection being continuous. We denote by •, • V ′ ,V the duality pairing between V ′ and V. Let a : V × V → R be a continuous bilinear form satisfying (h 1 ) a(., .) is symmetric, positive,

(h 2 ) ∃λ ≥ 0, µ > 0 such that ∀u ∈ V, a(u, u) + λ|u| 2 ≥ µ u 2 .
consider the following semilinear evolution equation of second-order in time

(E) d 2 u dt 2 (t) + γ(t) du dt (t) + Au(t) + f (u(t)) = 0, t ≥ 0.
The nonlinearity f is assumed to be conservative, i.e. derives from some potential F ∈ C 1 (V, R). The main purpose of the paper is to investigate the asymptotic behavior of the trajectories of (E) for a vanishing damping term, i.e. γ(t) → 0 as t → +∞. It is clear that the decay properties of the map γ play a central role in the analysis. In particular, if the quantity γ(t) tends to 0 too rapidly as t → +∞, convergence of the trajectories may fail. To motivate our study, let us show how it is connected to other questions of interest.

Case of a constant damping. If γ(t) ≡ γ, existence and uniqueness are wellknown in the framework of damped wave equations. More precisely, if the map f : V → H is Lipschitz continuous on the bounded sets of V and if the map F satisfies suitable growth conditions, then for any (u 0 , v 0 ) ∈ D(A) × V, there exists a unique solution u ∈ W 1,∞ loc (R + , V) ∩ W 2,∞ loc (R + , H) of (E) such that u(0) = u 0 and du dt (0) = v 0 , see [START_REF] Haraux | Semilinear hyperbolic problems in bounded domains[END_REF]Theorem II.3.2.1] or [START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF]Ch. IV, Theorem 4.1]. The trajectories of (E) are known to converge toward an equilibrium point u ∞ ∈ {v ∈ V, Av + f (v) = 0} under assumptions like monotonicity or analyticity. In the case of a monotone map f , convergence is obtained for the weak topology of V and the main ingredient of the proof is the Opial lemma, cf. [START_REF] Alvarez | Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria[END_REF]. When the nonlinearity is analytic, convergence of the trajectories relies on the Lojasiewicz inequality, see [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF][START_REF] Jendoubi | Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity[END_REF] and the pioneering work [START_REF] Simon | Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems[END_REF] for parabolic problems.

Averaged heat equation. With the same assumptions as above, consider the abstract heat equation dv ds (s) + Av(s) = 0, s ≥ 0.

(1.1)

It may be of interest to examine the case where the velocity dv ds (s) is proportional, not to the instantaneous vector Av(s), but to some average taken over the interval [0, s]. The simplest such equation is

dv ds (s) + 1 s s 0 Av(σ) dσ = 0, s > 0. (1.2)
After multiplying this equality by s and differentiating, we obtain the following second-order in time equation

s d 2 v ds 2 (s) + dv ds (s) + Av(s) = 0, s > 0.
The change of variable s = t 2 4 allows to rewrite the above equation as

d 2 u dt 2 (t) + 1 t du dt (t) + Au(t) = 0, t > 0,
where the map u is defined by u(t) = v t 2 4 for every t ≥ 0. This is exactly equation (E) with γ(t) =1 t and f ≡ 0. Assuming that the injection V ֒→ H is compact, there exists a nondecreasing sequence (λ i ) i≥1 of eigenvalues of A, along with a complete orthonormal basis of H, (e i ) i≥1 consisting of the corresponding eigenvectors. Let u(t) = ∑ +∞ i=1 u i (t) e i be the decomposition of the solution u(t) on the basis of eigenfunctions. Every component u i satisfies the following equation üi (t) + 1 t ui (t) + λ i u i (t) = 0, t > 0. It ensues that each kernel component u i , i ∈ {1, . . . , dim(ker A)} verifies u i (t) = a i ln t + b i , for some a i , b i ∈ R. In particular, it cannot converge as t → +∞, unless it is stationary. When the eigenvalue λ i is positive, we let the reader check that

u i (t) = a ′ i J 0 λ i t + b ′ i Y 0 λ i t , for some a ′ i , b ′ i ∈ R,
where J 0 and Y 0 denote respectively the zeroth Bessel functions of the first and second kind 1 It converges toward zero much more slowly than the corresponding component of the "pure" heat equation, equal to v i (0) e -λ i s . The above discussion shows that the global behavior of (1.2) -or more generally (E)differs considerably from the one of equation (1.1).

Heavy ball with asymptotically small friction. Given a continuous map γ : R + → R + and a potential Φ : H → R of class C 1 with a locally Lipschitz gradient, let us consider the following ordinary differential equation in the Hilbert space H ẍ(t) + γ(t) ẋ(t) + ∇Φ(x(t)) = 0, t ≥ 0.

(1.3)

When γ(t) ≡ γ > 0, the above equation is known under the terminology of "Heavy Ball with Friction" system, (HBF) for short. From a mechanical point of view, (HBF) corresponds to the equation describing the motion of a material point subjected to the conservative force -∇Φ(x) and the viscous friction force -γ ẋ. The (HBF) system can be studied in the classical framework of the theory of dissipative dynamical systems, cf. [START_REF] Hale | Asymptotic behavior of dissipative systems[END_REF][START_REF] Haraux | Systèmes dynamiques dissipatifs et applications[END_REF]. The trajectories of (HBF) are known to converge toward a critical point of Φ under various assumptions (see [START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert spaces[END_REF][START_REF] Attouch | The heavy ball with friction method: I the continuous dynamical system[END_REF] for convex potentials and [START_REF] Haraux | Convergence of solutions of second-order gradient-like systems with analytic nonlinearities[END_REF] for analytic ones). In the recent papers [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF][START_REF] Cabot | Second order differential equations with asymptotically small dissipation and piecewise flat potentials[END_REF], it is considered the case of a vanishing damping γ(t) → 0 as t → +∞. The corresponding equation is typically obtained from a first-order gradient system involving some memory aspects, see [START_REF] Cabot | Asymptotics for a gradient system with memory term[END_REF]. If the function Φ is convex and has a unique minimum x, condition +∞ 0 γ(t) dt = +∞ is sufficient to ensure (weak) convergence of the trajectories of (1.3) toward x. When the function Φ has a continuum of equilibria, the more stringent condition +∞ 0 e -t 0 γ(s) ds dt < +∞ is necessary to obtain convergence of the trajectories. In the one-dimensional case, the slightly stronger condition +∞ 0 e -θ t 0 γ(s) ds dt < +∞, for some θ ∈]0, 1[ is shown to be sufficient.

In the higher-dimensional case, the general question of convergence is left open in [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF][START_REF] Cabot | Second order differential equations with asymptotically small dissipation and piecewise flat potentials[END_REF]. The new techniques developed in the present paper allow to address this question and to fill partially the gap between necessary and sufficient conditions for convergence, see comments below.

Let us come back to equation (E) and precise now the framework of the paper. The nonlinearity f is assumed to be monotone and conservative, i.e. derives from some convex potential F ∈ C 1 (V, R). The set of equilibria S = {v ∈ V, Av + f (v) = 0} is supposed to be nonempty. It is not our purpose to develop the wellposedness of equation (E) for given initial conditions. Throughout the paper, we assume the existence of a solution to equation (E) in the class

u ∈ W 1,1 loc (R + , V) ∩ W 2,1 loc (R + , H). (1.4)
We define the energy function E along each trajectory by

E (t) = 1 2 du dt (t) 2 + 1 2 a(u(t), u(t)) + F(u(t)).
The major contribution of this paper is to provide a result of (weak) convergence in V for the trajectories of (E): if the quantity γ(t) behaves as k/t α , for some α ∈]0, 1[, k > 0 and t large enough, there exists an equilibrium u ∞ ∈ S such that u(t) ⇀ u ∞ weakly in V as t → +∞. The exact statement is in fact slightly more general, see Theorem 3.10. The main ingredients of the proof are the Opial lemma along with accurate estimates of the energy decay, cf. Proposition 3.7. Strong convergence in V holds true under compactness or symmetry conditions, see Theorem 3.13. We stress the fact that the result and the technique of the proof are new, and they are also applicable to the differential equation (1.3).

The second contribution of the paper is to give sharp estimates for the speed of convergence of the energy E (t) as t → +∞. In the linear case ( f = 0) and under some ellipticity-like condition, we obtain the following estimate E (t) ∼ K e -t 0 γ(s)ds as t → +∞, for some K > 0.

(1.5)

Notice that this estimate fails to be true if the trajectory is contained in ker A, see Theorem 2.7 for a precise statement. In the nonlinear case, the same kind of estimate is obtained at a slightly lower degree of precision2 , cf. Theorem 3.15.

Outline of the paper. Section 2 is concerned with the linear hyperbolic equation (E 0 ) obtained by taking f = 0 in (E). We analyze the behavior of the trajectories by studying respectively their components with respect to the spaces ker A and (ker A) ⊥ . A sharp estimate of the energy decay is given under some ellipticitylike condition. In section 3, we deal with the general equation (E) by assuming that the nonlinearity f is monotone. It is shown in paragraph 3.1 that the energy E (t) vanishes as t → +∞, which allows to prove (weak) convergence of the trajectories in the case of a unique minimum. The general problem of convergence for a continuum of minima is treated in paragraph 3.2, which is the core of the paper. Additional results of strong convergence in V are given under some compactness or symmetry assumptions. Finally, the abstract results are applied to particular semilinear evolution problems in section 4.

LINEAR HYPERBOLIC EQUATION

Let a : V × V → R be a continuous bilinear form satisfying (h 1 )-(h 2 ) and let A : V → V ′ be the associate operator. Given a map γ ∈ W 1,1 loc (R + , R + ), we consider the following linear hyperbolic equation

(E 0 ) d 2 u dt 2 (t) + γ(t) du dt (t) + Au(t) = 0, t ≥ 0.
We assume the existence of a solution to equation (E 0 ) in the class (1.4). We define the energy function E along each trajectory by

E (t) = 1 2 du dt (t) 2 + 1 2 a(u(t), u(t)).
We have E ∈ W 1,1 loc (R + ) and

Ė (t) = d 2 u dt 2 (t), du dt (t) + Au(t), du dt (t) V ′ ,V = -γ(t) du dt (t) 2 ≤ 0 a.e. on R + ,
hence the function E is a Lyapunov function for the system (E 0 ). The purpose of this section is to establish results of convergence for the trajectory u, along with estimates of the energy decay. The key assumptions on the map γ are the following

(l 1 ) lim t→+∞ γ(t) = 0 (l 2 ) γ ∈ L 1 (0, +∞).
For every t ≥ 0, we set u(t) = Pu(t), where P denotes the orthogonal projection onto the subspace 3 

= Pu 0 + t 0 e -s 0 γ(τ)dτ ds Pv 0 .
If Pv 0 = 0, the above equality shows that the asymptotic behavior of the component u is strongly related with the convergence of the integral 

| u(t)| = +∞ if ω = +∞ while lim t→+∞ u(t) = P(u 0 + ωv 0 ) if ω < +∞.
Our purpose is now to evaluate the energy decay along each trajectory u(.). We start with a preliminary result corresponding to the case ker A = {0}. Lemma 2.2. Assume that the bilinear form a(., .) satisfies (h 1 )-(h 2 ) and that ∃η > 0, ∀u ∈ V, a(u, u) ≥ η|u| 2 .

(2.2)

Let γ ∈ W 1,1 loc (R + , R + ) be a function satisfying (l 1 )-(l 2 ).
Let u be a solution in the class (1.4) to equation (E 0 ). Then, either the solution u is stationary, or there exists K > 0 such that E (t) ∼ Ke -t 0 γ(s)ds as t → +∞.

Proof. The main idea of the proof consists in using the function F defined by 4

F (t) = 1 2 du dt (t) 2 + 1 2 a(u(t), u(t)) + γ(t) 2 du dt (t), u(t) = E (t) + γ(t) 2 du dt (t), u(t) .
We have F ∈ W We now assume the following ellipticity-like condition ∀u ∈ V, a(u, u) ≥ η |u -Pu| 2 , for some η > 0.

(2.7)

Remark 2.5. Under (h 2 ), this condition is equivalent to the following one 5 ∀u ∈ V, a(u, u) ≥ η ′ u -Pu 2 , for some η ′ > 0. (2.8) Indeed, assume that condition (2.7) is satisfied. Recalling that Pu ∈ ker A, we deduce from (h 2 ) that ∀u ∈ V, a(u, u) + λ |u -Pu| 2 ≥ µ u -Pu 2 .
It ensues that 1 + λ η a(u, u) ≥ µ u -Pu 2 for every u ∈ V and finally (2.8) is fulfilled with η ′ = η µ η+λ .

Remark 2.6. Suppose that the injection V ֒→ H is compact and that (h 1 )-(h 2 ) hold true. The eigenvalues of A then define an nondecreasing sequence of nonnegative scalars tending to +∞ and there exists an orthonormal basis of H consisting of the corresponding eigenvectors, see for example [START_REF] Larrouturou | Modélisation mathématique et numérique pour les sciences de l'ingénieur[END_REF][START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF]. If η denotes the smallest eigenvalue of A greater than 0, it is clear that a(u, u) ≥ η|u| 2 for every u ∈ (ker A) ⊥ ∩ V and therefore condition (2.7) holds true.

The next result allows to estimate the energy decay under condition (2.7).

Theorem 2.7. Assume that the bilinear form a(., .)

satisfies conditions (h 1 )-(h 2 ) and (2.7). Let γ ∈ W 1,1 loc (R + , R + ) be a function satisfying (l 1 )-(l 2 ).
Let u be a solution in the class (1.4) to equation (E 0 ). Then, either the trajectory is contained in ker A, or there exists K > 0 such that E (t) ∼ K e -t 0 γ(s)ds as t → +∞.

(2.9) 

E (t) = 1 2 d u dt (t) + d u dt (t) 2 + 1 2 a( u(t) + u(t), u(t) + u(t)) = 1 2 d u dt (t) 2 + 1 2 d u dt (t) 2 + 1 2 a( u(t), u(t)).
(2.10)

From equality (2.1), we deduce that for every t ≥ 0

d u dt (t) 2 = e -2 t 0 γ(s)ds d u dt (0) 2 .
(2.11)

Let us now set V 1 = (ker A) ⊥ ∩ V, a 1 = a |V 1 ×V 1 and A 1 = A |V 1 . It is clear that u is a solution of d 2 u dt 2 (t) + γ(t) d u dt (t) + A 1 u(t) = 0.
On the other hand, condition (2.7) implies that a 1 (u, u) ≥ η |u| 2 for every u ∈ V 1 . By applying Lemma 2.2 to the solution u, we obtain that either the map u is stationary or there exists

K 1 > 0 such that 1 2 d u dt (t) 2 + 1 2 a( u(t), u(t)) ∼ K 1 e -t 0 γ(s)ds as t → +∞. (2.12) 
We now combine equalities (2.10), (2.11) with estimate (2.12). If

+∞ 0 γ(s)ds = +∞, we immediately obtain (2.9) with K = K 1 . If +∞ 0 γ(s)ds < +∞, then lim t→+∞ E (t) = 1 2 e -2 +∞ 0 γ(s)ds d u dt (0) 2 + K 1 e -+∞ 0 γ(s)ds , hence (2.9) is satisfied with K = 1 2 e -+∞ 0 γ(s)ds d u dt (0) 2 + K 1 .
Remark 2.8. If the trajectory u(.) is contained in ker A, estimate (2.9) is no more valid. In this case, we infer from equality (2.11) that E (t) = 

(l 3 ) γ ∈ L 1 (0, +∞).
Then we have

lim t→+∞ E (t) = 0. If ker A = {0}, then u(t) → 0 strongly in V as t → +∞.
Proof. The first assertion is an immediate consequence of estimate (2.9), while the second one follows from

∀t ≥ 0, E (t) ≥ 1 2 a(u(t), u(t)) ≥ η ′ 2 u(t) 2 ,
see inequality (2.8).

6 Assumption (l 3 ) expresses that the quantity γ(t) tends rather slowly toward 0 as t → +∞.

When ker A = {0}, convergence of the trajectories is obtained under the following stronger assumption +∞ 0 e -1 2 s 0 γ(τ)dτ ds < +∞.

(2.13) Corollary 2.10. Under the hypotheses of Theorem 2.7, assume moreover that condition (2.13) is satisfied. Then, there exists u ∞ ∈ ker A such that u(t) → u ∞ strongly in V as t → +∞.

Proof. First assume that the trajectory is contained in ker A. Observing that ω =

+∞ 0 e -s 0 γ(τ)dτ ds < +∞, we deduce from Proposition 2.1 that u(t) converges strongly in H as t → +∞. If the trajectory is not contained in ker A, we derive from estimate (2.9) that

du dt (t) = O e -1 2 t 0 γ(s)ds as t → +∞, hence du dt ∈ L 1 (R + , H) in view of condition (2.13).
The trajectory u has a finite length, hence strongly converges in H toward some u ∞ ∈ ker A. Using now the semi-coercivity condition (h 2 ), we have

µ u(t) -u ∞ 2 ≤ λ|u(t) -u ∞ | 2 + a(u(t) -u ∞ , u(t) -u ∞ ) = λ|u(t) -u ∞ | 2 + a(u(t), u(t)). Since lim t→+∞ |u(t) -u ∞ | = 0 and lim t→+∞ a(u(t), u(t)) = 0 in view of Corollary 2.9, we conclude that lim t→+∞ u(t) -u ∞ = 0.
Example 2.11. Suppose that there exist α, k > 0 such that γ(t) = k t α for t large enough. The assumptions (l 1 )-(l 2 ) are clearly satisfied. If the bilinear form a(., .) satisfies conditions (h 1 )-(h 2 ) and (2.7), we deduce from Theorem 2.7 and Corollary 2.10 that

• if α > 1, then lim t→+∞ E (t) > 0;
• if α = 1, then E (t) ∼ K t k as t → +∞ and the trajectory u(.) strongly converges in V as soon as k > 2;

• if α ∈ (0, 1), then E (t) ∼ Ke -k 1-α t 1-α as t → +∞ and the trajectory u(.) strongly converges in V for every k > 0.

Other results of convergence will be provided in the more general framework of semilinear equations.

MONOTONE CONSERVATIVE NONLINEARITY

The assumptions concerning the spaces V, H, the linear operator A : V → V ′ and the map γ : R + → R + are the same as in section 2. We consider the following semilinear hyperbolic equation

(E) d 2 u dt 2 (t) + γ(t) du dt (t) + Au(t) + f (u(t)) = 0, t ≥ 0.
We suppose that the nonlinearity f :

V → H is conservative, i.e. (k 1 ) ∃F ∈ C 1 (V, R) such that ∀u, v ∈ V, F ′ (u), v V ′ ,V = ( f (u), v).
Moreover, we assume that the map f is monotone

(k 2 ) ∀u, v ∈ V, ( f (u) -f (v), u -v) ≥ 0,
which is equivalent to the convexity of the potential F. Defining Φ : V → R by

Φ(v) = 1 2 a(v, v) + F(v), we obtain a function of class C 1 whose first derivative is given by Φ ′ (u), v V ′ ,V = a(u, v) + ( f (u), v), or equivalently Φ ′ (u) = Au + f (u). Moreover, Φ is convex, which amounts to ∀u, v ∈ V, a(u, v -u) + ( f (u), v -u) ≤ Φ(v) -Φ(u). (3.1)
Consequently, minimum and stationary points of Φ coincide, i.e.

argmin Φ = {v ∈ V | Av + f (v) = 0}, (3.2) 
where argmin

Φ = {v ∈ V | Φ(v) = inf Φ}. It is clear in view of equation (E)
that nothing is changed if some constant is added to the potential Φ. Without loss of generality, we will systematically assume that inf Φ = 0. Suppose moreover that

(k 3 ) S = argmin Φ = ∅. Remark 3.1.
Assume that a is coercive, i.e. (h 2 ) holds with λ = 0. Then the map u → a(u, u) is strongly convex and since the function F is convex, the map Φ is also strongly convex. This implies immediately that the set argmin Φ is a singleton, hence the non-vacuity condition (k 3 ) holds true. Now assume that (h 2 ) holds with λ > 0. To overcome the lack of coercivity, suppose that there exist ε > 0 and C ≥ 0 such that F(u) ≥ ε |u| 2 -C for every u ∈ V. Without loss of generality, we can assume that ε ≤ λ 2 . For every u ∈ V, we have

Φ(u) = 1 2 a(u, u) + F(u) ≥ ε λ a(u, u) + F(u) ≥ ε µ λ u 2 -ε |u| 2 + ε |u| 2 -C = ε µ λ u 2 -C,
which shows that lim u →+∞ Φ(u) = +∞. Since the function Φ is convex and continuous, this classically implies condition (k 3 ).

It is immediate to check that the set S is convex, closed in V and that S ⊂ D(A).

Remark 3.2. Under assumption (h 2 ), let us show that S is closed in H. Let (u n ) be a sequence in S such that lim n→+∞ u n = u strongly in H, for some u ∈ H. Since the function F is convex, there exist b, c ∈ R such that, for all u ∈ V, F(u) ≥ -b|u|c. Therefore we have for all u ∈ V,

1 2 a(u, u) ≤ Φ(u) + b|u| + c. (3.3) Recalling that Φ(u n ) = 0 for every n ∈ N, we deduce that 1 2 a(u n , u n ) ≤ b|u n | + c, hence the sequence (a(u n , u n )) is bounded.
From hypothesis (h 2 ), we infer that the sequence (u n ) is bounded in V. It ensues that there exist u ∈ V and a subsequence (u n k ) such that lim k→+∞ u n k = u weakly in V. We immediately have u = u and the weak lower semicontinuity of Φ implies that Φ(u)

≤ lim inf k→+∞ Φ(u n k ) = 0, hence u ∈ S. Remark 3.3 (Case f (0) = 0). If f (0) = 0 then we have S = ker A ∩ {v ∈ V | f (v) = 0} = ∅.
Indeed, if w ∈ S then in particular (Aw, w) + ( f (w), w) = 0, and by monotonicity of f we have ( f (w)f (0), w) ≥ 0, hence (Aw, w) = ( f (w), w) = 0 and therefore Aw = 0.

In the sequel, we assume the existence of a solution to equation (E) in the class (1.4). We define the energy function E along each trajectory by

E (t) = 1 2 du dt (t) 2 + Φ(u(t)).
We have E ∈ W 1,1 loc (R + ) and

Ė (t) = d 2 u dt 2 (t), du dt (t) + Au(t) + f (u(t)), du dt (t) V ′ ,V = -γ(t) du dt (t) 2 ≤ 0 a.e. on R + ,
hence the function E is a Lyapunov function for the equation (E). We deduce that for every t ≥ 0

1 2 du dt (t) 2 ≤ E (t) ≤ E (0) and Φ(u(t)) ≤ E (t) ≤ E (0). (3.4) 
In particular, we have du dt ∈ L ∞ (R + , H). In the sequel, we will consider only solutions which are bounded in H, i.e. satisfying u ∈ L ∞ (R + , H). Remark 3.4. Under assumption (h 2 ), it is easy to see that u ∈ L ∞ (R + , H) implies u ∈ L ∞ (R + , V). Indeed, let us assume that {u(t); t ≥ 0} is bounded in H. From inequality (3.3), we have 1 2 a(u(t), u(t)) ≤ Φ(u(t)) + b|u(t)| + c for all t ∈ R + . Recalling that Φ(u(t)) ≤ E (0) in view of (3.4), we infer that {a(u(t), u(t)); t ≥ 0} is bounded. From hypothesis (h 2 ), we conclude that {u(t); t ≥ 0} is bounded in V.

3.1. Summability of the energy. Case of a unique equilibrium. We now prove that the map γ E is summable over R + and that lim t→+∞ E (t) = 0. Proposition 3.5. Assume that the bilinear form a(., .) and the function f satisfy respectively hypotheses (h 1 )-(h 2 ) and (k 1 )-(k 3 ). Let γ ∈ W 1,1 loc (R + , R + ) be a map satisfying (l 1 )-(l 3 ). Let u be a solution in the class (1.4) to equation (E) and assume that u ∈ L ∞ (R + , H). Then almost everywhere on R + , we derive that

(i) +∞ 0 γ(t) E (t) dt < +∞. (ii) lim t→+∞ E (t) = 0, hence lim t→+∞ du dt (t) = 0 and lim t→+∞ Φ(u(t)) = 0. ( 3 
t 0 γ(s) E (s) ds ≤ 3 2 (E (0) -E (t)) - t 0 γ(s) p(s)ds - t 0 γ(s) 2 ṗ(s)ds. (3.8) 
Then, remark that

t 0 γ(s) p(s)ds = γ(t) ṗ(t) -γ(0) ṗ(0) - t 0 γ(s) ṗ(s)ds.
Recall that the map u is bounded in H by assumption. On the other hand, the energy function E is nonincreasing hence majorized. We deduce that the map du dt is bounded in H. Hence we infer the existence of M > 0 such that p(t) ≤ M and | ṗ(t)| ≤ M for every t ≥ 0. Therefore

t 0 γ(s) p(s)ds ≤ Mγ(t) + Mγ(0) + M t 0 | γ(s)| ds.
Since γ ∈ L 1 (0, +∞) by assumption, the right-hand side is majorized by some M ′ ≥ 0. In the same way, there exists M ′′ ≥ 0 such that t 0 γ(s) 2 ṗ(s)ds ≤ M ′′ for every t ≥ 0. The expected estimate is then a consequence of inequality (3.8). (ii) Let us argue by contradiction and assume that lim t→+∞ E (t) = l > 0. The map E is nonincreasing, hence E (t) ≥ l for every t ≥ 0. Since γ ∈ L 1 (0, +∞), we deduce that

+∞ 0 γ(t) E (t) dt ≥ l +∞ 0 γ(t) dt = +∞,
a contradiction with the result of (i). The last assertion is immediate.

In view of the previous result, we can prove weak convergence of the trajectories in the case of a unique equilibrium. The general case of multiple equilibria is more delicate and will be discussed in section 3.2.

Corollary 3.6 (Case of a unique equilibrium).

Under the hypotheses of Proposition 3.5, assume moreover that argmin Φ = {u} for some u ∈ V. Then the solution u(t) weakly converges in V toward u as t → +∞. Furthermore, if u(t) strongly converges 7 in H then it strongly converges in V.

Proof. By assumption, the solution u is bounded in H. In view of hypothesis (h 2 ) and Remark 3.4, it is also bounded in V. Hence there exist u ∞ ∈ V and a subsequence (t n ) tending to +∞ such that lim n→+∞ u(t n ) = u ∞ weakly in V. Since Φ is convex and continuous for the strong topology of V, it is lower semicontinuous for the weak topology of V. Hence, we have Φ(u ∞ ) ≤ lim inf n→+∞ Φ(u(t n )). From the second part of (3.5) we deduce that Φ(u ∞ ) ≤ 0, i.e. u ∞ ∈ argmin Φ = {u}. Hence u is the unique limit point of the map t → u(t) as t → +∞ for the weak topology of V. It ensues that lim t→+∞ u(t) = u weakly in V. Let us now prove the second point. The argument is given in [3, p. 548-549] but we recall it for the sake of completeness. From (h 2 ), we have

µ u(t) -u 2 ≤ λ |u(t) -u| 2 + a(u(t) -u, u(t) -u) (3.9) = λ |u(t) -u| 2 + 2 Φ(u(t)) -2 F(u(t)) -2 a(u(t), u) + a(u, u).
Since u(t) → u strongly in H and weakly in V, we have lim t→+∞ |u(t) -u| 2 = 0 and lim t→+∞ a(u(t), u) = a(u, u). On the other hand, by weak lower semicontinuity of the continuous convex function F : V → R, we infer that lim inf t→+∞ F(u(t)) ≥ F(u). Recalling finally property (3.5), we deduce from inequality (3.9) that

µ lim sup t→+∞ u(t) -u 2 ≤ -2 F(u) -a(u, u) = 0.
We conclude that u(t) → u strongly in V.

Convergence of the trajectories.

When the damping coefficient γ(t) is constant, i.e. γ(t) ≡ γ, the solutions of (E) weakly converge in V toward an equilibrium point, see [START_REF] Alvarez | Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria[END_REF]. We are going to show that this property still holds true if the quantity γ(t) behaves as k/t α , for some α ∈]0, 1[, k > 0 and t large enough. The first step consists in establishing an improved version of Proposition 3.5. The corresponding estimates are obtained by strengthening the assumptions on the map γ. Proposition 3.7. Assume that the bilinear form a(., .) and the function f satisfy respectively hypotheses (h 1 )-(h 2 ) and (k 1 )-(k 3 ). Let γ ∈ W 1,1 loc (R + , R + ) be a function satisfying (l 1 ). Assume that there exists t 0 > 0 such that γ(t) ≥ 3 t for every t ≥ t 0 and that

+∞ 0 t 1-( 1 2 ) n | γ(t)| dt < +∞ for some n ∈ N.
Let u be a solution in the class (1.4) to equation (E) and assume that u ∈ L ∞ (R + , H). Then we have 7 This assumption is satisfied if the injection V ֒→ H is compact.

(i) +∞ 0 t 1-( 1 2 ) n E (t) dt < +∞. (ii) lim t→+∞ t 2-( 1 2 ) n E (t) = 0. (iii) +∞ 0 t 2-( 1 2 ) n γ(t) du dt (t) 2 dt < +∞.
If moreover there exists k > 0 such that γ(t)

≥ k t 1-( 1 2 )
n+1 for t large enough, then

(iv) +∞ 0 t 1-( 1 2 ) n+1 du dt (t) 2 dt < +∞.
Proof. It is divided into two steps.

Step A. First we establish a preliminary result that will be used recursively in the second step. We assume that there exist θ ∈ [0, For the last two integrals, let us use a technique of integration by parts.

-

t t 0 s θ p(s) ds = -t θ ṗ(t) + t θ 0 ṗ(t 0 ) + θ t t 0 s θ-1 ṗ(s) ds = -t θ ṗ(t) + t θ 0 ṗ(t 0 ) + θ t θ-1 p(t) -θ t θ-1 0 p(t 0 ) -θ (θ -1) t t 0 s θ-2 p(s) ds.
The map u is bounded in H by assumption, hence there exist M, M ′ > 0 such that p(t) ≤ M and | ṗ(t)| ≤ M ′ du dt (t) for every t ≥ 0. Therefore we deduce from the above equality that

- t t 0 s θ p(s) ds ≤ M ′ t θ du dt (t) + M ′ t θ 0 du dt (t 0 ) + θ M t θ-1 + θ (1 -θ) M t t 0 s θ-2 ds.
By using the assumption du dt (t) ≤ k t θ for every t > 0, we obtain 

- t t 0 s θ p(s) ds ≤ 2 k M ′ + θ M t θ-1 + θ M (t θ-1 0 -t θ-1 ) = 2 k M ′ + θ M t θ-1 0 . ( 3 
≤ M t θ 0 γ(t 0 ) + θ M t t 0 s θ-1 γ(s) ds + M t t 0 s θ | γ(s)| ds.
From the assumption +∞ 0 s θ | γ(s)| ds < +∞ and Lemma 3.8 (i) below 8 , we deduce that 

- t t 0 s θ γ(s) ṗ(s) ds ≤ M t θ 0 γ(t 0 ) + θ M +∞ t 0 s θ-1 γ(s) ds + M +∞ t 0 s θ | γ(s)| ds < +∞. ( 3 
If +∞ 0 t θ | γ(t)| dt < +∞, then +∞ 0 t θ-1 γ(t) dt < +∞. (ii) If the map γ is nonincreasing and if +∞ 0 t θ-1 γ(t) dt < +∞, then +∞ 0 t θ | γ(t)| dt < +∞.
The proof of Lemma 3.8 is postponed to the appendix. Let us now come back to equation (3.11). By taking the positive part of each member, we find ( Ėθ ) + (t) ≤ (1 + θ) t θ E (t). This implies that ( Ėθ ) + ∈ L 1 (0, +∞) and therefore l = lim t→+∞ t 1+θ E (t) 

exists in R + . If l > 0, this implies that t θ E (t) ∼ l/t
≥ k t 1-( 1 2 )
n+1 , we immediately find (iv).

In the sequel, we denote by (l 4 ) the following condition

(l 4 ) +∞ 0 t 1-( 1 2 ) n | γ(t)| dt < +∞ and ∀t ≥ t 0 , γ(t) ≥ k t 1-( 1 2 ) n+1 ,
for some n ∈ N, k > 0 and t 0 > 0. Hypothesis (l 4 ) automatically implies (l 2 ) together with (l 3 ).

Remark 3.9. Assume that the map γ : R + → R + is nonincreasing. If the integer n arising in (l 4 ) is equal to 0, condition

+∞ 0 t 1-( 1 2 ) n | γ(t)| dt < +∞ is automati- cally satisfied. If n ≥ 1, we deduce from Lemma 3.8 that +∞ 0 t 1-( 1 2 ) n | γ(t)| dt converges if and only if +∞ 0 γ(t) t ( 1 2 )
n dt is finite. This last condition is realized if

there exist θ > 1 -1 2 n
and k ′ > 0 such that γ(t) ≤ k ′ t θ for t large enough. It can be easily seen that condition (l 4 ) is satisfied if the following assertion holds true

∀t ≥ t 0 , k t α ≤ γ(t) ≤ k ′ t α , for some α ∈]0, 1[ and k, k ′ > 0.
The integer n is then uniquely 9 defined by the inclusion α ∈ 1 -

1 2 n , 1 -1 2 n+1
.

Notice that if α ∈ 0, 1 2 , we have n = 0 and one may take k ′ = +∞ (no required upper bound).

Let us now state the main result of this section. Theorem 3.10. Assume that the bilinear form a(., .) and the function f satisfy respectively (h 1 )-(h 2 ) and (k 1 )-(k 3 ). Let γ ∈ W 1,1 loc (R + , R + ) be a map satisfying (l 1 ) and (l 4 ). Let u be a solution in the class (1.4) to equation (E) and assume that u ∈ L ∞ (R + , H). Then, there exists u ∞ ∈ S such that u(t) ⇀ u ∞ weakly in V as t → +∞. Furthermore, if u(t) strongly converges 10 in H then it strongly converges in V.

Proof. Let v ∈ S and define the map p : R + → R + by p(t) = 1 2 |u(t) -v| 2 as in the proof of Proposition 3.5. Inequality (3.6) Theorem 3.1] but the arguments are given for the sake of completeness. Since u ∈ L ∞ (R + , H) by assumption, we deduce from hypothesis (h 2 ) and Remark 3.4 that u ∈ L ∞ (R + , V). Let u ∈ V be a weak cluster point of {u(t); t → +∞} for the weak topology of V. There exists a sequence t n → +∞ such that u(t n ) ⇀ u weakly in V as n → +∞. Since the function Φ is lower semicontinuous for the weak topology of V, we have in view of assertion (3.5)

Φ(u) ≤ lim inf n→+∞ Φ(u(t n )) = lim t→+∞ Φ(u(t)) = 0,
which implies that u ∈ S. Let us prove that {u(t); t → +∞} has a unique cluster point for the weak topology in V. We apply the following argument due to Opial [START_REF]Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF]. Let u 1 , u 2 ∈ S be two cluster points of {u(t); t → +∞} for the weak topology of V. According to the first part of the proof, we can assert that lim t→+∞ |u(t) -

u i | 2 = l i exists for each i = 1, 2. Moreover there exists a sequence t n → +∞ such that u(t n ) ⇀ u 1 weakly in V as n → +∞. Since the injection V ֒→ H is continuous, u(t n ) ⇀ u 1 weakly in H as n → +∞. From the equality |u(t) -u 1 | 2 -|u(t) -u 2 | 2 = |u 1 -u 2 | 2 + 2(u 1 -u 2 , u 2 -u(t)), we infer that l 1 -l 2 = -|u 1 -u 2 | 2 .
On the other hand, if we take t m → +∞ such that u(t m ) ⇀ u 2 weakly in V as m → +∞, we find l 1 -

l 2 = |u 1 -u 2 | 2 . As a consequence, |u 1 -u 2 | 2 = 0.
This establishes the uniqueness of the cluster points of {u(t); t → +∞} for the weak topology of V. Hence u(t) ⇀ u ∞ weakly in V as t → +∞ for some u ∞ ∈ V.

For the second point, the reader is referred to the corresponding argument in the proof of Corollary 3.6.

In view of Remark 3.9, we obtain directly the following corollary of Theorem 3.10. Corollary 3.12. Assume that the bilinear form a(., .) and the function f satisfy the same hypotheses as in Theorem 3.10. Let γ ∈ W 1,1 loc (R + , R + ) be a nonincreasing map and suppose that there exist

α ∈]0, 1[, k, k ′ > 0 and t 0 > 0 such that 11 ∀t ≥ t 0 , k t α ≤ γ(t) ≤ k ′ t α .
Then we have the same conclusions as in Theorem 3.10.

An interesting situation ensuring strong convergence in V is the case where the non-linearity satisfies the symmetry property F(-u) = F(u) for all u ∈ V. Theorem 3.13. Under the hypotheses of Theorem 3.10, assume moreover that the function F is even, i.e. F(-u) = F(u) for all u ∈ V. Then there exists u ∞ ∈ S such that u(t) → u ∞ strongly in V.

Proof. The argument was originated by Bruck, see [START_REF] Bruck | Asymptotic convergence of nonlinear contraction semigroups in Hilbert space[END_REF]Theorem 5]. It has been adapted to the framework of second-order in time equations, see for example [2, Theorem 2.4 (i)] or [START_REF] Alvarez | Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria[END_REF]Remark 3.2] in the case of a constant damping parameter γ. Let us fix t 0 > 0 and define the map q : [0, t 0 ] → R by

q(t) = |u(t)| 2 -|u(t 0 )| 2 - 1 2 |u(t) -u(t 0 )| 2 .
A first differentiation gives for all t ∈ [0, t 0 ]

q(t) = du dt (t), u(t) + u(t 0 ) . Since du dt ∈ W 1,1 loc (R + , H)
by assumption, it is immediate to check that the map q is absolutely continuous, hence differentiable almost everywhere on [0, t 0 ] and we have

q(t) = d 2 u dt 2 (t), u(t) + u(t 0 ) + du dt (t) 2 a.e. on [0, t 0 ].
11 This condition is satisfied if there exists k ′′ > 0 such that γ(t) ∼ k ′′ t α as t → +∞. On the other hand, one can take k ′ = +∞ if α ∈ 0, 1 2 , see Remark 3.9.

By combining the expressions of q, q, we obtain for almost every t ∈ [0, t 0 ]

q(t) + γ(t) q(t) = -a(u(t), u(t) + u(t 0 )) -( f (u(t)), u(t) + u(t 0 )) + du dt (t) 2 = -Φ ′ (u(t)), u(t) + u(t 0 ) V ′ ,V + du dt (t) 2 . (3.23) 
Since the function Φ is convex and even, we have for all u, v ∈ V

Φ(v) -Φ(u) = Φ(-v) -Φ(u) ≥ -Φ ′ (u), v + u V ′ ,V .
Hence inequality (3.23) gives

q(t) + γ(t) q(t) ≤ Φ(u(t 0 )) -Φ(u(t)) + du dt (t) 2 a.e. on [0, t 0 ]. (3.24) 
Recalling that the energy function E (t) is nonincreasing, we have 1

2 du dt (t) 2 + Φ(u(t)) ≥ du dt (t 0 ) 2 + Φ(u(t 0 )) for every t ∈ [0, t 0 ]. Therefore ∀t ∈ [0, t 0 ], Φ(u(t 0 )) -Φ(u(t)) ≤ 1 2 du dt (t) 2 .
Using inequality (3.24), we deduce that

q(t) + γ(t) q(t) ≤ 3 2 du dt (t) 2 a.e. on [0, t 0 ].
Let us multiply each member of this inequality by e t 0 γ(τ) dτ and integrate on [0, t]. Since the map q is absolutely continuous, we find q(t) ≤ e -t 0 γ(τ) dτ q(0) + Let us integrate this inequality on [t, t 0 ], we obtain -q(t) ≤ q(0)

t 0 t e -s 0 γ(τ) dτ ds + 3 2 (h(t 0 ) -h(t)),
where we have set

h(t) = t 0 e -s 0 γ(τ) dτ s 0 e σ 0 γ(τ) dτ du dt (σ) 2 dσ ds.
We deduce from the previous inequality that Corollary 3.14 (Linear case). Assume that the bilinear form a(., .) satisfies (h 1 )-(h 2 ) and take f = 0. Let γ ∈ W 1,1 loc (R + , R + ) be a map satisfying (l 1 ) and (l 4 ). Let u be a solution in the class (1.4) to equation (E) and assume that u ∈ L ∞ (R + , H). Then, there exists u ∞ ∈ ker A such that u(t) → u ∞ strongly in V as t → +∞.

1 2 |u(t) -u(t 0 )| 2 ≤ |u(t)| 2 -|u(t 0 )| 2 + q(0) t 0 t e -s 0 γ(τ) dτ ds + 3 2 (h(t 0 ) -h(t)).
Proof. Use Theorem 3.13 with F = 0. 

APPLICATION TO PARTICULAR SEMILINEAR EVOLUTION PROBLEMS

We suppose that Ω is a bounded open subset of R n with boundary ∂Ω sufficiently regular. 

d 2 u dt 2 + γ(t) du dt -∆u + f (u) = 0 on Ω×]0, +∞[, (4.1) 
with Dirichlet boundary condition:

u = 0 on ∂Ω×]0, +∞[. (4.2) 
The functional setting of the evolution problem (4.1)-(4.2) is given by

H = L 2 (Ω), V = H 1 0 (Ω) and a(u, v) = Ω ∇u(x)∇v(x)dx.
Hypothesis (h 1 ) is trivially verified while hypothesis (h 2 ) is satisfied with λ = 0, since the bilinear form a is coercive. On the other hand, we assume that the function f satisfies the following properties:

(i) There exist C, α ≥ 0 such that (n -2)α ≤ 2 and | f ′ (r)| ≤ C (1 + |r| α ) ∀r ∈ R.
(ii) f is nondecreasing.

Define the function F ∈ C 2 (R) by F(r) = r 0 f (s) ds for every r ∈ R. For simplicity of notation, we write F(u) for Ω F(u(x)) dx. Hypothesis (k 1 ) is a consequence of assumption (i) above, see for example [10, pp. 73-75]. The monotonicity hypothesis (k 2 ) is ensured by point (ii). Finally the coercivity of the bilinear form a implies that the equilibrium set is a singleton {u}, see Remark 3.1. In particular, the non- vacuity condition (k 3 ) is satisfied. If the map γ ∈ W 

H = L 2 (Ω), V = H 1 (Ω) and a(u, v) = Ω ∇u(x).∇v(x)dx.
The bilinear form a is semi-coercive, hypothesis (h 2 ) is satisfied with λ = µ = 1. To overcome the lack of coercivity, assumptions (i)-(ii) above are supplemented with the following one (iii) There exist ε > 0 and D ≥ 0 such that F(r) ≥ ε r 2 -D for every r ∈ R.

Assumption (iii) implies that condition (k 3 ) is verified, see Remark 3.1. Hypotheses (k 1 )-(k 2 ) are fulfilled as in the previous example. If the map γ ∈ W 1,1 loc (R + , R + ) satisfies (l 1 ) and (l 4 ), we derive from Theorem 3.10 that there exists a solution u ∞ of -∆u + f (u) = 0 in Ω ∂u ∂n = 0 on ∂Ω such that u(t) ⇀ u ∞ weakly in H 1 (Ω) as t → +∞. Since the injection H 1 (Ω) ֒→ L 2 (Ω) is compact, the second part of Theorem 3.10 shows that the convergence is strong in H 1 (Ω). 

d 2 u dt 2 + γ(t) du dt -∆u -λ 1 u + f (u) = 0 on Ω×]0, +∞[, (4.3) 
with Dirichlet boundary condition. Here λ 1 stands for the smallest eigenvalue of the Laplacian-Dirichlet operator. The functional setting of the evolution problem is given by:

H = L 2 (Ω), V = H 1 0 (Ω) and a(u, v) = Ω [∇u(x).∇v(x) -λ 1 u(x)v(x)] dx.
It is immediate to check that (h 1 )-(h 2 ) are satisfied. Under the above assumptions (i), (ii) and (iii), we obtain as previously that conditions (k 1 )-(k 3 ) hold true. If the map γ ∈ W 1,1 loc (R + , R + ) satisfies (l 1 ) and (l 4 ), we derive from Theorem 3.10 that there exists a solution u ∞ of -∆u - 

λ 1 u + f (u) = 0 in Ω u = 0
(e i ) i≥1
) is the sequence of eigenvalues (respectively eigenfunctions normalized in L 2 (Ω)) of (-∆) in H 1 0 (Ω). For each i ≥ 1, P i denotes the orthogonal projection on span{e i } in the sense of L 2 (Ω). We assume that the nonnegative sequence (η i ) i≥1 is bounded and that η i ≤ λ i for every i ≥ 1. The functional setting of the evolution problem is given by It is easy to check that hypotheses (h 1 )-(h 2 ) hold true. Under the additional assumptions (i), (ii) and (iii), we then obtain (k 1 )-(k 3 ). If the map γ ∈ W 1,1 loc (R + , R + ) satisfies (l 1 ) and (l 4 ), we obtain as in the previous example the existence of an equilibrium u ∞ such that u(t) → u ∞ strongly in H 1 0 (Ω) as t → +∞. 4.2. A higher-order example. The functional setting of the evolution problem (4.4)-(4.5) is given by: H = L 2 (Ω), V = u ∈ H 2 (Ω), u = ∂u ∂n = 0 on ∂Ω and a(u, v) = Ω ∆u(x).∆v(x)dx.

H = L 2 (Ω), V = H 1 0 (Ω)
Hypothesis (h 1 ) is trivially verified. Moreover, from the regularity results relative to the Laplacian-Dirichlet problem, there exists κ > 0 such that u H 2 (Ω) ≤ κ |∆u| L 2 (Ω) . Hence condition (h 2 ) is satisfied with λ = 0, i.e. the bilinear form a is coercive. We assume that the function f satisfies assumption (ii) along with the following variant of (i) (i') There exist C, α ≥ 0 such that (n -4)α ≤ 4 and | f ′ (r)| ≤ C (1 + |r| α ) ∀r ∈ R.

By using Sobolev's imbedding theorem, we let the reader check that hypothesis (k 1 ) is a consequence of assumption (i') above. The monotonicity hypothesis (k 2 ) is ensured by (ii). Finally in view of Remark 3.1, the coercivity of the bilinear form a implies that the equilibrium set is a singleton {u} and in particular (k 3 ) holds true.

If the map γ ∈ W 1,1 loc (R + , R + ) satisfies (l 1 )-(l 3 ), we derive from Corollary 3.6 that u(t) → u strongly in H 2 (Ω) as t → +∞. On the other hand, the coercivity of a implies that condition (3.26) is fulfilled. If the map γ satisfies (l 1 ) and γ(t) = o(γ(t)) as t → +∞, Theorem 3.15 then shows that for every m ∈ 0, 2 

( 3 .

 3 25)In the proof of Theorem 3.10, we showed that lim t→+∞ |u(t) -v| 2 exists for all v ∈ argmin Φ. Since Φ is convex and even, we have 0 ∈ argmin Φ, hence lim t→+∞ |u(t)| 2 exists. On the other hand, from Lemma 3.11 (i) applied with θ = 1τ) dτ ds < +∞. Finally, in view of estimate (3.22), we can assert that lim t→+∞ h(t) exists. We then deduce from inequality (3.25) that {u(t); t → +∞} is a Cauchy net in H hence strongly converges in H. It suffices to use the second part of Theorem 3.10 to obtain the strong convergence in V.

4. 1 .Example 4 . 1 .

 141 Hyperbolic problems of order two in space. Given a map γ : R + → R + and a function f ∈ C 1 (R), let us consider the following damped wave equation

Example 4 . 3 .

 43 Let us consider the following equation

  and a(u, v) = Ω ∇u(x).∇v(x)dx -(x).P i v(x)dx.

Example 4 . 5 .

 45 Let us consider the following equationd 2 u dt 2 + γ(t) du dt + ∆ 2 u + f (u) = 0 on Ω×]0, +∞[,(4.4)with the boundary condition:u = ∂u ∂n = 0 on ∂Ω×]0, +∞[. (4.5) 

  ϕ i ) as t → +∞, for some c i , ϕ i ∈ R. Coming back to the averaged heat equation (1.2), we then obtain for each component v i

	. Recalling that				
	J 0 (t) ∼ we deduce that u i (t) ∼ c i 2 π t cos t -π 4 √ t λ i t v i (s) ∼ and Y 0 (t) ∼ cos( √ c i √ 2 s -1 4 cos 2 λ	2 π t	sin t -	π 4	as t → +∞,

i sϕ i as s → +∞.

  Observe that if G(t 1 ) = 0 for some t 1 ≥ t 0 , then we have F (t 1 ) = 0 and E (t 1 ) = 0. Since the map E is nonincreasing, we conclude that E (t) = 0 for every t ≥ t 1 , i.e. Remark 2.4 (Case γ constant). Assuming that γ(t) ≡ γ > 0 and that a(u, u) ≥ η |u| 2 for every u ∈ V, the estimate E (t) = O e -γ t remains true as t → +∞ if γ < 2 η 1/2 , see[START_REF] Haraux | Systèmes dynamiques dissipatifs et applications[END_REF] Lemma 3.2.6]. However, it fails to be valid if γ ≥ 2 η 1/2 , see[START_REF] Haraux | Systèmes dynamiques dissipatifs et applications[END_REF] Proposition 3.2.5].

	the solution u is stationary. Now assume that G(t) > 0 for every t ≥ t 0 and divide each member of equality (2.6) by G(t). Since γ ∈ L 1 (0, +∞) by assumption, we deduce that d dt ln G (t) = | Ġ(t)| ∈ L 1 (0, +∞). G(t) It ensues that lim t→+∞ ln G(t) exists in R. We deduce that lim t→+∞ e t 0 γ(s)ds F (t) = K > 0. The conclusion immediately follows from estimate (2.5).
	Remark 2.3. A result similar to Lemma 2.2 can be obtained by eliminating the first
	order term in (E 0 ) via the change of variable v(t) = e	1 2	t 0 γ(s)ds u(t). The details are
	left to the reader.											
	1,1 loc (R + ) and by differentiating the function F , we find for almost Ḟ (t) = Ė (t) + every t ≥ 0 γ(t) 2 du dt (t), u(t) + γ(t) 2 d 2 u dt 2 (t), u(t) + γ(t) 2 dt (t) du 2
	= -	γ(t) 2	du dt	(t)	2	-	γ(t) 2	a(u(t), u(t)) +	γ(t) 2	-	γ(t) 2 2	du dt	(t), u(t) .
	Therefore we have										
		Ḟ (t) + γ(t)F (t) =	γ(t) 2	du dt	(t), u(t)		a.e. on R + .	(2.3)
	Since du dt (t), u(t) ≤ 1 2 sumption (2.2), we have	du dt (t)	2	+ 1 2 |u(t)| 2 and a(u(t), u(t)) ≥ η |u(t)| 2 by as-
				du dt	(t), u(t) ≤ C E (t), for some C > 0.	(2.4)
	Recalling that lim t→+∞ γ(t) = 0, the expression of F shows that F (t) ∼ E (t) as t → +∞. We deduce from (2.3), (2.4) and (2.5) the existence of D > 0 and t 0 ≥ 0 such that (2.5) Ḟ (t) + γ(t)F (t) ≤ D | γ(t)|F (t) a.e. on [t 0 , +∞[. Let us multiply each member of this inequality by e t 0 γ(s)ds and set G(t) = e t 0 γ(s)ds F (t). We obtain | Ġ(t)| ≤ D | γ(t)|G(t) a.e. on [t 0 , +∞[. (2.6)
	4 The use of such an auxiliary function is classical, see for example [13, Lemma 3.2.6] in the case of
	an autonomous damping.										

  .5)Proof. (i) The proof follows the same arguments as those of[START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF] Prop. 3.1]. Let us take v ∈ S and define the function p : R + → R + by p(t) =1 2 |u(t) -v| 2 . By differentiating, we find for every t ≥ 0 W 1,1 loc (R + , H) by assumption, it is immediate to check that ṗ ∈ W 1,1 loc (R + ). Hence the map ṗ is differentiable almost everywhere on R + and we have

	Since du dt ∈ p(t) =	d 2 u dt 2 (t), u(t) -v +	du dt	(t)	2	a.e. on R + .
	By combining the expressions of ṗ, p and by using the convexity of the function
	Φ, we obtain					
	p(t) + γ(t) ṗ(t) = a(u(t), v -u(t)) + ( f (u(t), v -u(t)) +	dt du	(t)	2
		≤ -Φ(u(t)) +	du dt	(t)	2	a.e. on R + .	(3.6)
	It follows that					
	p(t) + γ(t) ṗ(t) + E (t) ≤	3 2	du dt	(t)
	2					
		ṗ(t) =	du dt	(t), u(t) -v .

2 a.e. on R + . (3.7) Let us multiply this inequality by γ(t) and integrate on [0, t]. By using the fact that Ė (t) = -γ(t) du dt (t)

  as t → +∞, a contradiction with estimate(3.16). Hence we have The function E is nonincreasing, hence majorized. We deduce the existence of k 1 > 0 such that du dt (t) ≤ k 1 for every t ≥ 0. Since

	the above arguments, we let the reader check that lim t→+∞	t 2-( 1 2 )	n-1	E (t) = 0. This
	implies the existence of k n+1 > 0 such that du dt (t) ≤ k n+1 t 1-( 1 2 ) +∞ 0 t 1-( 1 2 ) n | γ(t)| dt < +∞ by assumption, assertions (3.16), (3.17) and (3.18) ap-n for every t > 0. Since 2 n respectively yield conclusions (i), (ii) and (iii). Finally, by plied with θ = 1 -1 combining (iii) with the additional assumption γ(t)
							lim t→+∞	t 1+θ E (t) = 0.	(3.17)
	Finally, by integrating equality (3.11) on [0, t], we obtain
	0	t	s 1+θ γ(s)	du ds	(s)	
	hence				0	+∞	s 1+θ γ(s)	du ds	(s)
	+∞ 0 can apply the result of Step A with θ = 0. We then obtain from assertion (3.17) | γ(t)| dt < +∞, we
	that lim t→+∞ t > 0. Since t E (t) = 0. Hence there exists k 2 > 0 such that du dt (t) ≤ k 2 t 1/2 for every +∞ 0 t 1/2 | γ(t)| dt < +∞ as soon as n ≥ 1, we can apply the result of Step A with θ = 1 2 . We obtain in particular that lim t→+∞ t 3/2 E (t) = 0. By iterating
	8 Lemma 3.8 applies only for θ > 0. When θ = 0, the corresponding term to be majorized in the
	above inequality is equal to 0.	

2 ds = (1 + θ) t 0 s θ E (s) ds + E θ (0) -E θ (t) ≤ (1 + θ) +∞ 0 s θ E (s) ds + E θ (0) < +∞, 2 ds < +∞. (3.18)

Step B.

  -1, where[x] denotes the integer part of x ∈ R.10 This assumption is satisfied if the injection V ֒→ H is compact. Let us assume that there exist θ ∈]0, 1[, k > 0 and t 0 > 0 such that γ(t) ≥ k t θ for every t ≥ t 0 . Then we haveThe proof of Lemma 3.11 is postponed to the appendix. On the other hand, by applying Fubini theorem, we find

	Let us multiply each member of this inequality by e	t 0 γ(τ) dτ and integrate on [0, t].
	loc (R + ), we obtain Recalling that ṗ ∈ W 1,1 ṗ(t) ≤ e -t 0 γ(τ) dτ ṗ(0) + e -t 0 γ(τ) dτ	0	t	e	s 0 γ(τ) dτ du ds	(s)	2	ds.	(3.19)
	We now show that the right member of the above inequality is a summable func-
	tion. From Lemma 3.11 (i) below applied with θ = 1 -1 2	n+1	, we have
														0	+∞	e -t 0 γ(τ) dτ dt < +∞.	(3.20)
	Lemma 3.11. (i) +∞ 0 (ii) +∞ s	e -t 0 γ(τ) dτ dt < +∞; e -t 0 γ(τ) dτ dt ≤ 2 k s θ e -s 0 γ(τ) dτ	for s large enough.
	0	+∞	e -t 0 γ(τ) dτ	0	t	e	s 0 γ(τ) dτ du ds	(s)	2	ds dt =	0	+∞	du ds	(s)	2	e	s 0 γ(τ) dτ	s	+∞	e -t 0 γ(τ) dτ dt ds.
																					(3.21)
	In view of Lemma 3.11 (ii) applied with θ = 1 -1 2	n+1	, this implies that
					du ds	(s)	2	e	s 0 γ(τ) dτ	s	+∞	e -t 0 γ(τ) dτ dt ≤	2 k	s 1-( 1 2 )	n+1	du ds	(s)	2	.
	Since	0	+∞	s 1-( 1 2 )	n+1	du ds	(s)	2		ds < +∞ in view of Proposition 3.7 (iv), we deduce
	from equality (3.21) that								
								0	+∞	e -t 0 γ(τ) dτ		0	t	e	s 0 γ(τ) dτ du ds	(s)
																					implies that
											p(t) + γ(t) ṗ(t) ≤	du dt	(t)	2	a.e. on R + .
		9 Its explicit expression is given by n = -ln(1-α) ln 2

2 ds dt < +∞. (3.22) By combining inequality (3.19) with estimates (3.20) and (3.22), we infer that [ ṗ] + ∈ L 1 (0, +∞) and hence lim t→+∞ p(t) exists. The end of the proof is the same as in [3,

  3.3.Decay estimates for a strong set of minima. Recall that the set S = argmin Φ is convex and closed in H, see Remark 3.2. Let us denote by P S the projection operator onto the set S in the sense of H. In this paragraph, we assume that the function Φ : V → R satisfies12 ∃η > 0 such that ∀u ∈ V, Φ(u) ≥ If γ ∈ L 1 (0, +∞), we know from Proposition 3.5 (ii) that lim t→+∞ E (t) = 0. Under assumption (3.26), we are able to evaluate the speed of convergence of E (t) as t → +∞. Assume that the bilinear form a(., .) and the function f satisfy respectively(h 1 )-(h 2 ) and (k 1 )-(k 3 ). Let γ ∈ W 1,1 loc (R + , R + ) be a function satisfying (l 1 ) and γ(t) = o (γ(t)) as t → +∞. We suppose that the function Φ : V → R defined by Φ(u) = 1 2 a(u, u) + F(u) satisfies condition (3.26). Let u be a solution in the class (1.4) to equation (E).Then, for all m ∈]0,2 3 [, there exist C > 0 and t 0 ≥ 0 such that:∀t ≥ t 0 , E (t) ≤ Ce -m t 0 γ(s)ds . , H) by assumption, it is immediate to check that φ ∈ W 1,1 loc (R + ), hence the map φ is differentiable almost everywhere on R + . Consider now some t > 0 where the maps φ and du dt are both differentiable, and let us majorize the quantity φ(t). For that purpose, we use a technique of differential quotient. For all h = 0, we have Recalling that lim t→+∞ γ(t) = 0, the expression of F shows that F (t) ∼ E (t) as t → +∞. Remark 3.16. Under the hypotheses of Theorem 3.15, assume that there exists k > 3 such that γ(t) ≥ k t for t large enough. Fix m ∈ 2 k , 2 3 . From Theorem 3.15, there exist C > 0 and t 0 ≥ 0 such that

	Hence we obtain			
	1 h Let us fix some m ∈]0, 2 ( φ(t + h) -φ(t)) ≤ + 1 h 1 h 2 u(t + h) -u(t) -h du dt (t), u(t + h) -u(t) du dt 3 [. Using the fact that γ(t) = o(γ(t)) and γ(t) 2 = o(γ(t)) (3.33) (t), P S (u(t + h)) -P S (u(t)) as t → +∞, we deduce from (3.31), (3.32) and (3.33) the existence of t 0 ≥ 0 such that,
	Ḟ (t) +	2 3	+ γ(t)F (t) ≤ 1 h du dt	(t + h) -2 3 -m γ(t)F (t) du dt (t), u(t + h) -P S (u(t + h)) . a.e. on [t 0 , +∞[,
	Taking the limit as h → 0, we derive that φ(t) ≤ du dt (t) 2 + d 2 u dt 2 (t), u(t) -P S (u(t)) . hence Ḟ (t) + mγ(t)F (t) ≤ 0 for almost every t ≥ t 0 . Let us multiply by e m t (3.28) 0 γ(s)ds and integrate on [t 0 , t]. Since the function F is absolutely continuous, we find 0 γ(s)ds , with D = e m 0 0 γ(s)ds F(t 0 ). Conclusion follows from esti-F (t) ≤ D e -m t mate (3.33).
	η 2 By combining formulae (3.27) and (3.28), and using the convexity of the function |u -P S (u)| 2 . (3.26) 2 d 2 H (u(t), S), where d H (., S) stands for the distance function from the set S in the sense of H. By differentiating, we find for every t ≥ 0 φ(t) = du dt (t), u(t) -P S (u(t)) . (3.27) It follows that φ(t) + γ(t) φ(t) + E (t) ≤ 3 2 du (t) 2 a.e. on R + . Multiplying this formula by 2 2 3 γ(t) ( φ(t) + γ(t) φ(t)) + Ė (t) + 3 γ(t) E (t) ≤ 0 a.e. on R + . (3.29) 2 almost every t ∈ R + , we obtain 3 γ(t) and recalling that Ė (t) = -γ(t) du dt (t) 2 for Theorem 3.15. Proof. Define the map ϕ : R + → R by ϕ(t) = 1 Φ, we deduce that for almost every t ∈ R + φ(t) + γ(t) φ(t) ≤ du dt (t) 2 + d 2 u dt 2 (t) + γ(t) du dt (t), u(t) -P S (u(t)) = du dt (t) 2 ∀t ≥ t 0 , 1 2 du dt (t) 2 ≤ E (t) ≤ C t mk . -a (u(t), u(t) -P S (u(t))) -( f (u(t)), u(t) -P S (u(t))) ≤ du dt (t) 2 -Φ(u(t)) + Φ(P S (u(t))) = dt (t) -Φ(u(t)). du 2 Hence we have du
	Since du dt ∈ W 1,1 This suggests to define the function F : R + → R by F (t) = Φ(u(t)) + 1 2 du dt (t) 2 + 2 3 γ(t) du dt loc (R + 1 h ( φ(t + h) -φ(t)) = 1 h = E (t) + 2 γ(t) φ(t). 3 du dt (t), u(t + h) -P S (u(t + h)) -u(t) + P S (u(t)) (t), u(t) -P S (u(t)) (3.30) In view of inequality (3.29), we immediately find
	+ γ(t) -1 h du dt 1 3 γ(t) 2 (t + h) -du du dt dt (t), u(t) -P S (u(t)) (t), u(t + h) -P S (u(t + h)) . a.e. on R + . The monotonicity of P S implies that Ḟ (t) + 2 3 γ(t)F (t) ≤ 2 3 -1 h du dt (t), P S (u(t + h)) -P S (u(t)) ≤ 1 h 2 u(t + h) -u(t) -h du dt (t), P S (u(t + h)) -P S (u(t)) . (3.31) Since du dt (t), u(t) -P S (u(t)) ≤ 1 2 du dt (t) 2 + 1 2 |u(t) -P S (u(t))| 2 and Φ(u(t)) ≥ η 2 |u(t) -P S (u(t))| 2 by assumption, we have
	du dt	(t), u(t) -P S (u(t)) ≤ C E (t), for some C > 0.	(3.32)

dt (t) ≤ (2C) 1/2 t mk/2 and since mk > 2, we deduce that du dt ∈ L 1 (0, +∞). The trajectory u has a finite length, therefore it strongly converges in H toward some u ∞ ∈ S.

  1,1 loc (R + , R + ) satisfies (l 1 )-(l 3 ), we derive from Corollary 3.6 that u(t) ⇀ u weakly in H 1 0 (Ω) as t → +∞. Since the injection H 1 0 (Ω) ֒→ L 2 (Ω) is compact, the second part of Corollary 3.6 shows that the convergence is strong in H 1 0 (Ω). On the other hand, the coercivity of a implies that condition (3.26) is fulfilled. If the map γ satisfies (l 1 ) and γ(t) = o(γ(t)) as t → +∞, Theorem 3.15 then shows that for every m ∈ 0, 2 Let us consider the damped wave equation (4.1) with Neumann boundary condition ∂u ∂n = 0 on ∂Ω×]0, +∞[. The functional setting of the evolution problem is given by:

							3 ,	
	1 2 Ω	∂u ∂t	(t, x)	2	+ |∇u(t, x)| 2 dx +	Ω	F(u(t, x)) dx = O e -m t 0 γ(s) ds	as t → +∞.

Example 4.2.

  on ∂Ω such that u(t) → u ∞ strongly in H 1 0 (Ω) as t → +∞. Example 4.4. The equation arising in the previous example can be generalized as follows P i u + f (u) = 0 on Ω×]0, +∞[, see [21, Example 4.5]. We still assume Dirichlet boundary conditions. Let us explicit the notations: (λ i ) i≥1 (respectively

	d 2 u dt 2 + γ(t)	du dt	-∆u -

+∞ ∑ i=1 η i

  (i) Let us first prove that lim t→+∞ t θ γ(t) = 0. Since the map s → s θ is nondecreasing on R + , we have for every t ≥ 0 γ(s) ds = t θ γ(t), the last equality being a consequence of the fact that lim t→+∞ γ(t) = 0. In view of assumption +∞ 0 s θ | γ(s)| ds < +∞, we infer from the above inequality that lim t→+∞ t θ γ(t) = 0. On the other hand, the absolute continuity of the map γ allows to write thatθ t 0 s θ-1 γ(s) ds = t θ γ(t) -Remark that t θ e -t 0 γ(τ) dτ ≤ e -c t θ e -k1-θ t 1-θ , hence lim t→+∞ t θ e -t 0 γ(τ) dτ = 0. Therefore, we deduce from (4.7) and (4.8) thatThe right term is clearly negligible with respect to the left one, hence θ k dτ dt for s large enough. The conclusion follows immediately.

	1 2	s	+∞	e -t 0 γ(τ)	s	+∞	t θ-1 e -t 0 γ(τ) dτ dt ≤
										3 ,
	1 2 Ω			∂u ∂t		(t, x)	2	+ |∆u(t, x)| 2 dx +	Ω	F(u(t, x)) dx = O e -m t 0 γ(s) ds	as t → +∞.
						t	+∞	s θ | γ(s)| ds ≥ t θ	t	+∞	| γ(s)| ds ≥ t θ	t	+∞
										0	t	s θ γ(s) ds	(4.6)
										s	+∞	e -t 0 γ(τ) dτ dt ≤	1 k	s	+∞	t θ γ(t) e -t 0 γ(τ) dτ dt.	(4.7)
	An integration by parts in the right-hand side then yields
		s	+∞	t θ γ(t) e -t 0 γ(τ) dτ dt = -t θ e -t 0 γ(τ) dτ	+∞ s	+ θ	s	+∞	t θ-1 e -t 0 γ(τ) dτ dt. (4.8)
						s	+∞	e -t 0 γ(τ) dτ dt ≤	1 k	s θ e -s 0 γ(τ) dτ +	θ k	s	+∞	t θ-1 e -t 0 γ(τ) dτ dt.

APPENDIX

Proof of Lemma 3.8.

≤ t θ γ(t) + t 0 s θ | γ(s)| ds.

Taking the limit as t → +∞, we obtain θ

+∞ 0 s θ-1 γ(s) ds ≤ +∞ 0 s θ | γ(s)| ds < +∞.

(ii) Since γ(s) ≤ 0 for almost every s ≥ 0, we derive from (4.6) that

t 0 s θ | γ(s)| ds = -t 0 s θ γ(s) ds ≤ θ t 0 s θ-1 γ(s) ds,

and the conclusion immediately follows.

Proof of Lemma 3.11. (i) From the assumption γ(t) ≥ k t θ , we deduce the existence of c ∈ R such that t 0 γ(τ) dτ ≥ k 1-θ t 1-θ + c for every t ≥ t 0 . Therefore, we have

+∞ 0 e -t 0 γ(τ) dτ dt ≤ e -c +∞ 0 e -k 1-θ t 1-θ dt < +∞.

(ii) By using the assumption γ(t) ≥ k t θ , we find

See[START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF][START_REF] Bowman | Introduction to Bessel Functions[END_REF] for standard references on Bessel equations.

In this case, a factor[START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert spaces[END_REF] 

has to be introduced in the exponent of formula (1.5).

By using assumptions (h 1 )-(h 2 ), it is easy to check that ker A is closed in H. See also Remark 3.2.

If f = 0, the set S coincides with ker A we recover condition (2.7) of section 2.