
HAL Id: hal-00522915
https://hal.science/hal-00522915

Submitted on 3 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partial state and input observability recovering by
additional sensor implementation: A graph-theoretic

approach.
Taha Boukhobza

To cite this version:
Taha Boukhobza. Partial state and input observability recovering by additional sensor implementation:
A graph-theoretic approach.. International Journal of Systems Science, 2010, 41 (11), pp.1281 - 1291.
�10.1080/00207720902773963�. �hal-00522915�

https://hal.science/hal-00522915
https://hal.archives-ouvertes.fr


Partial state and input observability recovering by

additional sensor implementation:

A graph-theoretic approach

T. Boukhobza

Centre de Recherche en Automatique de Nancy (CRAN), Nancy–University, CNRS UMR 7039

email: taha.boukhobza@cran.uhp-nancy.fr

Abstract

This paper deals with the problem of additional sensor location in order to recover the

observability of any given part of the state and unknown input for structured linear systems.

The proposed method is based on a graph-theoretic approach and assumes only the knowledge

of the system’s structure. We first provide graphical necessary and sufficient conditions for

the generic observability of any given part of the state and input. Then, we study the number

and location of additional sensors in order to satisfy the latter conditions. On the one hand, we

provide necessary requirements to be satisfied by these additional sensors. on the other hand,

we give other sufficient simple conditions allowing to add a number, which is is guaranteed to

be minimal, of sensors to ensure the observability of any given part of the state and unknown

input.

Keywords: Partial state and input generic observability, sensor location, structured linear

systems, graph theory.

1 Introduction

The problem of estimating a part of the state and the unknown input is of great interest mainly

in control law synthesis, fault detection and isolation, fault tolerant control, supervision and

so on. Indeed, in many applications, the estimation of only a part of the state and the un-

known input of the system is necessary. This may be very useful, for example, when we

want to preserve the state observability in the context of a system submitted to faults or in

the case of network distributed systems submitted to network cuts or failures. In this respect,
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many works (Koenig, 2005; Chu, 2000; Chu and Mehrmann, 1999; Hou et al., 1999; Hou

and Müller, 1992; Trinh and Ha, 2000; Tsui, 1996; Kudva et al., 1980) are focused on the

design of full or reduced state observers for linear systems with unknown inputs. More re-

cently, for variable time-delay uncertain systems with unknown inputs, the authors of (Gao and

Wang, 2003; Darouach, 2005; Lin et al., 2007) propose observers to reconstruct a given part of

the state. The proposed method is based on Linear Matrix Inequalities and Equalities (LMI and

LME) and is obviously very well adapted for network distributed systems as it take into account

variable delays.

A preliminary step to the observer design is the analysis of the state and input observability. Such

analysis has been addressed in many studies which provide conditions on the state and/or input

observability (Basile and Marro, 1973; Hou and Müller, 1999; Hou and Patton, 1998). Among

the most important works dealing with the state reconstructibility, we can cite the approach de-

veloped in (Hautus, 1983) where the author gives the definitions of strong detectability and strong

observability and the conditions for existence of observers that estimate a functional of the state

and unknown inputs. When these conditions are not ensured, the only way to recover the observ-

ability, is to add sensors. Many studies reviewed in (van de Wal and de Jager, 2001) deal with

the selection and sensor placement, which almost all use an optimisation criteria related to the

observability Gramian, sensitivity functions . . . . To apply classical algebraic and geometric tools

to address the sensors addition issue, the exact knowledge of the state space matrices characteriz-

ing the system’s model is required. However, in many modeling problems, these matrices have a

number of fixed zero entries determined by the physical laws while the remaining entries are not

precisely known, particularly in the case of large systems or during a conception stage. This is

why, to analyse these systems, in spite of the poor knowledge we have on them, the idea is that we

only keep the zero/non-zero entries in the state space matrices. Thus, we consider models where

the fixed zeros are conserved while the non-zero entries are replaced by free parameters.

There is a huge amount of interesting works in the literature using this kind of models called

structured models. Many of these works are related to the graph-theoretic approach and aim to
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analyse some system properties such as controllability, observability or the solvability of several

classical control problems including disturbance rejection, input-output decoupling, . . . (Dion et

al., 2003). It results from these works that the graph-theoretic approach provides simple and el-

egant solutions. Such approach has been also used for the sensor location studies. In this way,

(Maquin et al., 1994; Meyer et al., 1994) tackle the problem of additional sensor location starting

from some static observability equations which summarize all the available information data on

the system. In (Commault et al., 2005), the authors address the problem of additional sensors

to recover the state observability of linear structured systems. The suggested approach allows to

obtain the minimal number of required additional sensors and the conditions they must satisfy in

order to recover the state observability. Since our work is related to an observability problem,

it is closer to the latter reference with the originality that we consider systems with exogenous

unknown input and we try to recover both the state and input observability without any restriction

on the input dynamics.

More precisely, in this paper, using a graph-theoretic approach, we study the additional sensor

location in order to recover the strong observability of a desired part of the state and the input.

At this aim, in a first stage, we provide the graphical necessary and sufficient conditions for the

observability of any given part of the state and input components. Then, we study the number and

the location of the additional sensors which allow to satisfy the latter observability conditions. In

other words, the main contribution of the paper consists in three results. The first one lies in the

graphical conditions for the strong observability of a state or an input component. Secondly, we

provide the necessary conditions which must be satisfied by the additional sensors to ensure the

strong observability of the given set of state and input components. Finally, we enounce some

sufficient conditions, on the form of graphical equations, which ensure that a sensor configuration

allows to recover the strong observability of the given set of state and input components. These

conditions do not allow to provide the minimal number or an exhaustive list of all the possible

sensors placements which solve the considered observability problem. Nevertheless, they allow to

check quite easily if a given location is acceptable and they can lead to a simple procedure for the
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sensor placement during a system conception stage. Moreover, the proposed results are not trivial

even if they are quite simple because based on searching paths and matchings in a digraph using

well-known combinatorial algorithms. This makes our method particularly simple and intuitive

and so adapted to large scale systems.

The paper is organised as follows: after Section 2, which is devoted to the problem formulation, a

digraph representation of structured systems is given in Section 3. The main results are enounced

in Section 4. An example illustrates the proposed sensor location strategy. Finally, some conclud-

ing remarks are made.

2 Problem statement

In this paper, we treat numerically non-specified systems on the form:

ΣΛ :





ẋ(t) = Aλx(t) + Bλu(t)

y(t) = Cλx(t) + Dλu(t)
(1)

where x ∈ Rn, u ∈ Rq and y ∈ Rp are respectively the state vector, the unknown input vector

and the output vector. Aλ, Bλ, Cλ and Dλ represent matrices which elements are either fixed

to zero or assumed to be nonzero free parameters noted λi. These parameters forms a vector

Λ = (λ1, . . . , λh)
T ∈ Rh.

If all parameters λi are numerically fixed, we obtain a so-called admissible realization of structured

system ΣΛ. We say that a property is true generically (van der Woude, 2000) if it is true for

almost all the realizations of structured system ΣΛ. Here, “ for almost all the realizations ” is to

be understood (Dion et al., 2003; van der Woude, 2000) as “ for all parameter values (Λ ∈ Rh)

except for those in some proper algebraic variety in the parameter space ”. The proper algebraic

variety for which the property is not true is the zero set of some nontrivial polynomial with real

coefficients in the h system parameters λ1, λ2, . . . , λh or equivalently it is an algebraic variety

which has Lebesgue measure zero.

In this paper, we study the problem of sensor implementation in order to guarantee the generic
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observability of a given part of the state and input for structured system ΣΛ. Since we work

with structured systems, the observation of a functional L
(
xT , uT

)T has a meaning only if matrix

L is composed of euclidean vectors of Rn+q or in other words we analyse the additional sensor

implementation in order to guarantee the strong observability of some state and input components.

The state and input observability is related to both the strong observability and the left invertibility

(Trentelman et al., 2001) properties. In other words, a system is state and input observable when

all its state and input components can be expressed in function of the output components and their

derivatives. The definition of the generic state and input observability is recalled hereafter:

Definition 1 Structured system ΣΛ is generically state and input observable if for almost all real-

izations of ΣΛ, for all initial states x0 and for every input function u(t), y(t) = 0 for t ≥ 0 implies

x(t) = 0 for t ≥ 0 and u(t) = 0 for t > 0.

Necessary and sufficient conditions for the state and input observability of structured system ΣΛ

can be deduced from the ones provided in (Trentelman et al., 2001) or from the conditions of the

right-hand side observability of a descriptor system given in Theorem 3 of (Hou and Müller, 1999).

Thus, structured system ΣΛ is generically state and input observable iff

∀ s ∈ C, g_rank(P (s)) = n + g_rank

(
Bλ

Dλ

)
= n + q (2)

where P (s) =

(
Aλ − sIn Bλ

Cλ Dλ

)
is the matrix pencil of ΣΛ and g_rank(P (s)) denotes the generic

rank of matrix P (s).

Hence, g_rank(P (s)) = r, ∀ s ∈ C means that for almost all parameter values Λ ∈ Rh,

rank(P (s)) = r, ∀ s ∈ C. Note that for each realization of system ΣΛ, we can compute the

n-rank of P (s). This rank will have the same value for almost all parameter values Λ ∈ Rh (van

der Woude, 2000). This so-called generic n-rank of P (s) will be denoted by g_n-rank(P (s))

which is different from g_rank(P (s)) as the latter depends on s.

For the present study, we are interested in the generic strong observability of only a part of the

state or the input. From Definition 1, the notion of strong observability of an input or a state

component can be deduced as follows:
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Definition 2 Consider structured system ΣΛ. State component xi (respectively input component

uj) is generically strongly observable if for all initial state x0 and for every input function u(t),

y(t) = 0 for t ≥ 0 implies xi(t) = 0, ∀t ≥ 0 (respectively uj(t) = 0, ∀t > 0).

Roughly speaking, the generic strong observability of a state component xi (respectively an input

component uj) means that a change in xi(0) (respectively uj(0
+)) is necessarily reflected in a

change of measurements.

Starting from a system which does not satisfy condition (2), the objective of our study, which

is based oh a graphic representation of the system, is to propose a strategy for additional sensor

placement in order to recover the observability of any given set of state and input components. The

proposed method must provide the number and the location of the necessary additional sensors

as precisely as possible. At this aim, we must first provide the necessary and sufficient graphical

condition for the strong observability of a state or input component. Then, we can address properly

the sensor placement problem.

In this respect, the next section is dedicated to the definition of a graphical representation of linear

structured systems and to some notations.

3 Graphical representation of structured linear systems

The directed graph or digraph G(ΣΛ) associated to ΣΛ is constituted by a vertex set V and an

edge set E i.e. G(ΣΛ) = (V , E). The vertices are associated to the state, the unknown in-

put and the output components of ΣΛ whereas the edges represent links between these vari-

ables. More precisely, V = X ∪ Y ∪ U, where X = {x1, . . . ,xn} is the set of state ver-

tices, Y = {y1, . . . ,yp} is the set of output vertices and U = {u1, . . . ,uq} is the set of

unknown input vertices. The edge set is E = A-edges ∪ B-edges ∪ C-edges ∪ D-edges,

with A-edges =
{
(xj,xi) | Aλ(i, j) 6= 0

}
, B-edges =

{
(uj,xi) | Bλ(i, j) 6= 0

}
, C-edges =

{
(xj,yi) | Cλ(i, j) 6= 0

}
, D-edges =

{
(uj,yi) | Dλ(i, j) 6= 0

}
, where Mλ(i, j) is the (i, j)th el-

ement of matrix Mλ and (v1,v2) denotes a directed edge from vertex v1 ∈ V to vertex v2 ∈ V .
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Hereafter, we illustrate the proposed digraph representation with an example.

Example 1 To the system defined by the following matrices, we associate the digraph in Figure

1.

Aλ =




λ1 0 0 0 0 0 0 0 0 0
λ2 0 0 0 0 0 0 0 0 0
0 λ3 0 λ4 0 0 0 0 0 0
0 0 λ5 0 0 0 0 0 0 0
0 0 0 λ6 0 λ7 λ8 0 0 0
0 0 λ9 λ10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 λ11 0
0 0 0 0 0 0 0 λ12 0 0




, Bλ =




0 0 0
0 0 λ13

λ14 λ15 0
0 0 0
0 0 0
0 0 0
0 λ16 0
0 λ17 0
0 0 0
0 0 0




,

Cλ =




0 0 0 0 λ18 0 0 0 0 0
0 0 0 0 λ19 0 0 0 λ20 0
0 0 0 0 0 0 λ21 0 0 λ22
0 0 0 0 0 0 0 λ23 0 0


, Dλ =




0 0 0
0 0 0
0 0 0
0 λ24 0


.

 

Figure 1: Digraph associated to system of Example 1

Let us now give some useful definitions and notations.

• Two edges e1 = (v1,v
′
1) and e2 = (v2,v

′
2) are v-disjoint if v1 6= v2 and v′1 6= v′2. Note that e1

and e2 can be v-disjoint even if v′1 = v2 or v1 = v′2.

Some edges are v-disjoint if they are mutually v-disjoint.

• We denote path P containing vertices vr0 , . . . , vri by P = vr0 → vr1 → . . . → vri , where

(vrj ,vrj+1
) ∈ E for j = 0, 1, . . . , i− 1. We say that P covers vr0 , vr1 , . . . , vri . A path is simple

when every vertex occurs only once in this path.

• A cycle is a path of the form vr0 → vr1 → . . . → vri → vr0 , where all vertices

vr0 , vr1 , . . . , vri are distinct.

• Some paths (resp. cycles) are disjoint if they have no common vertex. A set of disjoint cycles is

called a cycle family.
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• Path P is an Y-topped path if its end vertex is an element of Y. An Y-topped path family

consists of disjoint simple Y-topped paths.

• The union of a Y-topped path family, and a cycle family is disjoint if they have no vertices in

common. If such union contains path or a cycle which covers a vertex v it is said to cover v.

• Let V1 and V2 denote two subsets of V . The cardinality of V1 is noted card(V1). A path

P = vr0 → vr1 → . . . → vri is said a V1-V2 path if vr0 ∈ V1 and vri ∈ V2. Moreover, if

the only vertex of P which belongs to V1 is vr0 and the only vertex of P which belongs to V2 is

vri , P is called a direct V1-V2 path.

• A set of l disjoint V1-V2 paths is called a V1-V2 linking of size l. The linkings which consist

of a maximal number of disjoint V1-V2 paths are called maximum V1-V2 linkings. We define by

ρ [V1,V2] the size of these maximum V1-V2 linkings.

• µ [V1,V2] is the minimal number of vertices covered by a maximum V1-V2 linking.

• θ(V1,V2) is the maximal number of v-disjoint edges which start in V1 and end in V2.

• The set of all essential vertices for the maximum V1-V2 linkings, noted Vess(V1,V2), is defined

by Vess(V1,V2)
def
={v ∈ V |v is included in every maximum V1-V2 linking}.

• S ⊆ V is a separator between sets V1 and V2, if every path from V1 to V2 contains at least one

vertex in S. We call minimum separators between V1 and V2 any separators having the smallest

size. According to Menger’s Theorem, the latter equals ρ [V1,V2].

There is an uniquely determined minimum separator between V1 and V2 noted S∗(V1,V2), called

minimum output separator (van der Woude, 2000) and which is the set of start vertices of all direct

Vess(V1,V2) − V2 paths, where Vess(V1,V2) ∩ V2 is considered, in the present definition, as input

vertices. Obviously, Vess(V1,V2) ∩ V2 ⊆ S∗(V1,V2).

In Example 1, ρ [U,Y] = 2 and θ(U,Y) = 1. Moreover, Vess(U,Y) = {x3, x5, u2} and

S∗(U,Y) = {x5, u2}.

We give now the following important definition:

Definition 3 For each vertex subset V such that Y ⊆ V ⊆ X∪U∪Y, we associate the following

vertex subsets:
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• X̄(V) = X \ (V ∩X);

• Ū(V) ⊆ U such that card(Ū(V)) = ρ
[
U,V

]
= ρ

[
Ū(V),V

]
and µ

[
Ū(V),V

]
= µ

[
U,V

]
.

Note that Ū(V) always exists but is not necessarily unique.

•X1(V)
def
=

{
xi ∈ X̄(V) | ρ[

U ∪ {xi},V
]

> ρ
[
U,V

]}
;

•Υ0(V)
def
=

{
vi ∈ V | ρ[

U,V
]

> ρ
[
U,V \ {vi}

]}
= V ∩ Vess(U,V);

•Υ1(V)
def
= V \Υ0(V);

•U0(V)
def
=

{
ui ∈ Ū(V) | θ({ui},X1(V) ∪Υ1(V)

)
= 0

}
;

•U1(V)
def
= Ū(V) \U0(V);

• S∗(V)
def
= S∗

(
U0(V),V

)
;

•Xs(V)
def
= S∗(V) ∩ X̄(V).

•X0(V)
def
= X̄(V) \ (

X1(V) ∪Xs(V)
)
.

• β1(V) is the maximal number of vertices included in X1(V) ∪Xs(V) ∪U1(V) covered by a

disjoint union of

- a Xs(V) ∪U1(V)-Υ1(V) linking of size ρ
[
Xs(V) ∪U1(V),Υ1(V)

]
,

- a Υ1(V)-topped path family and

- a cycle family covering only elements of X1(V).

• β0(V)
def
= µ

[
U0(V),S∗(V)

]
− ρ

[
U0(V),S∗(V)

]
;

• β(V)
def
= β1(V) + β0(V) + card

(
V \Y

)
.

To illustrate the previous definition, in the case of the system described in Example 1, we

have, X̄(Y) = X, Ū(Y) = {u1, u2}, X1(Y) = {x7, x8, x9, x10}, Υ0(Y) = ∅,

Υ1(Y) = Y, U0(Y) = {u1}, U1(Y) = {u2}, S∗(Y) = {x5} = Xs(Y), X0(Y) =

{x1, x2, x3, x4, x6}, β0(Y) = 4 − 1. Moreover, since x9 → x9 is the only cycle in X1(Y)

and ρ
[
Xs(Y) ∪U1(Y),Υ1(Y)

]
= 2, the maximal number of state and input vertices covered

by the disjoint union of two Xs(Y) ∪U1(Y)-Υ1(Y) paths and a Υ1(Y)-topped path family

which does not cover x9 is 4: u2 → x8 → x10 → y3 and x5 → y1. So, β1(Y) = 5 and then

β(Y) = 5 + (4− 1) + 0 = 8.

In (Boukhobza et al., 2007), the subdivision of the system described above is introduced. Mainly,
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it satisfies Vess

(
Ū(V),V

)
= Vess

(
U0(V),V

)
∪ U1(V), θ

(
Xs(V),X1(V) ∪ Υ1(V)

)
=

card
(
Xs(V)

)
, S∗

(
Ū(V),V

)
= Xs(V) ∪Υ0(V) ∪U1(V) and θ

(
X0(V) ∪Υ0(V),X1(V) ∪

Υ1(V)
)

= 0.

Consider a vertex set V such that Y ⊆ V ⊆ X∪U∪Y and assume that some sensors measuring

the components associated to V \Y have been added to system ΣΛ. The latter equalities allow us

to study the input and state observability of such augmented system ΣΛ by considering indepen-

dently two systems:

- a square system denoted Σ0, defined by input U0(V), state X0(V) and output Xs(V)∪Υ0(V),

- a system denoted Σ1, defined by input U1(V) ∪Xs(V), state X1(V) and output Υ1(V).

The particularity of the proposed subdivision is that the input and state observability of ΣΛ can

be done by studying separately Σ0 and Σ1 (Boukhobza et al., 2007). In fact, the subdivision

corresponds to a particular decomposition of the matrix pencil of the system similar to the one

suggested in (van der Woude et al., 2003) but it is here explicitly defined. Moreover, it is well

adapted to the application of the two main theorems of (van der Woude, 2000) characterizing the

generic rank of the pencil matrix of a structured system in the two particular cases of a square

system and a particular rectangular system.

4 Main results

Before addressing the sensor placement problem, in a first subsection, we give the necessary and

sufficient condition which ensures the generic strong observability of state component xi or input

component ui. These conditions are deduced conjointly from (Boukhobza et al., 2007; van der

Woude et al., 2003) and use function β defined at the end of Section 3.

4.1 Partial strong observability analysis

The first obvious necessary condition to the strong observability of a state component xi (respec-

tively an input component uj) is called the output connectivity condition:
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Cond1. There exists an Y-topped starting from xi (respectively uj).

This condition is very easy to prove. In fact, assume that for some xi, it is not satisfied. Then, we

have that, ∀k ≥ 0, the ith column of Cλ(Aλ)k is equal to zero. So the output and all its derivatives

are not sensitive to the state component xi. Thus, xi is not observable. This reasoning can, obvi-

ously, be also done for input component uj .

Since the output connectivity condition is only a necessary condition, the objective of the study

below is to give the graphical necessary and sufficient conditions for the strong observability of

a state or an input component. At this aim, we have recourse to the computation of the generic

dimension of the strongly observable subspace in the extended state and input subspace (xT , uT )T .

As we will see below, this dimension is related to the function β.

Using the results of (Commault et al., 1997), where authors treat the disturbance rejection prob-

lem, we have that input components included in U \ Ū(Y) can be rendered unobservable using

the Ū(Y) components i.e. there exist inputs Ū(Y) such that output y(t) is not sensitive to the

input components associated to U \ Ū(Y). Hence, the input components associated to vertices

U\Ū(Y) are not strongly observable and so, for a sake of simplicity, we restrict our observability

study only to the input components associated to Ū(Y).

Let us denote by B̄λ (resp. D̄λ) the sub-matrix of Bλ (resp. Dλ) associated to Ū(Y) i.e. matrix B̄λ

(resp. D̄λ) is constituted by the concatenation of columns Bλ
j (resp. Dλ

j ) of Bλ (resp. Dλ) where

uj ∈ Ū(Y). Let us denote q̄ = card(Ū(Y)) and the pencil matrix of system (Aλ, B̄λ, Cλ, D̄λ) by

P λ(s) =

(
Aλ − sIn B̄λ

Cλ D̄λ

)
.

The system defined by matrices (Aλ, B̄λ, Cλ, D̄λ) is generically input and state observable iff

g_rank(P λ(s)) = n + q̄ or in other words iff P λ(s) generically has full column rank. Oth-

erwise, if all the state and input components are the start vertices of Y-topped paths and as

ρ
[
Ū(Y),Y

]
= card(Ū(Y)) = q̄, using the results of (van der Woude, 2000), we have that

the generic normal rank of P λ(s) is equal to n + q̄. Thus, g_rank(P λ(s0)) < n + q̄ is equivalent

(Trentelman et al., 2001) to the existence of a nonzero vector
(
xT

0 , uT
0

)T such that the output y

resulting from the initial conditions u(t) = u0e
s0t and x(0) = x0 is zero and so that there exists a
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direction in the extended state and input space which is not strongly observable. Consequently, the

generic dimension of the strongly observable subspace in the extended state and input subspace

(xT , uT )T is closely related to the generic number of invariant zeros of P λ(s) i.e. the complex

roots of g_rank(P λ(s)) < n + q̄ (Trentelman et al., 2001). Indeed, if we denote g_ninv,z this

number, the generic dimension of the strongly observable subspace in the extended state and input

subspace (xT , uT )T is equal to n + q̄ − g_ninv,z.

Before giving the necessary and sufficient condition for the strong observability of a state or an

input component, we give hereafter a graphical characterization of the generic dimension of the

strongly observable subspace in the extended state and input subspace (xT , uT )T . This character-

ization is based on the graphical computation of the number g_ninv,z.

Lemma 1 Consider structured system ΣΛ represented by digraph G(ΣΛ). We have that n + q̄ −
g_ninv,z = β(Y), where g_ninv,z is the number of invariant zeros of P λ(s).

Proof: Due to the properties of subdivision presented in Definition 3 (Boukhobza et al., 2007),

we have that there is no edge from X0(Y) ∪U0(Y) to X1(Y) ∪Υ1(Y) and S∗(U0(Y),Y) =

Xs(Y) ∪Υ0(Y). Thus, we can write ΣΛ as:




Ẋ0(t) = Aλ
0,0X0(t) + Aλ

0,sXs(t) + Aλ
0,1X1(t) + Bλ

0,0U0(t) + Bλ
0,1U1(t)

Ẋs(t) = Aλ
s,0X0(t) + Aλ

s,sXs(t) + Aλ
s,1X1(t) + Bλ

s,0U0(t) + Bλ
s,1U1(t)

Ẋ1(t) = Aλ
1,sXs(t) + Aλ

1,1X1(t) + Bλ
1,1U1(t)

Υ0(t) = Cλ
0,0X0(t) + Cλ

0,sXs(t) + Cλ
0,1X1(t) + Dλ

0,0U0(t) + Dλ
0,1U1(t)

Υ1(t) = Cλ
1,sXs(t) + Cλ

1,1X1(t) + Dλ
1,1U0(t)

(3)

where X0, Xs, U0, U1, Υ0 and Υ1 represent the variables associated to vertex subsets X0(Y),

Xs(Y), U0(Y), U1(Y), Υ0(Y) and Υ1(Y) respectively.

Therefore, with some appropriate permutations on the rows and columns of P λ(s), we can trans-

form P λ(s) into

P̃ λ(s) =




Aλ
0,0 − sIn0 Aλ

0,s Bλ
0,0 Aλ

0,1 Bλ
0,1

Aλ
s,0 Aλ

s,s − sIns Bλ
s,0 Aλ

s,1 Bλ
s,1

Cλ
0,0 Cλ

0,s Dλ
0,0 Cλ

0,1 Dλ
0,1

0 Aλ
1,s 0 Aλ

1,1 − sIn1 Bλ
1,1

0 Cλ
1,s 0 Cλ

1,1 Dλ
1,1



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For a sake of simplicity, let us define n0 = card(X0(Y)), ns = card(Xs(Y)), n1 = card(X1(Y)),
q0 = card(U0(Y)), q1 = card(U1(Y)), p0 = card(Υ0(Y)) and p1 = card(Υ1(Y)).
Since the edges associated to Aλ

1,s link Xs(Y) to X1(Y) and the edges associated to Cλ
1,s link

Xs(Y) to Υ1(Y), we have that g_rank

(
Aλ

1,s

Cλ
1,s

)
= θ(Xs(Y),X1(Y) ∪Υ1(Y)). According to

Statement St3 of Lemma 6 in (Boukhobza et al., 2007), g_rank

(
Aλ

1,s

Cλ
1,s

)
= ns and so the number

of invariant zeros of P λ(s) is equal to the number of invariant zeros of P λ
e (s), where

P λ
e (s) =




Aλ
0,0 − sIn0 Aλ

0,s Bλ
0,0 Aλ

0,1 Bλ
0,1 0

Aλ
s,0 Aλ

s,s − sIns Bλ
s,0 Aλ

s,1 Bλ
s,1 0

Cλ
0,0 Cλ

0,s Dλ
0,0 Cλ

0,1 Dλ
0,1 0

0 Ins 0 0 0 0

0 0 0 Aλ
1,1 − sIn1 Bλ

1,1 Aλ
1,s

0 0 0 Cλ
1,1 Dλ

1,1 Cλ
1,s




Let us denote P λ
0 (s)

def
=




Aλ
0,0 − sIn0 Aλ

0,s Bλ
0,0

Aλ
s,0 Aλ

s,s − sIns Bλ
s,0

Cλ
0,0 Cλ

0,s Dλ
0,0

0 Ins 0


 and P λ

1 (s)
def
=

(
Aλ

1,1 − sIn1 Bλ
1,1 Aλ

1,s

Cλ
1,1 Dλ

1,1 Cλ
1,s

)
.

Matrices P λ
0 (s) and P λ

1 (s) can be seen respectively as the pencil matrices of the square system

denoted Σ0 and the system denoted Σ1, which has generically full column n-rank even after the

deletion of an arbitrary row (Boukhobza et al., 2007).

From (van der Woude, 2000), g_n-rank(P λ
0 (s)) is equal to the number of rows of P λ

0 (s) and

g_n-rank(P λ
1 (s)) is equal to the number of columns of P λ

1 (s). Thus, counting the zeros with

their multiplicities, the number of invariant zeros of P λ
e (s) is equal to the sum of the number of

invariant zeros of P λ
0 (s) and the number of invariant zeros of P λ

1 (s). On the one hand, applying

Theorem 5.1 of (van der Woude, 2000), we have that the number of invariant zeros of P λ
0 (s) is

equal to n0 + ns + q0 − µ
[
U0(Y),S∗(U0(Y),Y)

]
+ ρ

[
U0(Y),S∗(U0(Y),Y)

]− ns. Note that

the presence of the latter term ns is due to the fact that the output of system Σ0 is Ys and not Xs.

Moreover from Theorem 5.2 of (van der Woude, 2000), the number of invariant zeros of P λ
1 (s)

is equal to n1 + ns + q1 minus the maximal number of vertices of X1(Y) ∪ Xs(Y) ∪ U1(Y)

covered by a disjoint union of:
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- a Xs(Y) ∪U1(Y)-Υ1(Y) linking of size ρ
[
Xs(Y) ∪U1(Y),Υ1(Y)

]
,

- a Υ1(Y)-topped path family and

- a cycle family covering only elements of X1(Y).

Therefore, using notations of Definition 3, the number of invariant zeros of P λ
e (s) and also of

P λ(s) is equal to n0+q0+n1+ns+q1−β0(Y)−β1(Y) = n+q̄−β0(Y)−β1(Y). Thus, the generic

dimension of the strongly observable subspace of ΣΛ in the extended state and input subspace is

equal to n + q̄− g_ninv,z = β1(Y) + µ
[
U0(Y),S∗(U0(Y),Y)

]− ρ
[
U0(Y),S∗(U0(Y),Y)

]
=

β1(Y) + β0(Y) = β(Y). ¤

The previous lemma allows us to write that the generic dimension of the strongly observable

subspace in the extended state and input subspace (xT , uT )T is equal to β(Y). The necessary and

sufficient strong observability conditions can be deduced immediately from this Lemma. Indeed,

if β(Y) < n + q then ΣΛ is not generically input and state observable and it may be interesting

to know which state component xi (resp. input component uj) is generically strongly observable.

At this aim, we compare β(Y ∪ {xi}) (resp. β(Y ∪ {uj})) to β(Y). Indeed, this amounts to

compare the generic dimension of the strongly observable subspace in the extended state and

input subspace (xT , uT )T of ΣΛ to the generic dimension of the strongly observable subspace

in the extended state and input subspace (xT , uT )T of the same system ΣΛ with an additional

sensor which measures the component xi (resp. uj). In fact, adding to the system a sensor, which

measures the state component xi (resp. input component uj) is equivalent to add in the digraph

an output vertex yp+1 and an edge (xi,yp+1) (resp. (uj,yp+1)). For the new system obtained

by the addition of yp+1, the computation of the generic dimension of the strongly observable

subspace in the extended state and input subspace (xT , uT )T can be made by using function

β(Y ∪ {yp+1}). Nevertheless, this requires an effective redraw of the digraph to add effectively

an output vertex yp+1 and an edge (xi,yp+1) (resp. (uj,yp+1)). For a sake of simplicity, we have

chosen to work on an unique digraph. Thus, we do not add any vertex or edge in the digraph,

but we consider vertex xi (resp. uj) as an output. Thus, it is easy to deduce from Lemma 1 that
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β(V) = β1(V) + µ
[
U0(V),S∗(V)

]
− ρ

[
U0(V),S∗(V)

]
+ card

(
V \ Y

)
, for V = Y ∪ {xi}

(resp. V = Y ∪ {uj}), represents the generic dimension of the strongly observable subspace in

the extended state and input subspace (xT , uT )T for the new system obtained by the addition of a

measurement on xi (resp. uj). Hence, we have:

Proposition 1 Consider structured system ΣΛ represented by digraph G(ΣΛ). Let Vobs
def
=

{v ∈ X ∪U, β(Y ∪ {v}) = β(Y)}. Assume that any state and input component is the start

vertex of an Y-topped path. State component xi (respectively input component uj) is strongly

observable iff

Cond1. Output connectivity condition: there exists an Y-topped starting from xi (res. uj).

Cond2. β-condition : xi ∈ Vobs (resp. uj ∈ Vobs).

Proof: Obviously, a state component xi is strongly observable iff an additional measure of this

state component does not change the generic dimension of the strongly observable subspace. Us-

ing notations of Definition 3, this implies that state component xi (resp. input component uj) is

strongly observable iff β(Y) = β(Y ∪ {xi}) (resp. β(Y) = β(Y ∪ {uj})) and the proposition

follows. ¤

4.2 Additional sensor for recovering the output connectivity condition

Let us now come back to the sensor location problem and let us denote by ∆ the vertex subset in-

cluding all the vertices associated to the state and input components we want to observe. Similarly

to the study (Commault et al., 2005), we subdivide our analysis into two parts. We first ensure

that all the vertices of ∆ are the start vertices of an Y-topped path (output connectivity condition).

When this condition is recovered for all the elements of ∆, we treat the β-condition.

Let us denote by ∆1 the set of all the elements included ∆ which are not the start vertex of an

Y-topped path. The following definitions are similar to the ones given in (Commault et al., 2005).

Two vertices vi and vj are said to be strongly connected if ρ [{vi}, {vj}] = ρ [{vj}, {vi}] = 1.

It is assumed that a vertex is connected to itself. The "strongly connected" relation noted RSC
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is obviously an equivalence relation and we can define its equivalence classes. We denote each

equivalent class by a strongly connected component of G(ΣΛ). The strongly connected compo-

nents can be ordered using a partial order relation “4”defined as:

consider two strongly components Ci and Cj, Ci 4 Cj, if θ(Cj,Ci) 6= 0.

Using relation “4”, we can order partially all the strongly connected components. Let us denote

by I∗ (resp. J∗) the set of all components xi ∈ ∆1 (resp. uj ∈ ∆1) such that the strongly compo-

nent including xi (resp. uj) is minimal in ∆1. For each element xi ∈ I∗ and for each uj ∈ J∗, we

associate respectively Ωx,i and Ωu,j defined as Ωx,i = {xk ∈ C`, C` ∈ X/RSC and C` 4 Cxi
}

and Ωu,j = {xk ∈ C`, C` ∈ (X∪U)/RSC and C` 4 Cxi
}, where X/RSC (resp. (X∪U)/RSC)

is the quotient de X (resp. X ∪U) by relation RSC . Using the previous statements, we have:

Proposition 2 Consider structured linear system (ΣΛ) represented by digraph G(ΣΛ). To recover

the output connectivity condition Cond1, the additional sensors must be sensitive at least to one

state or input in each set Ωx,i, xi ∈ I∗ and Ωu,j , uj ∈ J∗.

Proof: The Proposition is easy to establish. We present hereafter only a sketch of its proof.

Sufficiency: On the one hand, by construction, all the state and input vertices included in ∆1 are

connected to all the elements of at least one subset Ωx,i, xi ∈ I∗ and Ωu,j , uj ∈ J∗. Hence, if for

each of these sets, one element is connected to an output then the output connectivity condition is

satisfied.

Necessity: If there is a set Ωx,i, xi ∈ I∗ or Ωu,j , uj ∈ J∗ which has no vertex connected to an

additional sensor, then there is no path between the corresponding vertex xi ∈ ∆1 or uj ∈ ∆1

and any of the measurements vertices. This implies that the output connectivity condition is not

satisfied for this component even after the addition of new sensors and so elements of ∆1 cannot

be strongly observable. ¤

Proposition 2 indicates the location of the additional sensors but not their minimal number. Indeed,

theoretically, it is possible that only one sensor, which, takes its measurements in each subset

Ωx,i, xi ∈ I∗ and Ωu,j , uj ∈ J∗ (i.e. the measurement collected by the additional sensor is a
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linear combination of the state and input components which includes at least one element in every

Ωx,i, xi ∈ I∗ and Ωu,j , uj ∈ J∗, allows to satisfy the requirements of the output connectivity

condition. Nevertheless, this may be not practically feasible. Yet, it is obvious that adding more

than card(I∗ ∪ J∗) sensors is useless to recover the output connectivity condition.

The sensor placement strategy which can de deduced from conditions of Proposition are illustrated

in Subsection 4.4 with a double-effect pilot plant evaporator system.

4.3 Additional sensor for recovering the β condition

The aim of the remaining part of this paper is to study additional sensor implementation in the

case where the β-condition is not satisfied. For a sake of simplicity, we will proceed first by

considering only the observability of one state or input component, and then we consider the set

∆ associated to the state and input components to be observed.

From Lemma 1, ∆2 = ∆ \ {v ∈ ∆, β(Y ∪ {v}) = β(Y)} represents all the components of

∆ which are not strongly observable. For each component xi ∈ ∆2 (resp. uj ∈ ∆2), we define

Γx,i =
{
v ∈ X ∪ U, β

(
Y ∪ {v, xi}

)
= β

(
Y ∪ {v})

}
(resp. Γu,j =

{
v ∈ X ∪ U, β

(
Y ∪

{v, ui}
)

= β
(
Y ∪ {v})

}
). We can enounce the following Lemma:

Lemma 2 Consider structured linear system (ΣΛ) represented by digraph G(ΣΛ). For each com-

ponent xi ∈ ∆2 (resp. uj ∈ ∆2), to recover the β condition, it is sufficient to add a sensor

which takes all its measurements in Γx,i ∪ Vobs (resp. Γu,j ∪ Vobs) with exactly one measurement

in Γx,i (resp. in Γu,j) or in other words an additional sensor z which is a linear combination of

components in Vobs and a component in Γx,i (resp. in Γu,j).

Proof: The proof of this Lemma is immediate knowing that the minimal number of sensors to

recover the observability of xi (resp. uj) is equal to one. Since Vobs represents the strongly

observable components, a sensor which measures a linear combination of components in Vobs

and a component in Γx,i (resp. in Γu,j) is equivalent to a sensor which measures only an el-

ement of Γx,i (resp. in Γu,j). Moreover, from the previous settings, considering a vertex v,
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the equality β
(
Y ∪ {v, xi}

)
= β

(
Y ∪ {v}) is equivalent to say that a sensor which mea-

sures the component associated to v guarantees the strong observability of xi (resp. uj when

β
(
Y ∪ {v, uj}

)
= β

(
Y ∪ {v}). ¤

Let us consider now all the components of set ∆2 and let us order subsets Γx,i and

(resp. Γu,j) according to the usual inclusion relation “⊆”. Let ∆∗
2 denotes the subset

of ∆2 such that ∆∗
2

def
= {xi ∈ ∆2, Γx,i is a minimal element w.r.t. relation“⊆”} ∪ {uj ∈

∆2, Γu,j is a minimal element w.r.t. relation“⊆”}. In the sequel, we define a new output vector z

associated to the additional sensors collecting the new measurements z(t) = Hλ
x (t)x + Hλ

uu(t).

The additional sensor components can be represented by vertex set Z and edge subsets Hx-edges

and Hu-edges from respectively X to Z and U to Z. These edges reflect the location of the addi-

tional sensors. The following proposition gives sufficient conditions on the additional sensors to

ensure the strong observability of all the elements included in ∆.

Proposition 3 Consider structured linear system (ΣΛ) represented by digraph G(ΣΛ). Assume

that each element of ∆ is the start vertex of an Y-topped path. To recover the strong observ-

ability of the state and input components associated to the elements of ∆ with additional sensors

represented by vertex set Z, it is sufficient to have:

∃VX,U ⊆ ( ⋃

xi∈∆∗2

Γx,i

) ∪ ( ⋃

uj∈∆∗2

Γu,j

)
, such that





∀xi ∈ ∆∗
2, VX,U ∩ Γx,i 6= ∅

∀uj ∈ ∆∗
2, VX,U ∩ Γu,j 6= ∅

θ
(
(X ∪U) \ Vobs,Z

)
= card(VX,U) + θ

(
(X ∪U) \ (Vobs ∪VX,U),Z

)

θ(VX,U,Z) = card(VX,U)

(4)

Proof: System equation (4) ensures that for each xi ∈ ∆∗
2 (resp. uj ∈ ∆∗

2) there exists an element

in Γx,i (resp. Γu,j) which is a linear combination of the added sensors z and elements of Vobs and

which is then strongly observable. Moreover, since Γx,i, xi ∈ ∆∗
2 and Γu,j , uj ∈ ∆∗

2 are minimal

w.r.t inclusion relation, then ∀xk ∈ ∆2 (resp. ∀u` ∈ ∆2), there exists xi ∈ ∆∗
2 or uj ∈ ∆∗

2 such

that Γx,k ⊆ Γx,i (resp. Γu,` ⊆ Γx,i) or Γx,k ⊆ Γu,j (resp. Γu,` ⊆ Γu,j). Hence, for each xi ∈ ∆2
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(resp. uj ∈ ∆2), there exists an element in Γx,i (resp. Γu,j) which is a linear combination of

the added sensors z and elements of Vobs. According to Lemma 2, this is sufficient to ensure the

strong observability of all the elements of ∆2. ¤

To illustrate the previous result, consider system described in Example 1. On the one hand,

we have that Vobs = {u2, x5, x8, x9}. On the other hand Γx,1 = {x1}, Γx,2 = {x2},

Γx,3 = {x3, x4, x6}, Γx,4 = Γx,6 = {x4, x6}, Γx,7 = Γx,10 = {x7, x10} and Γu,1 =

{u1}. The minimal elements w.r.t. inclusion relation are Γx,1, Γx,2, Γx,4, Γx,6, Γx,7, Γx,10

and Γu,1. Assume that we want to observe elements of ∆ = {u1, x3, x4, x7, x10}. Here

∆2 = ∆ and ∆∗
2 = {u1, x4, x7, x10}. Since, Γx,7 = Γx,10, we have that 3 sensors are

sufficient if they satisfy constraints of system (4). For example, the additional measurements

z1 = α1,1x4 + α1,2x7 + φ1(u2, x5, x8, x9), z2 = α2,1x7 + α2,2u1 + φ2(u2, x5, x8, x9), z3 =

α3,1x4 + α3,2x7 + α3,3u1 + φ3(u2, x5, x8, x9) make the components associated to ∆ generically

observable.

Note that Proposition 3 does not give necessary conditions to be satisfied by the additional sen-

sors except the obvious one β
(
Y ∪ Z ∪ ∆

)
= β

(
Y ∪ Z

)
. Furthermore, it does not provide

any information on the minimal number of additional sensors necessary to ensure the strong ob-

servability of ∆. Indeed, we can just guarantee that there exists a solution with p∗ additional

sensors where p∗ is min(card(VX,U)) under the constraints ∀xi ∈ ∆∗
2, VX,U ∩ Γx,i 6= ∅ and

∀uj ∈ ∆∗
2, VX,U ∩ Γu,j 6= ∅.

4.4 Example

In this example, the proposed results are applied to place sensors in order to ensure the observ-

ability of some state and input components of a double-effect pilot plant evaporator represented

by a fifth-order linear state-space model (Buchholt and Kümmel, 1981; Phatak and Viswanad-

ham, 1988; Xiong and Saif, 2003). The system’s functioning is described in (Buchholt and Küm-

mel, 1981; Phatak and Viswanadham, 1988) and can be summarized as follows : The feed solution

is pumped into a first effect. The first effect solution is heated by saturated steam and the boil-off
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travels into the second effect steam jacket. The concentrated solution from the first effect enters

the second effect which operates under vacuum. The concentrated product is pumped to storage.

More detailed description of the evaporator is presented in (Buchholt and Kümmel, 1981).

The fifth-order model uses the state variables x1 which is first-effect holdup, the first effect con-

centration x2, the first-effect temperature x3, the second effect holdup x4 and the second effect

concentration x5. The control known variables are not taken into account. In addition to the state

and control variables there are also unknown inputs inputs to the process u1 which represents the

variations in feed flow rate and u2 associated to the variations in feed concentration.

The digraph representation of the considered linearized model is given in Figure 2.

Assume that we want to ensure the observability of the state components x1, x2, x4 and x5 and
 

u1

u2

x2 x5

x4

x1

x3

Figure 2: Digraph representation of a double-effect pilot plant evaporator

also the input component u1 i.e. ∆ =
{
x1, x2, x4, x5, u1

}
. Note that ∆1 = ∆ since we consider

that initially there is no measurement on the system as during a conception stage. First we interest

in recovering the output connectivity condition. Each state or input vertex constitutes a strongly

connected components i.e. {u1}, {u2}, {x1}, {x2}, {x3}, {x4} and {x5}. Moreover, we have

the following relations {x5} ¹ {x2} ¹ {x3} ¹ {u1}, {x4} ¹ {x3} ¹ {u2} and {x1} ¹ {x3}.

The minimal elements in ∆ are {x1}, {x4} and {x5}. Thus, I∗ =
{
x1, x4, x5

}
and J∗ = ∅.

This leads to the following sets Ωx,1 = {x1}, Ωx,4 = {x4} and Ωx,5 = {x5}.

Therefore, to satisfy the output connectivity condition, we must have sensors which are sensitive

to x1, x4 and x5. Note that only one sensor is sufficient if it measures a linear combination of x1,

x4 and x5 i.e. z = α1x1 + α4x4 + α5x5 + φ(x1, x2, x3, u1, u2), where φ is any linear function.

Assume that we add two sensors z1 = α1x1 and z2 = α4x4 + α5x5 to satisfy the output con-
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nectivity condition. Let us now focus on the β-condition. We have to compute Γx,1, Γx,2,

Γx,4, Γx,5 and Γu,1. Relations of Definition 3 allow us to write that β({x1}) = 5 while

β({x2}) = β({x3}) = β({x4}) = β({x5}) = β({u1}) = β({u2}) = 7. Furthermore,

Vobs = {x1}. Thus, we can deduce that Γx,2 = Γx,4 = Γx,5 = Γu,1 = {x2, x3, x4, x5, u1, u2}.

Thus, only one additional sensor is sufficient to ensure the strong observability of elements associ-

ated to ∆ if it is sensitive to any of the state components x2, x3, x4, x5 or to the input components

u1 and u2. Thus, the complete solution necessitates three sensors z1 = α1x1, z2 = α4x4 + α5x5

and z3 which can take any measurement on the input or on the state components under the con-

straint that z1, z2 and z3 are linearly independent. Note that for this example, it is not possible to

find a solution with less than three sensors.

5 Concluding remarks

In this paper, we propose, on the basis of a graph-theoretic approach, an analysis tool to study

the number and the location of additional sensors in order to recover generic input and state ob-

servability of structured linear systems. First, we provide the graphical necessary and sufficient

conditions which ensure the strong observability of any state or input component. Then, we study,

the problem of additional sensors implementation which allows to recover these conditions.

Since we treat systems with unknown inputs, the approach based on bipartite graphs devel-

oped in (Commault et al., 2005) is not adapted. Indeed, output connectivity condition and

θ
(
X ∪ U,X ∪ Y

)
= n + q are not sufficient to ensure the observability of structured system

ΣΛ. A new function β is then used to characterize the generic dimension of the strong observabil-

ity subspace of the considered system. Otherwise, this function can also reflect the efficiency of a

given sensor location.

Our approach uses classical programming techniques and is free from numerical difficulties since

it uses well-known combinatorial techniques. This makes our proposed approach well suited to

large scale systems.

21



Further works addressing the problem of finding the exhaustive list, as well as the problems of

finding the minimal number and the better sensors locations (w.r.t. to some criterion) which allow

to recover the strong observability of any given part of the state and the input vectors.
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