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Abstract

The Increment Ratio (IR) statistic was first defined and studied in Surgailis et al. (2008) for estimating

the long-memory parameter either of a stationary or an increment stationary Gaussian process. Three

extensions, for stationary processes only, are proposed here. Firstly, a multidimensional central limit

theorem is established for a vector composed by several IR statistics. Secondly, a χ
2-type test is deduced

from this theorem. Finally, adaptive versions of the estimator and the test are studied in a general

semiparametric frame. The adaptive estimator of the long-memory parameter is proved to follow an

oracle property. Simulations attest of the accuracies and robustness of the estimator and test, even in

the non Gaussian case.

Keywords: Long-memory Gaussian processes; goodness-of-fit test; estimation of the memory parameter;

minimax adaptive estimator.

1 Introduction

After almost thirty years of intensive and numerous studies, the long-memory processes are now important

particular cases of time series (see for instance the book edited by Doukhan et al, 2003). The most famous

long-memory stationary time series are the fractional Gaussian noises (fGn) with Hurst parameter H and

FARIMA(p, d, q) processes. For both these time series, the spectral density f in 0 follows a power law:

f(λ) ∼ C λ−2d where H = d + 1/2 in the case of the fGn. In the case of long memory process d ∈ (0, 1/2)

but a natural expansion to d ∈ (−1/2, 0] (short memory) implied that d can be considered as a more general

memory parameter.

There are a lot of statistical results relative to the estimation of this memory parameter d. First and main

results in this direction are obtained for parametric models with the essential papers of Fox and Taqqu

(1986) and Dahlhaus (1989) for Gaussian time series, Giraitis and Surgailis (1990) for linear processes and

Giraitis and Taqqu (1999) for non linear functions of Gaussian processes.

However and especially for numerical applications, parametric estimators are not really robust and can in-

duce no consistent estimations. Thus, the research is now rather focused on semiparametric estimators of

the memory parameter. Different approaches were considered: the famous and seminal R/S statistic (see

Hurst, 1951), the log-periodogram estimator (see Geweke and Porter-Hudack, 1983, notably improved by
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Moulines and Soulier, 2003), the local Whittle estimator (see Robinson, 1995) or the wavelet based estimator

(see Veitch et al, 2003, Moulines et al, 2007 or Bardet et al, 2008). All these estimators require the choice

of an auxiliary parameter (frequency bandwidth, scales,...) but adaptive versions of original estimators are

generally built for avoiding this choice. In a general semiparametric frame, Giraitis et al (1997) obtained the

asymptotic lower bound for the minimax risk of estimating d, expressed as a function of the second order

parameter of the spectral density expansion around 0. Thus, several adaptive semiparametric are proved to

follow an oracle property up to multiplicative logarithm term. But simulations (see for instance Bardet et al,

2003 or 2008) show that the most accurate estimators are local Whittle, global log-periodogram or wavelet

based estimators.

In this paper, we consider the IR estimator of long-memory parameter (see its definition in the next Section)

for Gaussian time series introduced in Surgailis et al. (2008) and propose three extensions to it in this pa-

per. Firstly, a multivariate central limit theorem is established under more general condition on the spectral

density than in Surgailis et al. (2008) for a vector of IR statistics with different “windows” (see Section 2).

Secondly, this multivariate result allows us to define an adaptive estimator of the memory parameter d based

on IR statistics: an “optimal” window is automatically computed (see Section 3). This notably improves

the results of Surgailis et al. (2008) in which the choice of m is either theoretical (and cannot be applied to

data) or guided by empirical rules without justifications. Thirdly, an adaptive goodness-of-fit test is deduced

and its convergence to a chi-square distribution is proved (see Section 3). This also allows us to propose a

test of long-memory in the case where d > 0 which is more significant than a test on the value of d.

In Section 4, several Monte Carlo simulations are realized for optimizing the adaptive estimator and ex-

hibiting the theoretical results. Then some numerical comparisons are made with the 3 semiparametric

estimators previously mentioned (local Whittle, global log-periodogram and wavelet based estimators) and

the results are even better than the theory seems to indicate: both in terms of convergence rate than that of

the robustness (notably in case of trend or seasonal component), the adaptive IR estimator provides efficient

results. Finally, all the proofs are grouped in Section 5.

2 The multidimensional increment ratio statistic and its statistical

applications

Let X = (Xk)k∈N be a Gaussian time series satisfying the following Assumption S(d, β):

Assumption S(d, β): There exist ε > 0, c0 > 0, c′0 > 0 and c1 ∈ R such that X = (Xt)t∈Z is a

stationary Gaussian time series having a spectral density f satisfying for all λ ∈ (−π, 0) ∪ (0, π)

f(λ) = c0|λ|−2d + c1|λ|−2d+β +O
(
|λ|−2d+β+ε

)
and |f ′(λ)| ≤ c′0 λ

−2d−1. (2.1)

Remark 1. Note that here we only consider stationary processes. However, as it was already done in

Surgailis et al. (2008), it could be possible, mutatis mutandis, to extend our results to the case of processes

having stationary increments. A forthcoming paper will be devoted to this extension and to its application to

a test of stationarity of the process.

Let (X1, · · · , XN ) be a path of X . For m ∈ N∗, define the random variable IRN (m) such as

IRN (m) :=
1

N − 3m

N−3m−1∑

k=0

|(∑k+m
t=k+1Xt+m −∑k+m

t=k+1Xt) + (
∑k+2m

t=k+m+1Xt+m −∑k+2m
t=k+m+1Xt)|

|(∑k+m
t=k+1Xt+m −∑k+m

t=k+1Xt)|+ |(∑k+2m
t=k+m+1Xt+m −∑k+2m

t=k+m+1Xt)|
.

From Surgailis et al. (2008), with m such that N/m→ ∞ and m→ ∞,
√
N

m

(
IRN (m)− EIRN(m)

) L−→
N→∞

N (0, σ2(d)),
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where

σ2(d) := 2

∫ ∞

0

Cov
( |Zd(0) + Zd(1)|
|Zd(0)|+ |Zd(1)|

,
|Zd(τ) + Zd(τ + 1)|
|Zd(τ)|+ |Zd(τ + 1)|

)
dτ (2.2)

and Zd(τ) :=
1√

|4d+0.5 − 4|
(
Bd+0.5(τ + 2)− 2Bd+0.5(τ + 1) +Bd+0.5(τ)

)
(2.3)

with BH a standardized fractional Brownian motion with Hurst parameter H ∈ (0, 1).

Now, let mj = j m, j = 1, · · · , p with p ∈ N∗, and define the random vector (IRN (j m))1≤j≤p. We

can establish a multidimensional central limit theorem satisfied by (IRN (j m))1≤j≤p:

Property 2.1. Assume that Assumption S(d, β) holds with −0.5 < d < 0.5 and β > 0. Then

√
N

m

(
IRN (j m)− E

[
IRN (j m)

])
1≤j≤p

L−→
[N/m]∧m→∞

N (0,Γp(d)) (2.4)

with Γp(d) = (σi,j(d))1≤i,j≤p and σi,j(d) defined in (5.3).

The proof of this property as well as all the other proofs are given in Appendix.

As in Surgailis et al. (2008), for r ∈ (−1, 1), define the function Λ(r) by

Λ(r) :=
2

π
arctan

√
1 + r

1− r
+

1

π

√
1 + r

1− r
log(

2

1 + r
). (2.5)

and for d ∈ (−0.5, 1.5) the function Λ0(d) defined by

Λ0(d) := Λ(ρ(d)) where ρ(d) :=
4d+1.5 − 9d+0.5 − 7

2(4− 4d+0.5)
. (2.6)

The function d ∈ (−0.5, 1.5) → Λ0(d) is a C∞ increasing function. Thus, using an expansion of E
[
IRN (m)

]

and the Delta-method, we obtain:

Theorem 1. Let d̂N (j m) := Λ−1
0

(
IRN (j m)

)
. Assume that Assumption S(d, β) holds with −0.5 < d < 0.5

and β > 0. Then if m ∼ C Nα with C > 0 and (1 + 2β)−1 ∨ (4d+ 3)−1 < α < 1 then

√
N

m

(
d̂N (j m)− d

)
1≤j≤p

L−→
N→∞

N
(
0, (Λ′

0(d))
−2 Γp(d)

)
. (2.7)

Remark 2. If β < 2d + 1, the estimator d̂N (m) is a semiparametric estimator of d and its asymptotic

mean square error can be minimized with an appropriate sequence (mN ) reaching the well-known minimax

rate of convergence for memory parameter d in this semiparametric setting (see for instance Giraitis et al.,

1997). Indeed, under Assumption S(d, β) with d ∈ (−0.5, 0.5) and β > 0 and if mN = [N1/(1+2β)], then the

estimator d̂N (mN ) is rate optimal in the minimax sense, i.e.

lim sup
N→∞

sup
d∈(−0.5,0.5)

sup
f∈S(d,β)

N
2β

1+2β · E[(d̂N (mN )− d)2] <∞.

From the multidimensional CLT (2.7) a pseudo-generalized least square estimation (LSE) of d is possible by

defining the following matrix:

Σ̂N (m) := (Λ′
0(d̂N (m))−2 Γp(d̂N (m)). (2.8)

Since the function d ∈ (−0.5, 1.5) 7→ σ(d)/Λ′(d) is C∞ it is obvious that under assumptions of Theorem 1

then

Σ̂N (m)
P−→

N→∞
(Λ′

0(d))
−2 Γp(d).

Then with the vector Jp := (1)1≤j≤p and denoting J ′
p its transpose, the pseudo-generalized LSE of d is:

d̃N (m) :=
(
J ′
p

(
Σ̂N (m)

)−1
Jp

)−1
J ′
p

(
Σ̂N(m)

)−1(
d̂N (mi)

)
1≤i≤p
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It is well known (Gauss-Markov Theorem) that the Mean Square Error (MSE) of d̃N (m) is smaller or equal

than all the MSEs of d̂N (jm), j = 1, . . . , p. Hence, we obtain:

√
N

m

(
d̃N (m)− d

) L−→
N→∞

N
(
0 , Λ′

0(d)
−2

(
J ′
p Γ

−1
p (d)Jp

)−1
)
, (2.9)

and Λ′
0(d)

−2
(
J ′
p Γ

−1
p (d)Jp

)−1 ≤ Λ′
0(d)

−2σ2(d).

Now, a χ2-type goodness-of-fit test deduced from the multidimensional CLT (2.7) can be defined by:

T̂N(m) :=
N

m

(
d̃N (m)− d̂N (j m)

)′
1≤j≤p

(
Σ̂N (m)

)−1(
d̃N (m)− d̂N (j m)

)
1≤j≤p

.

Then the following limit theorem can be deduced from Theorem 1:

Proposition 1. Under the assumptions of Theorem 1 then:

T̂N (m)
L−→

N→∞
χ2(p− 1).

Note that this test is also a test of long memory when d > 0 and it is very simple to be implemented .

3 Adaptive versions of the estimator and goodness-of-fit test

Theorem 1 and Proposition 1 are interesting but they require the knowledge of β to be used (and therefore

an appropriated choice of m). We suggest now a new procedure for a data-driven selection of an optimal

sequence (mN ). For d ∈ (−0.5, 1.5) define

QN(α, d) :=
(
d̂N (j Nα)− d

)′
1≤j≤p

(
Σ̂N (Nα)

)−1(
d̂N (j Nα)− d

)
1≤j≤p

. (3.1)

QN (α, d) corresponds to the sum of the pseudo-generalized squared distance. From previous computations,

it is obvious that for a fixed α ∈ (0, 1), Q is minimized by d̃N (Nα) and therefore for 0 < α < 1 define

Q̂N (α) := QN(α, d̃N (Nα)).

It remains to minimize Q̂N (α) on (0, 1). However, since α̂N has to be obtained from numerical computations,

the interval (0, 1) can be discretized as follows,

α̂N ∈ AN =
{ 2

logN
,

3

logN
, . . . ,

log[N/p]

logN

}
.

Hence, if α ∈ AN , it exists k ∈ {2, 3, . . . , log[N/p]} such that k = α logN . Consequently, define α̂N by

Q̂N (α̂N ) := min
α∈AN

Q̂N(α).

Remark 3. The choice of this set of discretization AN is implied to proof the consistency of α̂N . If the

interval (0, 1) is stepped in N c points, with c > 0, the used proof cannot attest this consistency. However

logN may be replaced in the previous expression of AN by any negligible function of N compared to functions

N c with c > 0 (for instance, (logN)a or a logN can be used).

From the central limit theorem (2.7) one deduces the following :

Proposition 2. Assume that Assumption S(d, β) holds with −0.5 < d < 0.5 and β > 0. Moreover, if

β > 2d+ 1, suppose that c0, c1, c2, d, β and ε is such that Condition (5.10) or (5.11) holds. Then,

α̂N
P−→

N→∞
α∗ =

1

(1 + 2β) ∧ (4d+ 3)
.

4



From a straightforward application of the proof of Proposition 2, the asymptotic behavior of âN can be

specified, that is,

Pr
( Nα

(logN)λ
≤ N α̂N ≤ Nα · (logN)µ

)
P−→

N→∞
1, (3.2)

for all positive real numbers λ and µ such that λ > 2α∗

(p−2)(1−α∗) and µ > 12
p−2 . Consequently, the selected

window m̂N is asymptotically equal to Nα up to a logarithm factor.

Finally, Proposition 2 can be used to define an adaptive estimator of d. First, define the straightforward

estimator
̂̃
dN = d̃N (NαN ),

which should minimize the mean square error using α̂N . However, the estimator
̂̃
dN does not satisfy a CLT

since Pr(α̂N ≤ α) > 0 and therefore it can not be asserted that E(
√
N/âN (

̂̃
dN −d)) = 0. To establish a CLT

satisfied by an adaptive estimator
˜̃
dN of d, an adaptive scale sequence (m̃N ) = (N α̃N ) has to be defined to

ensure Pr(α̃N ≤ α) −→
n→∞

0. The following theorem provides the asymptotic behavior of such an estimator,

Theorem 2. Define,

α̃N = α̂N +
6 α̂N

(p− 2)(1− α̂N )
· log logN

logN
and d̃N = d̂N (N α̃N ).

Then, under assumptions of Proposition 2,

√
N

N α̃N

(˜̃
dN − d

) D−→
N→∞

N
(
0 ; Λ′

0(d)
−2

(
J ′
p Γ

−1
p (d)Jp

)−1
)
. (3.3)

Moreover, if β ≤ 2d+ 1, ∀ρ > 2(1 + 3β)

(p− 2)β
,

N
β

1+2β

(logN)ρ
·
∣∣ ˜̃dN − d

∣∣ P−→
N→∞

0.

Remark 4. When β ≤ 2d + 1, both the adaptive estimators
̂̃
dN and

˜̃
dN converge to d with a rate of

convergence rate equal to the minimax rate of convergence N
β

1+2β up to a logarithm factor (this result being

classical within this semiparametric framework). Thus there exist ℓ < 0 and ℓ′ < 0 such that

N
2β

1+2β (logN)ℓE(
̂̃
dN − d)2 <∞ and N

2β
1+2β (logN)ℓ

′

E(
˜̃
dN − d)2 <∞

Therefore
̂̃
dN and

˜̃
dN satisfy an oracle property for the considered semiparametric model.

If β > 2d+ 1, the estimator is not rate optimal. However, simulations (see the following Section) will show

that the rates of convergence of the adaptive estimators
̂̃
dN and

˜̃
dN can be better than the one of the best

known rate optimal estimators (local Whittle or global log-periodogram estimators).

Moreover an adaptive version of the previous test of long-memory can be derived. Thus define

T̃N := T̂N(N α̃N ). (3.4)

Then,

Proposition 3. Under assumptions of Proposition 2,

T̃N
L−→

N→∞
χ2(p− 1).
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4 Simulations and Monte-Carlo experiments

In the sequel, the numerical properties (consistency, robustness, choice of the parameter p) of
̂̃
dN are in-

vestigated. Then the simulation results of the estimator
̂̃
dN are compared to those obtained with the best

known semiparametric long-memory estimators.

Remark 5. Performance of
˜̃
dN (the second estimator defined previously) are very close (just a little worse)

to the ones of
̂̃
dN . Thus, in the sequel we will only consider

̂̃
dN .

Remark 6. Note that all the softwares (in Matlab language) used in this Section are available with a free

access on http://samm.univ-paris1.fr/-Jean-Marc-Bardet.

To begin with, the simulation conditions have to be specified. The results are obtained from 100 generated

independent samples of each process belonging to the following ”benchmark”. The concrete procedures of

generation of these processes are obtained from the circulant matrix method, as detailed in Doukhan et al.

(2003). The simulations are realized for different values of d, N and processes which satisfy Assumption

S(d, β):

1. the fractional Gaussian noise (fGn) of parameter H = d+1/2 (for −0.5 < d < 0.5) and σ2 = 1. A fGn

is such that Assumption S(d, 2) holds;

2. the FARIMA[p, d, q] process with parameter d such that d ∈ (−0.5, 0.5), the innovation variance σ2

satisfying σ2 = 1 and p, q ∈ N. A FARIMA[p, d, q] process is such that Assumption S(d, 2) holds;

3. the Gaussian stationary process X(d,β), such that its spectral density is

f3(λ) =
1

λ2d
(1 + λβ) for λ ∈ [−π, 0(∪]0, π], (4.1)

with d ∈ (−0.5, 0.5) and β ∈ (0,∞). Therefore the spectral density f3 is such that Assumption S(d, β)

holds.

A ”benchmark” which will be considered in the sequel consists of the following particular cases of these

processes for d = −0.4,−0.2, 0, 0.2, 0.4:

• fGn processes with parameters H = d+ 1/2;

• FARIMA[0, d, 0] processes standard Gaussian innovations;

• FARIMA[1, d, 1] processes with standard Gaussian innovations and AR coefficient φ = −0.3 and MA

coefficient φ = 0.7;

• X(d,β) Gaussian processes with β = 1.

4.1 Application of the IR estimator and tests applied to generated data

Choice of the parameter p: This parameter is important to estimate the ”beginning” of the linear part of

the graph drawn by points (i, IR(im))i. On the one hand, if p is a too small a number (for instance p = 3),

another small linear part of this graph (even before the ”true” beginning Nα∗

) may be chosen. On the

other hand, if p is a too large a number (for instance p = 50 for N = 1000), the estimator α̂N will certainly

satisfy α̂N < α∗ since it will not be possible to consider p different windows larger than Nα∗

. Moreover, it

is possible that a ”good” choice of p depends on the ”flatness” of the spectral density f , i.e. on β. We have

proceeded to simulations for several values of p (and N and d). Only
√
MSE of estimators are presented.

The results are specified in Table 1.
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Conclusions from Table 1: it is clear that
̂̃
dN converges to d for the four processes, the faster for fGn and

FARIMA(0, d, 0). The optimal choice of p seems to depend on N for the four processes: p̂ = 10 for N = 103,

p̂ = 15 for N = 104 and p̂ ∈ [15, 20] for N = 105. We will now adopt the choice p̂ = [1.5 log(N)] reflecting

these results.

Concerning the adaptive choice ofm, the main point to be remarked is that the smoother the spectral density

the smaller m; thus m̂ is smaller for a trajectory of a fGn or a FARIMA(0, d, 0) than for a trajectory of a

FARIMA(1, d, 1) or X(d,1). The choice of p does not appear to significantly affect the value of m̂. Moreover,

more detailed results show that the larger d included in (−0.5, 0.5) the smaller m̂: for instance, for the fGn,

N = 104 and m = 15, the mean of m̂ is respectively equal to 23.9, 8.3, 4.5, 4.2 and 3.8 for d respectively

equal to −0.4, −0.2, 0, 0.2 and 0.4. This phenomena can be deduced from the theoretical study.

Finally, concerning the goodness-of-fit test, we remark that it is too conservative for p = 5 or 10 but close

to the expected results for m = 15 and 20, especially for FARIMA(1, d, 1) or X(d,1).

Asymptotic distributions of the estimator and test: Figure 2 provides the density estimations of
̂̃
dN and T̃N for 100 independent samples of FARIMA(1, d, 1) processes with d = −0.2 and N = 105 for

p = 20. The goodness-of-fit to the theoretical asymptotic distributions (respectively Gaussian and chi-

square) is satisfying. However, following d and the studied process, a small bias can appear and can degrade

this goodness-of-fit.
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Figure 1: Density estimations and corresponding theoretical densities of
̂̃
dN and T̃N for 100 samples of

FARIMA(1, d, 1) with d = −0.2 for N = 105 and p = 20.

4.2 Comparison with other adaptive semiparametric estimator of the memory

parameter

Consistency of semiparametric estimators: Here we consider the previous ”benchmark” and apply the

estimator
̂̃
dN and 3 other semiparametric estimators of d known for their accuracies are considered:

• d̂MS is the adaptive global log-periodogram estimator introduced by Moulines and Soulier (1998, 2003),

also called FEXP estimator, with bias-variance balance parameter κ = 2;

7



• d̂R is the local Whittle estimator introduced by Robinson (1995). The trimming parameter is m =

N/30;

• d̂W is an adaptive wavelet based estimator introduced in Bardet et al. (2008) using a Lemarie-Meyer

type wavelet (another similar choice could be the adaptive wavelet estimator introduced in Veitch et

al., 2003, using a Daubechie’s wavelet, but its robustness property are quite less interesting).

• ̂̃
dN defined previously with p ∼ [1.5 ∗ log(n)].

Simulation results are reported in Table 2.

Conclusions from Table 2: The adaptive IR estimator
̂̃
dN numerically shows a convincing convergence rate

with respect to the other estimators. Both the “spectral” estimator d̂R and d̂MS provide more stable results

that do not depend very much on d and the process, while the wavelet based estimator d̂W and
̂̃
dN are more

sensible to the flatness of the spectral density. But, especially in the long memory case (d > 0) and smooth

processes (fGn and FARIMA(0, d, 0)),
̂̃
dN is a very accurate semiparametric estimator and is globally more

efficient than the other estimators.

Robustness of the different semiparametric estimators: To conclude with the numerical proper-

ties of the estimators, five different processes not satisfying Assumption S(d, β) are considered:

• a FARIMA(0, d, 0) process with innovations satisfying a uniform law;

• a FARIMA(0, d, 0) process with innovations satisfying a symmetric Burr distribution with cumulative

distribution function F (x) = 1− 1
1+x2 for x ≥ 0 (and therefore E|Xi|2 = ∞ but E|Xi| <∞);

• a FARIMA(0, d, 0) process with innovations satisfying a Cauchy distribution (thus E|Xi| = ∞);

• a Gaussian stationary process (denoted P4) with a spectral density f(λ) = ||λ| − π/2|−2d for all

λ ∈ [−π, π] \ {−π/2, π/2}. The local behavior of f in 0 is f(|λ|) ∼ (π/2)−2d |λ|−2d with d = 0, but the

smoothness condition for f in Assumption S(0, β) is not satisfied.

• a trended fGn with parameter H = d+ 0.5 and an additive linear trend;

• a fGn (H = d + 0.5) with an additive linear trend and an additive sinusoidal seasonal component of

period T = 12.

The results of these simulations are given in Table 3.

Conclusions from Table 3: The main advantages of d̂W and
̂̃
dN with respect to d̂MS and d̂R is exhib-

ited in this table: they are robust with respect to smooth trends. It has already been observed in Bruzaite

and Vaiciulis (2008) for IR statistic (and even for certain discontinuous trends). Both those estimators are

also robust with respect to seasonal component and this robustness would have been improved if we had

chosen m (or scales) as a multiple of the period (which is generally known).

The second good surprise of these simulations is that the adaptive IR estimator
̂̃
dN is also consistent for

non Gaussian distributions even if the function Λ in (2.5) is typically obtained for a Gaussian distribution.

This can be explained by the fact that the distribution of a FARIMA(0, d, 0) with uniform or almost L2-

innovations is close to be a Gaussian distribution (from central limit theorems). This property is no more

valid for Cauchy innovations (without expectation) and the results of simulations prove this... Note that a

recent study of IR statistic for heavy tailed processes have been done in Vaiciulis (2009).
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5 Proofs

Proof of Property 2.1. We proceed in two steps.

Step 1: First, we compute the limit of N
m Cov

(
IRN (jm), IRN (j′m)

)
when N, m and N/m → ∞. As in

Surgailis et al (2008), define also for all j = 1, · · · , p and k = 1, · · · , N − 3mj (with mj = jm):

Yj(k) :=
1

Vj

k+mj∑

t=k+1

(Xt+mj −Xt) , with V 2
j := E

[ k+mj∑

t=k+1

(Xt+mj −Xt)
2
]

(5.1)

and ηj(k) :=
|Yj(k) + Yj(k +mj)|
|Yj(k)|+ |Yj(k +mj)|

. (5.2)

Note that Yj(k) ∼ N (0, 1) for any k and j and

IRN (mj) =
1

N − 3mj

N−3mj−1∑

k=0

ηj(k) for all j = 1, · · · p.

Cov(IRN (mj), IRN (mj′)) =
1

N − 3mj

1

N − 3mj′

N−3mj−1∑

k=0

N−3mj′−1∑

k′=0

Cov(ηj(k), ηj′ (k
′)))

=
1

( N
mj

− 3)( N
mj′

− 3)

∫ N−1
mj

−3

τ=0

∫ N−1
m

j′
−3

τ ′=0

Cov(ηj([mjτ ]), ηj′ ([mj′τ
′]))) dτ dτ ′.

Now according to (5.20) of the same article, with −→FDD denoting the finite distribution convergence when

m→ ∞,

Yj([mjτ ]) −→FDD Zd(j τ) and Yj′ ([mj
′τ ′]) −→FDD Zd(j

′ τ ′),

where Z is defined in (2.3). As the function ψ(x, y) = |x+y|
|x|+|y| is continue and bounded with 0 ≤ ψ(x, y) ≤ 1

and since ηj([mjτ ]) = ψ(Yj [mjτ ], Yj [mj(τ + 1)]), then when m→ ∞:

Cov
(
ηj([mjτ ]), ηj′ ([mj′τ

′])
)

−→
m→∞

Cov
(
ψ(Zd(j τ), Zd(j τ + j)), ψ(Zd(j

′ τ ′), Zd(j
′ τ ′ + j′))

)
.

Thus, with γ
(j,j′)
d (t) = Cov

(
ψ(Zd(0), Zd(j)), ψ(Zd(t), Zd(t + j′))

)
and the stationarity of the process Zd,

when N, m and N/m→ ∞,

N

m
Cov(IRN (jm), IRN (j′m)) ∼ N

m( N
jm − 3)( N

j′m − 3)

×
∫ N−1

jm −3

0

∫ N−1
j′m

−3

0

Cov
(
ψ(Zd(j τ), Zd(j τ + j)), ψ(Zd(j

′ τ ′), Zd(j
′ τ ′ + j′))

)
dτdτ ′

∼ mN

(N − 3jm)(N − j′m)

∫ N−1
m −3j

0

∫ N−1
m −3j′

0

γ
(j,j′)
d (s′ − s) ds ds′

∼ m

N

∫ N
m

−N
m

(N
m

− |u|
)
γ
(j,j′)
d (u) du

−→
∫ ∞

−∞
γ
(j,j′)
d (u) du = σj,j′(d) (5.3)

(note that σj,j(d) = j σ2(d) for all j ∈ N). This last limit is obtained, mutatis mutandis, from the relation

(5.23) Surgailis et al (2008), and γ
(j,j′)
d (u) = C (u−2∧1). and therefore m

N

∫ N
m

−N
m

|u| γ(j,j
′)

d (u) du −→
N, m, N

m→∞
0.

It achieves the first step of the proof.

9



Step 2: It remains to prove the multidimensional central limit theorem. Then consider a linear combi-

nation of (IRN (mj))1≤j≤p, i.e.
∑p

j=1 uj IRN (mj) with (u1, · · · , up) ∈ Rp. For ease of notation, we will

restrict our purpose to p = 2, with mi = rim where r1 ≤ r2 are fixed positive integers. Then with the

previous notations and following the notations and results of Theorem 2.5 of Surgailis et al. (2008):

u1 IRN (r1m) + u2 IRN (r2m) = u1(EIRN(r1m) + SK(r1m) + S̃K(r1m))

+ u2(EIRN (r2m) + SK(r2m) + S̃K(r2m)).

From (5.31) of Surgailis et al. (2008), we have S̃K(m1) = o(SK(m1)) and S̃K(m2) = o(SK(m2)) when

K → ∞ and from an Hermitian decomposition (N/m)1/2(u1SK(mi) + u2SK(m2)) →D N (0, γ2K) as N , m

and N/m → ∞ since the cumulants of (N/m)1/2(u1SK(mi) + u2SK(m2)) of order greater or equal to 3

converge to 0 (since this result is proved for each SK(mi)). Moreover, from the previous computations,

γ2K → (u21σr1,r1(d) + 2u1u2σr1,r2(d) + u22σr2,r2(d)) when K → ∞. Therefore the multidimensional central

limit theorem is established.

Property 5.1. Let X satisfy Assumption S(d, β) with −0.5 < d < 0.5 and β > 0. Then, there exists a

constant K(d, β) < 0 depending only on d and β such that

E
[
IRN (m)

]
= Λ(d) +K(d, β)×m−β +O

(
m−β−ε +m−2d−1 log(m)

)
if −2d+ β < 1,

= Λ(d) +K(d, β)×m−β log(m) +O
(
m−β

)
if −2d+ β = 1;

= Λ(d) +O
(
m−2d−1

)
if −2d+ β > 1.

Proof of Property 5.1. As in Surgailis et al (2008), we can write:

E
[
IRN (m)

]
= E

( |Y 0 + Y 1|
|Y 0|+ |Y 1|

)
= Λ(

Rm

V 2
m

) with
Rm

V 2
m

:= 1− 2

∫ π

0 f(x)
sin6(mx

2 )

sin2( x
2 )
dx

∫ π

0
f(x)

sin4(mx
2 )

sin2( x
2 )
dx

.

Therefore an expansion of Rm/V
2
m will provide an expansion of E

[
IRN (m)

]
when m→ ∞ and the multidi-

mensional CLT (2.7) will be deduced from Delta-method.

Step 1 Let f satisfy Assumption S(d, β). Then we are going to establish that there exist positive real

numbers C1 and C2 specified in (5.4) and (5.5) and such that:

1. if −1 < −2d < 1 and −2d+ β < 1,
Rm

V 2
m

= ρ(d) + C1(−2d, β) m−β +O
(
m−β−ε +m−2d−1 logm

)

2. if −1 < −2d < 1 and −2d+ β = 1,
Rm

V 2
m

= ρ(d) + C2(1− β, β) m−β logm+O
(
m−β

)

3. if −1 < −2d < 1 and −2d+ β > 1,
Rm

V 2
m

= ρ(d) +O
(
m−2d−1

)
.

Indeed under Assumption S(d, β) and with Jj(a,m) defined in (5.20) in Lemma 5.1, it is clear that,

Rm

V 2
m

= 1− 2
J6(−2d,m) + c1

c0
J6(−2d+ β,m) +O(J6(−2d+ β + ε))

J4(−2d,m) + c1
c0
J4(−2d+ β,m) +O(J4(−2d+ β + ε))

,

since

∫ π

0

O(x−2d+β+ε)
sinj(mx

2 )

sin2(x2 )
dx = O(Jj(−2d+ β + ε)). Now we follow the results of Lemma 5.1,

1. Let −1 < −2d+ β < 1. Then for any ε > 0,

Rm

V 2
m

=1−2
C61(−2d)m1+2d+C62(−2d)+c1

c0

(
C61(−2d+ β)m1+2d−β+C62(−2d+ β)

)
+O

(
m1+2d−β−ε+logm

)

C41(−2d)m1+2d+C42(−2d)+c1
c0

(
C41(−2d+ β)m1+2d−β+C42(−2d+ β)

)
+O

(
m1+2d−β−ε+logm

)

=1− 2

C41(−2d)

[
C61(−2d)+

c1
c0
C61(−2d+ β)m−β

][
1−c1
c0

C41(−2d+ β)

C41(−2d)
m−β

]
+O

(
m−β−ε+m−2d−1 logm

)

=1−2C61(−2d)

C41(−2d)
+2

c1
c0

[C61(−2d)C41(−2d+ β)

C41(−2d)C41(−2d)
−C61(−2d+ β)

C41(−2d)

]
m−β+O

(
m−β−ε+m−2d−1 logm

)
.
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As a consequence, with ρ(d) defined in (2.6) and Cj1 defined in Lemma 5.1,

Rm

V 2
m

= ρ(d) + C1(−2d, β) m−β + O
(
m−β−ε +m−2d−1 logm

)
(m → ∞), with

C1(−2d, β) := 2
c1
c0

1

C2
41(−2d)

[
C61(−2d)C41(−2d+ β)− C61(−2d+ β)C41(−2d)

]
, (5.4)

and numerical experiments proves that C1(−2d, β)/c1 is negative for any d ∈ (−0.5, 0.5) and β > 0.

2. Let −2d+ β = 1.

Again with Lemma 5.1,

Rm

V 2
m

= 1− 2
[C61(−2d)mβ + C′

61
c1
c0
log(mπ) + C62(−2d) + c1

c0
C′

62 +O(1)]

[C41(−2d)mβ + C′
41

c1
c0
log(mπ) + C42(−2d) + c1

c0
C′

42 +O(1)]

= 1− 2

C41(a)

[
C61(−2d) +

(
C′

61

c1
c0

log(m)
)
m−β

][
1−

( C′
41

C41(a)

c1
c0

log(m)
)
m−β

]
+O

(
m−β

)

= 1− 2

C41(−2d)

[
C61(−2d)− c1

c0

(C61(−2d)C′
41

C41(−2d)
− C′

61

)
log(m) m−β

]
+O

(
m−β

)
.

As a consequence,

Rm

V 2
m

= ρ(d) + C2(−2d, β)m−β logm+O
(
m−β

)
(m→ ∞), with

C2(−2d, β) := 2
c1
c0

1

C2
41(−2d)

(
C′

41C61(−2d)− C′
61C41(−2d)

)
, (5.5)

and numerical experiments proves that C2(−2d, β)/c1 is negative for any d ∈ (−0.5, 0.5) and β = 1− 2d.

3. Let −2d+ β > 1.

Once again with Lemma 5.1:

Rm

V 2
m

= 1− 2

[
C61(−2d)m1+2d + C62(−2d) + c1

c0
C′′

61(−2d+ β) + c1
c0
C′′

62(−2d+ β)m1+2d−β +O(1)
]

C41(−2d)m1+2d
[
1 + C42(−2d)

C41(−2d)m
−2d−1 + c1

c0

C′′

41(−2d+β)

C41(−2d) m−2d−1 + c1
c0

C′′

42(−2d+β)

C41(−2d) m−β +O(m−2d−1)
]

= 1− 2

C41(−2d)

[
C61(−2d) +O

(
m−2d−1

)][
1−O

(
m−2d−1

)]

= 1− 2C61(−2d)

C41(−2d)
+O

(
m−2d−1

)
.

Note that it is not possible possible to specify the second order term of this expansion as in both the previous

cases. As a consequence,

Rm

V 2
m

= ρ(d) + O
(
m−2d−1

)
(m→ ∞). (5.6)

Step 2: A Taylor expansion of Λ(·) around ρ(d) provides:

Λ
(Rm

V 2
m

)
≃ Λ

(
ρ(d)

)
+
[∂Λ
∂ρ

]
(ρ(d))

(Rm

V 2
m

− ρ(d)
)
+

1

2

[∂2Λ
∂ρ2

]
(ρ(d))

(Rm

V 2
m

− ρ(d)
)2

. (5.7)

Note that numerical experiments show that
[∂Λ
∂ρ

]
(ρ) > 0.2 for any ρ ∈ (−1, 1). As a consequence, using the

previous expansions of Rm/V
2
m obtained in Step 1 and since E

[
IRN (m)

]
= Λ

(
Rm/V

2
m

)
, then

E
[
IRN (m)

]
= Λ0(d) +





c1 C
′
1(d, β)m

−β +O
(
m−β−ε +m−2d−1 logm+m−2β

)
if β < 1 + 2d

c1 C
′
2(β)m

−β logm+O(m−β) if β = 1 + 2d

O
(
m−2d−1

)
if β > 1 + 2d

,

with C′
1(d, β) < 0 for all d ∈ (−0.5, 0.5) and β ∈ (0, 1 + 2d) and C′

2(β) < 0 for all 0 < β < 2.
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Proof of Theorem 1. Using Property 5.1, if m ≃ C Nα with C > 0 and (1+2β)−1∧ (4d+3)−1 < α < 1 then√
N/m

(
E
[
IRN (m)

]
− Λ0(d)

)
−→
N→∞

0 and it implies that the multidimensional CLT (2.4) can be replaced

by

√
N

m

(
IRN (mj)− Λ0(d)

)
1≤j≤p

L−→
N→∞

N (0,Γp(d)). (5.8)

It remains to apply the Delta-method with the function Λ−1
0 to CLT (5.8). This is possible since the

function d → Λ0(d) is an increasing function such that Λ′
0(d) > 0 and

(
Λ−1
0 )′(Λ0(d)) = 1/Λ′

0(d) > 0 for all

d ∈ (−0.5, 0.5). It achieves the proof of Theorem 1.

Proof of Proposition 1. This result is obvious using the Cochran Theorem.

In Property 5.1, a second order expansion of EIRN(m) can not be specified in the case β > 2d+ 1. In the

following Property 5.2, we show some inequalities satisfied by EIRN(m) which will be useful for obtaining

the consistency of the adaptive estimator in this case.

Property 5.2. Let X satisfy Assumption S(d, β) with −0.5 < d < 0.5, β > 1 + 2d. Moreover, sup-

pose that the spectral density of X satisfies Condition (5.10) or (5.11). Then there exists a constant

L(c0, c1, c2, d, β, ε) > 0 depending only on c0, c1, c2, d, β, ε such that

E
[
IRN (m)

]
− Λ(d) ≤ −Lm−2d−1 or E

[
IRN (m)

]
− Λ(d) ≥ Lm−2d−1. (5.9)

Proof of Property 5.2. Using the expansion of Jj(a,m) for a > 1 (see Lemma 5.1) and the same computations

than in Property 5.1, we obtain:

− 2

C2
41(−2d)

[(
C62(−2d)C41(−2d)−C42(−2d)C61(−2d)

)
+
c1
c0

(
C′′

61(−2d+β)C41(−2d)−C′′
41(−2d+β)C61(−2d)

)

+
|c2|
c0

(
C′′

61(−2d+ β + ε)C41(−2d) + C′′
41(−2d+ β + ε)C61(−2d)

)]
m−2d−1(1 + o(1))

≤ Rm

V 2
m

− ρ(d) ≤

− 2

C2
41(−2d)

[(
C62(−2d)C41(−2d)−C42(−2d)C61(−2d)

)
+
c1
c0

(
C′′

61(−2d+β)C41(−2d)−C′′
41(−2d+β)C61(−2d)

)

− |c2|
c0

(
C′′

61(−2d+ β + ε)C41(−2d) + C′′
41(−2d+ β + ε)C61(−2d)

)]
m−2d−1(1 + o(1)).

Now, denote

D0(d) := C62(−2d)C41(−2d)− C42(−2d)C61(−2d) =
C42(−2d)C41(−2d)

48(1− 2−1+2d)

(
24+2d − 5− 32+2d

)
,

D1(d, β) := C62(−2d+ β)C41(−2d)− C42(−2d+ β)C61(−2d) =
C42(−2d+ β)C41(−2d)

128(1− 2−1+2d)

(
24+2d − 5− 32+2d

)
,

D2(d, β, ε) := C′′
61(−2d+ β + ε)C41(−2d) + C′′

41(−2d+ β + ε)C61(−2d).

We have D0(d) > 0, D1(d, β) > 0 and D2(d, β, ε) > 0 for all d ∈ (−0.5, 0.5), β > 0 and ε > 0. Therefore, if

c0, c1, c2, d, β, ε are such that

K1(c0, c1, c2, d, β, ε) := D0(d) +
c1
c0
D1(d, β) −

|c2|
c0
D2(d, β, ε) > 0 (5.10)

or K2(c0, c1, c2, d, β, ε) := D0(d) +
c1
c0
D1(d, β) +

|c2|
c0
D2(d, β, ε) < 0 (5.11)
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then
Rm

V 2
m

−ρ(d) ≤ −K1(c0, c1, c2, d, β, ε)

C2
41(−2d)

m−2d−1 or
Rm

V 2
m

−ρ(d) ≥ −K2(c0, c1, c2, d, β, ε)

C2
41(−2d)

m−2d−1 for m large

enough. Since the function r → Λ(r) is an increasing function and EIRN (m) = Λ
(Rm

V 2
m

)
then

EIRN (m) ≤ Λ
(
ρ(d)− K1(c0, c1, c2, d, β, ε)

C2
41(−2d)

m−2d−1
)

or EIRN (m) ≥ Λ
(
ρ(d)− K2(c0, c1, c2, d, β, ε)

C2
41(−2d)

m−2d−1
)
.

Now since Λ is a smooth function, using a Taylor expansion, inequalities (5.9) hold.

Proof of Proposition 2. Let ε > 0 be a fixed positive real number, such that α∗ + ε < 1.

I. First, a bound of Pr(α̂N ≤ α∗ + ε) is provided. Indeed,

Pr
(
α̂N ≤ α∗ + ε

)
≥ Pr

(
Q̂N(α∗ + ε/2) ≤ min

α≥α∗+ε and α∈AN

Q̂N (α)
)

≥ 1− Pr
( ⋃

α≥α∗+ε and α∈AN

Q̂N (α∗ + ε/2) > Q̂N (α)
)

≥ 1−
log[N/p]∑

k=[(α∗+ε) logN ]

Pr
(
Q̂N (α∗ + ε/2) > Q̂N

( k

logN

))
. (5.12)

But, for α ≥ α∗ + ε,

Pr
(
Q̂N (α∗ + ε/2) > Q̂N (α)

)

= Pr
(∥∥(d̂N (i Nα∗+ε/2)

)
1≤i≤p

− d̃N (Nα∗+ε/2)
∥∥2
Σ̂N (Nα∗+ε/2)

>
∥∥(d̂N (i Nα)− d̃N (Nα)

)
1≤i≤p

∥∥2
Σ̂N (Nα)

)

with ‖X‖2Ω = X ′Ω−1X . Set ZN (α) = N
Nα

∥∥(d̂N (i Nα)
)
1≤i≤p

− d̃N (Nα)
∥∥2

Σ̂N (Nα)
. Then,

Pr
(
Q̂N (α∗ + ε/2) > Q̂N (α)

)
= Pr

(Nα∗+ε/2

N
ZN (α∗ + ε/2) >

Nα

N
ZN(α)

)

= Pr
(
ZN (α∗ + ε/2) > Nα−(α∗+ε/2) ZN (α)

)

≤ Pr
(
ZN (α∗ + ε/2) > N (α−(α∗+ε/2))/2

)
+ Pr

(
ZN(α) < N−(α−(α∗+ε/2))/2

)
.

From Proposition 1, for all α > α∗, ZN (α)
L−→

N→∞
χ2(p− 1). As a consequence, for N large enough,

Pr
(
ZN (α) ≤ N−(α−(α∗+ε/2))/2

)
≤ 2 Pr

(
χ2(p− 1) ≤ N−(α−(α∗+ε/2))/2

)

≤ 2

2(p−1)/2Γ((p− 1)/2)
·N−( p−1

2 ) (α−(α∗+ε/2))
2 .

Moreover, from Markov inequality and with N large enough,

Pr
(
ZN (α∗ + ε/2) > N (α−(α∗+ε/2))/2

)
≤ 2 Pr

(
exp(

√
χ2(p− 1) > exp

(
N (α−(α∗+ε/2))/4

))

≤ 2E(exp(
√
χ2(p− 1)) exp

(
−N (α−(α∗+ε/2))/4

)
.

Since E(exp(
√
χ2(p− 1)) <∞ does not depend on N and exp

(
−N (α−(α∗+ε/2))/4

)
= o

(
N−( p−1

2 ) (α−(α∗+ε/2))
2

)

for N → ∞, we deduce that there exists M1 > 0 not depending on N , such that for large enough N ,

Pr
(
Q̂N(α∗ + ε/2) > Q̂N (α)

)
≤M1N

−
(

p−1
2

)
(α−(α∗+ε/2))

2 .
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Thus, the inequality (5.12) becomes, with M2 > 0 and for N large enough,

Pr
(
α̂N ≤ α∗ + ε

)
≥ 1−M1

log[N/p]∑

k=[(α∗+ε) logN ]

N− (p−1)
4

(
k

log N −(α∗+ε/2)
)

≥ 1−M1N
− (p−1)

8 ε
∞∑

k=0

e−
p−1
4 k (5.13)

≥ 1−M2N
− (p−1)

8 ε. (5.14)

II. Secondly, a bound of Pr(α̂N ≥ α∗ − ε) can also be computed. Following the previous arguments and

notations,

Pr
(
α̂N ≥ α∗ − ε

)
≥ Pr

(
Q̂N (α∗ +

1− α∗

2α∗ ε) ≤ min
α≤α∗−ε and α∈AN

Q̂N (α)
)

≥ 1−
[(α∗−ε) logN ]+1∑

k=2

Pr
(
Q̂N (α∗ +

1− α∗

2α∗ ε) > Q̂N

( k

logN

))
, (5.15)

and as above,

Pr
(
Q̂N (α∗ +

1− α∗

2α∗ ε) > Q̂N (α)
)
= Pr

(
ZN (α∗ +

1− α∗

2α∗ ε) > Nα−(α∗+ 1−α∗

2α∗ ε)ZN (α)
)
. (5.16)

Now, in the case α < α∗, from the proof of Theorem 1 if β ≤ 2d+ 1 then
√

N

Nα

(
E
[
IR(i Nα)

]
− Λ(d)

)
≃ C i−(1−α∗)/2α∗

N (α∗−α)/2α∗

(logN)1β=2d+1

=⇒
√

N

Nα

(
d̂(i Nα)− d

)
1≤i≤p

≃ C′N
α∗

−α
2α∗ (logN)1β=2d+1

(
i−

1−α∗

2α∗

)
1≤i≤p

+
(
ε̂N (i Nα)

)
1≤i≤p

,

and

√
N

Nα

(
d̃N (Nα)−d

)
≃ C′N

α∗
−α

2α∗ (logN)1β=2d+1
(
J ′
pΣ̂

−1
N (Nα)Jp

)−1
J ′
pΣ̂

−1
N (Nα)

(
i−

1−α∗

2α∗

)
1≤i≤p

+
(
ε̃N (i Nα)

)
1≤i≤p

with C 6= 0, C′ = C (Λ′
0(d))

−1 6= 0, and using Proposition 1,
(
ε̂N(i Nα)

)
1≤i≤p

L−→
N→∞

N
(
0, (Λ′

0(d))
−2 Γp(d)

)

and
(
ε̃N (i Nα)

)
1≤i≤p

L−→
N→∞

N
(
0, (Λ′

0(d))
−2

(
J ′
pΓ

−1
p (d)Jp

)−1
)
.

As a consequence, for α < α∗ − ε,

ZN (α) ≥ (C′)2N
α∗

−α
α∗ (log2N)1β=2d+1

∥∥∥
(
Jp

(
J ′
pΣ̂

−1
N (Nα)Jp

)−1
J ′
pΣ̂

−1
N (Nα)− Ip

)(
i−

1−α∗

2α∗

)
1≤i≤p

∥∥∥
Σ̂N (Nα)

−2
N

Nα
‖ε̂N(i Nα))‖2

Σ̂N (Nα)
− 2

N

Nα
‖ε̃N (i Nα))‖2

Σ̂N (Nα)
.

Now, since the vector
(
i−

1−α∗

2α∗

)
1≤i≤p

is not in the subspace generated by Jp, we deduce that there exists

D > 0 such that for N large enough and α < α∗ − ε,

ZN(α) ≥ DN
α∗

−α
α∗ (log2N)1β=2d+1 − 2

N

Nα
‖ε̂N(i Nα))‖2

Σ̂N (Nα)
− 2

N

Nα
‖ε̃N(i Nα))‖2

Σ̂N (Nα)
.

with N
Nα ‖ε̂N(i Nα))‖2

Σ̂N (Nα)

L−→
N→∞

χ2(p) and N
Nα ‖ε̃N(i Nα))‖2

Σ̂N (Nα)

L−→
N→∞

(Λ′
0(d))

−2
(
J ′
pΓp(d)Jp

)−1
χ2(1).

Therefore, since N
α∗

−α
α∗ −→

N→∞
∞ when α < α∗ − ε,

Pr
(
ZN (α) ≥ 1

2
DN

α∗
−α

α∗

)
−→
N→∞

1.

Then, the relation (5.16) becomes for α < α∗ − ε and N large enough,

Pr
(
Q̂N(α∗ +

1− α∗

2α∗ ε) > Q̂N (α)
)

≤ Pr
(
χ2(p− 1) ≥

(1
2
DN

α∗
−α

α∗

)
Nα−(α∗+ 1−α∗

2α∗ ε)
)

≤ Pr
(
χ2(p− 1) ≥ D

2
N

1−α∗

2α∗ (2(α∗−α)−ε)
)

≤ M2 ·N−( p−1
2 ) 1−α∗

2α∗ ε,

14



with M2 > 0, because 1−α∗

2α∗
(2(α∗ − α) − ε) ≥ 1−α∗

2α∗
ε for all α ≤ α∗ − ε. Hence, from the inequality (5.15),

for large enough N ,

Pr
(
α̂N ≥ α∗ − ε

)
≥ 1−M2 · logN ·N−(p−1) 1−α∗

4α∗ ε. (5.17)

If β > 2d+ 1, with α∗ = (4d+ 3)−1 and from Property 5.2, we obtain an inequality (here we only consider

the case ≤, the second case ≥ identically follows) instead of the equality (5.17):

√
N

Nα

(
E
[
IR(i Nα)

]
− Λ(d)

)
≤ −L(c0, c1, c2, d, β, ε) i−(1−α∗)/2α∗

N (α∗−α)/2α∗

. (5.18)

Now, as previously and with the same notation, using a Taylor expansion,

√
N

Nα

(
d̃N (Nα)−d̃N (Nα)Jp

)
≃ (Λ′

0(d))
−1

(
Jp

(
J ′
pΣ̂

−1
N (Nα)Jp

)−1
J ′
pΣ̂

−1
N (Nα)−Ip

)(
E
[
IRN (iNα)

]
−Λ(d)

)
1≤i≤p

+
(
ε̂N(i Nα)

)
1≤i≤p

−
(
ε̃N(i Nα)

)
1≤i≤p

. (5.19)

Now the steps of the proof in the case β ≤ 2d+1 can be followed and the same kind of bound (5.17) can be

obtained.

Finally, the inequalities (5.14) and (5.17) imply that Pr
(
|α̂N − α| ≥ ε

)
−→
N→∞

0.

Proof of Theorem 2. The results of Theorem 2 can be easily deduced from Theorem 1 and Proposition 2

(and its proof) by using conditional probabilities.

Proof of Proposition 3. Proposition 3 can be easily deduced from Theorem 2 using the Cochran Theorem.

Lemma 5.1. For j = 4, 6, denote

Jj(a,m) :=

∫ π

0

xa
sinj(mx

2 )

sin2(x2 )
dx. (5.20)

Then, we have the following expansion when m→ ∞:

1. if −1 < a < 1, Jj(a,m) = Cj1(a)m
1−a + Cj2(a) +O

(
m−1−(a∧0)

)
;

2. if a = 1, Jj(a,m) = C′
j1 log(m) + C′

j2 +O
(
m−1

)
;

3. if a > 1, Jj(a,m) = C′′
j1(a) +O

(
m1−a +m−2

)
,

where constants Cj1(a), Cj2(a), C
′
j1(a), C

′
j2(a) and C′′

j1(a) are specified in the following proof and do not

vanish for all a.

Proof of Lemma 5.1. 1. let −1 < a < 1.

We begin with the expansion of J4(a,m). First, decompose J4(a,m) as follows

J4(a,m) = J0(a,m) +

∫ π

0

xa

(x2 )
2
sin4(

mx

2
)dx

with J0(a,m) := 2a+1

∫ π
2

0

ya sin4(my)
[ 1

sin2(y)
− 1

y2

]
dy. (5.21)

It is clear that using integrations by parts for sin4(x2 ) = sin2(x2 )− 1
4 sin

2(x) = 1
8

(
3− 4 cos(y) + cos(2y)

)
and

15



when m→ ∞:
∫ π

0

xa

(x2 )
2
sin4(

mx

2
)dx = 4m1−a

∫ mπ

0

ya−2 sin4(
y

2
)dy

= 4m1−a
(∫ ∞

0

ya−2 sin4(
y

2
)dy −

∫ ∞

mπ

ya−2 sin4(
y

2
)dy

)

= 4m1−a
(
(1− 1

21+a
)

∫ ∞

0

sin2(y2 )

y2(
1−a
2 )+1

dy − 1

8

∫ ∞

mπ

ya−2
(
3− 4 cos(y) + cos(2y)

)
dy

)

=
π(1 − 1

21+a )

(1− a)Γ(1 − a) sin( (1−a)π
2 )

m1−a − 3
1

2(1− a)
πa−1 +O(m−1)

where the left right side term of the last relation is obtained by integration by parts and the left side term

is deduced from the following relation (see Taqqu et al., 2003 , p. 31)

∫ ∞

0

y−α sin(y) dy =
1

2

π

Γ(α) sin(π(α2 ))
for 0 < α < 2. (5.22)

Moreover, with the linearization of sin4 u, let write

8

2a+1
J0(a,m) = 3

∫ π
2

0

ya[
1

sin2(y)
− 1

y2
]dy

︸ ︷︷ ︸
J01(a,m)

+

∫ π
2

0

(cos(4my)− 4 cos(2my)) ya [
1

sin2(y)
− 1

y2
]dy

︸ ︷︷ ︸
J02(a,m)

.

From usual Taylor expansions,

1

sin2(y)
− 1

y2
∼

y→0

1

3
and

1

y3
− cos(y)

sin3(y)
∼

y→0

y

15
.

From the first expansion we deduce that J01(a,m) exists since −1 < a < 1. Moreover, from an integration

by parts,

J02(a,m) = − 1

m

∫ π
2

0

(sin(4my)
4

− 2 sin(2my)
)(
aya−1

[ 1

sin2(y)
− 1

y2
]
+ 2 ya

[ 1

y3
− cos(y)

sin3(y)

])
dy.

Hence, using | sinu| ≤ 1 ∧ |u|, and
∣∣ 1
sin2(y)

− 1
y2

∣∣ ≤ 1,
∣∣ 1
y3 − cos(y)

sin3(y)

∣∣ ≤ y for all y ∈ [0, π/2], and integration

by parts,

∣∣mJ02(a,m)
∣∣ ≤ 9

4

∫ π
2

0

2 ya
∣∣ 1
y3

− cos(y)

sin3(y)

∣∣dy +
∣∣∣
∫ π

2

0

(sin(4my)
4

− 2 sin(2my)
)
a ya−1

( 1

sin2(y)
− 1

y2

)
dy

∣∣∣

≤ 9

2(a+ 2)
(
π

2
)a+2 +

∣∣∣
∫ 1

m

0

5mayady
∣∣∣+ 9

4

∣∣∣
∫ π

2

1
m

a ya−1dy
∣∣∣

As a consequence, when m→ ∞, J02(a,m) = O
(
m−1−(a∧0)

)
and therefore

J0(a,m) = 3
2a+1

8

∫ π
2

0

ya[
1

sin2(y)
− 1

y2
]dy +O

(
m−1−(a∧0)

)
. (5.23)

Finally, by replacing this expansion in (5.21), one deduces

J4(a,m) =

∫ π

0

xa
sin4(mx

2 )

sin2(x2 )
dx = C41(a)m

1−a + C42(a) +O
(
m−1−(a∧0)

)
(m→ ∞),with

C41(a) :=
π(1− 1

21+a )

(1− a)Γ(1− a) sin( (1−a)π
2 )

and C42(a) :=
3

22−a

∫ π
2

0

ya[
1

sin2(y)
− 1

y2
]dy − 3

2(1− a)
πa−1.

(5.24)
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Note that C41(a) > 0 and C42(a) < 0 for all 0 < a < 1, C42(a) > 0 for all −1 < a < 0, C42(0) = 0.

A similar expansion procedure of J6(a,m) with sin6(mx
2 ) instead of sin4(mx

2 ) can be provided. Let

J6(a,m) := J ′
0(a,m)+

∫ π

0

xa

(x2 )
2
sin6(

mx

2
)dx with J ′

0(a,m) := 2a+1

∫ π
2

0

ya sin6(my)
[ 1

sin2(y)
− 1

y2

]
dy.

As previously with sin6(y2 ) =
1
32

(
10− 15 cos(y) + 6 cos(2y)− cos(3y)

)
, then, when m→ ∞,

J6(a,m) = C61(a)m
1−a + C62(a) +O

(
m−1−(a∧0)

)
,

with C61(a) :=
π(15 + 31−a − 21−a6)

16(1− a)Γ(1− a) sin(π2 (1 − a))
and C62(a) :=

5

6
C42(a).

Moreover it is clear that C61(a) > 0.

2. let a = 1.

When m→ ∞ we obtain the following expansion:

∫ π

0

x sin4(mx
2 )

sin2(x2 )
dx = 4

∫ mπ

0

1

x
sin4(

x

2
)dx+

∫ π

0

x sin4(
mx

2
)
( 1

sin2(x2 )
− 1

(x2 )
2

)
dx

=
1

2

(∫ mπ

0

cos(2x)− 1

x
dx− 4

∫ mπ

0

cos(x) − 1

x
dx

)
+ 4

∫ π
2

0

y sin4(my)
( 1

sin2(y)
− 1

y2

)
dy

=
1

2

(∫ mπ

0

sin(2x)− 2x

2x2
dx− 4

∫ mπ

0

sin(x) − x

x2
dx

)
+ 4

∫ π
2

0

y sin4(my)
( 1

sin2(y)
− 1

y2

)
dy

But,
∫ mπ

0

sin(x) − x

x2
dx =

∫ 1

0

sin(x) − x

x2
dx+

∫ mπ

1

sin(x)

x2
dx−

∫ mπ

1

1

x
dx

=

∫ 1

0

sin(x) − x

x2
dx+

∫ ∞

1

sin(x)

x2
dx+O(m−1)− log(mπ).

From the same decomposition we obtain
∫ mπ

0

sin(2x)− 2x

2x2
dx− 4

∫ mπ

0

sin(x)− x

x2
dx =

3

2

(
log(mπ) +

∫ ∞

1

sin y

y2
dy +

∫ 1

0

sin y − y

y2
dy

)
+O(m−1).

Moreover from previous computations (see the case a < 1),

∫ π
2

0

y sin4(my)
( 1

sin2(y)
− 1

y2

)
dy =

3

8

∫ π
2

0

y
( 1

sin2(y)
− 1

y2

)
dy +O(m−1).

As a consequence, when m→ ∞,

∫ π

0

x sin4(mx
2 )

sin2(x2 )
dx = C′

41 log(m) + C′
42 +O

(
m−1

)
, with C′

41 :=
3

2
and

C′
42 :=

3

2

(
log(π) +

∫ π
2

0

y
( 1

sin2(y)
− 1

y2

)
dy +

∫ ∞

1

sin y

y2
dy +

∫ 1

0

sin y − y

y2
dy

)
.

Note that C′
41 > 0 and C′

42 ≃ 2.34 > 0.

In the same way , we obtain the following expansions when m→ ∞,

∫ π

0

x sin6(mx
2 )

sin2(x2 )
dx = C′

61 log(m) + C′
62 +O

(
m−1

)
with C′

61 :=
5

4
and

C′
62 :=

5

4
log(π)+

5

4

∫ π
2

0

y
( 1

sin2(y)
− 1

y2

)
dy+

1

8

∫ ∞

1

1

y

(
−cos(3y)+6 cos(2y)−15 cos(y)

)
dy+4

∫ 1

0

1

y
sin6(

y

2
)dy.
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Note again that C′
61 > 0 and numerical experiments show that C′

62 > 0.

3. Let a > 1. Then, with the linearization of sin4(u),

∫ π

0

xa sin4(mx
2 )

sin2(x2 )
dx =

3

8

∫ π

0

xa

sin2(x2 )
dx− 1

2

∫ π

0

xa

sin2(x2 )
cos(mx)dx +

1

8

∫ π

0

xa

sin2(x2 )
cos(2mx)dx

= C′′
41(a) +

1

m

∫ π

0

(sin(mx)
2

− sin(2mx)

16

)(
g(x) + h(x)

)
dx, (5.25)

with: g(x) =
( axa−1

sin2(x2 )
− 4axa−3

)
−
(xa cos(x2 )

sin3(x2 )
− 8xa−3

)
and h(x) = (4a− 8)xa−3.

First, if 1 < a ≤ 3, with an integration by parts,

Im(h, a) =
1

m

∫ π

0

( sin(mx)
2

− sin(2mx)

16

)
h(x)dx

=
(
(4a− 8)

∫ ∞

0

xa−3
(sin(x)

2
− sin(2x)

16

)
dx

)
m1−a − (4a− 8)

m

∫ ∞

π

xa−3
( sin(mx)

2
− sin(2mx)

16

)
dx

= O
(
m1−a +m−2

)
. (5.26)

Now, if a > 3, the straightforward integration by parts is still possible and

Im(h, a) =
1

m

∫ π

0

( sin(mx)
2

− sin(2mx)

16

)
h(x)dx

=
1

m2

[(
− cos(mx)

2
+

cos(2mx)

32

)
h(x)

]π
0
+

4(a− 2)(a− 3)

m2

∫ π

0

(cos(mx)
2

− cos(2mx)

32

)
xa−4dx

= O
(
m−2

)
(5.27)

Moreover,

Im(g, a) =
1

m

∫ π

0

( sin(mx)
2

− sin(2mx)

16

)
g(x)dx

=
1

m2

[(
− cos(mx)

2
+

cos(2mx)

32

)
g(x)

]π
0
− 1

m2

∫ π

0

(
− cos(mx)

2
+

cos(2mx)

32

)
g′(x)dx

=
( 1

32
− (−1)m

2

)(
aπ2 − 4a+ 8

)
πa−3 1

m2
− 1

m2

∫ π

0

(
− cos(mx)

2
+

cos(2mx)

32

)
g′(x)dx

since g(x) ∼
x=0+

a
3 x

a−1 and g′(x) ∼
x=0+

a(a−1)
3 xa−2. Therefore, if 1 < a < 3,

Im(g, a) = O(m−2). (5.28)

If a ≥ 3, another integration by parts is possible and

Im(g, a) =
( 1

32
− (−1)m

2

)(
aπ2 − 4a+ 8

)
πa−3 1

m2
− 1

m3

[(
− sin(mx)

2
+

sin(2mx)

64

)
g′(x)

]π
0

+
1

m3

∫ π

0

(
− sin(mx)

2
+

sin(2mx)

64

)
g′′(x)dx

= O
(
m−2

)
, (5.29)

since g′′(x) ∼
x=0+

1
3 a(a− 1)(a− 2)xa−3.

In conclusion, for 1 < a we deduce,

∫ π

0

xa sin4(mx
2 )

sin2(x2 )
dx = C′′

41(a) + O
(
m1−a + m−2

)
with C′′

41(a) :=
3

8

∫ π

0

xa

sin2(x2 )
dx. (5.30)
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Similarly, for 1 < a < 3 we deduce,

∫ π

0

xa sin6(mx
2 )

sin2(x2 )
dx = C′′

61(a) +O
(
m1−a +m−2

)
with C′′

61(a) :=
5

16

∫ π

0

xa

sin2(x2 )
dx =

5

6
C′′

41(a). (5.31)
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N = 103

Model Estimates p = 5 p = 10 p = 15 p = 20

fGn (H = d+ 1/2)
√
MSE ̂̃dN 0.092 0.074* 0.088 0.098

mean(m̂) 12.6 11.2 14.6 18.0

p̂roba 1.00 0.99 0.98 0.97

FARIMA(0, d, 0)
√
MSE

̂̃
dN 0.103 0.095 0.093* 0.100

mean(m̂) 12.2 11.6 14.3 17.0

p̂roba 1.00 0.99 0.98 0.98

FARIMA(1, d, 1)
√
MSE ̂̃dN 0.149 0.145* 0.147 0.153

mean(m̂) 14.1 13.6 16.9 19.9

p̂roba 0.99 0.99 0.96 0.95

X(d,β), β = 1
√
MSE

̂̃
dN 0.124 0.117* 0.124 0.131

mean(m̂) 13.4 12.7 15.4 19.1

p̂roba 1.00 0.99 0.99 0.98

N = 104

Model Estimates p = 5 p = 10 p = 15 p = 20

fGn (H = d+ 1/2)
√
MSE ̂̃dN 0.028 0.021 0.018 0.017*

mean(m̂) 11.1 9.0 9.0 8.1

p̂roba 1.00 0.99 0.98 0.97

FARIMA(0, d, 0)
√
MSE

̂̃
dN 0.042 0.038 0.036* 0.037

mean(m̂) 11.7 7.5 6.7 6.3

p̂roba 1.00 0.99 0.98 0.98

FARIMA(1, d, 1)
√
MSE ̂̃dN 0.071 0.067 0.065* 0.068

mean(m̂) 17.3 15.2 13.4 12.3

p̂roba 0.99 0.98 0.96 0.94

X(d,β), β = 1
√
MSE

̂̃
dN 0.074 0.073* 0.073* 0.075

mean(m̂) 14.8 12.9 10.9 10.3

p̂roba 1.00 0.98 0.96 0.95

N = 105

Model Estimates p = 5 p = 10 p = 15 p = 20

fGn (H = d+ 1/2)
√
MSE

̂̃
dN 0.010 0.007 0.006 0.005*

mean(m̂) 14.0 9.3 7.4 6.2

p̂roba 1.00 0.98 0.97 0.95

FARIMA(0, d, 0)
√
MSE ̂̃dN 0.024 0.022 0.021* 0.021*

mean(m̂) 13.8 10.8 8.5 7.0

p̂roba 0.99 0.97 0.97 0.93

FARIMA(1, d, 1)
√
MSE ̂̃dN 0.039 0.038* 0.038* 0.039

mean(m̂) 23.4 20.5 19.3 17.0

p̂roba 1.00 0.98 0.94 0.94

X(d,β), β = 1
√
MSE

̂̃
dN 0.042 0.040 0.039* 0.041

mean(m̂) 22.5 21.3 19.3 16.3

p̂roba 0.99 0.98 0.96 0.94

Table 1:
√
MSE of the estimator

̂̃
dN , sample mean of the estimator m̂N and sample frequency that T̂N ≤

qχ2(p−1)(0.95) following p from simulations of the different long-memory processes of the benchmark. For

each value of N (103, 104 and 105), of d (−0.4, −0.2, 0, 0.2 and 0.4) and p (5, 10, 15, 20), 100 independent

samples of each process are generated. The values
√
MSE

̂̃
dN , mean(m̂) and p̂roba are obtained from a

mean on the different values of d.
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N = 103 −→

Model
√
MSE d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4

fGn (H = d + 1/2)
√
MSE d̂MS 0.102 0.088 0.094 0.095 0.098√
MSE d̂R 0.091 0.108 0.106 0.117 0.090√
MSE d̂W 0.215 0.103 0.078 0.073* 0.061*

√
MSE

̂̃
dN 0.071* 0.074* 0.075* 0.090 0.096

FARIMA(0, d, 0)
√
MSE d̂MS 0.096 0.096 0.098 0.096 0.093√
MSE d̂R 0.094 0.113 0.107 0.112 0.084√
MSE d̂W 0.069* 0.073* 0.074* 0.082 0.085

√
MSE

̂̃
dN 0.116 0.082 0.088 0.081* 0.081*

FARIMA(1, d, 1)
√
MSE d̂MS 0.098 0.092* 0.089* 0.088* 0.094√
MSE d̂R 0.093* 0.110 0.115 0.110 0.089*√
MSE d̂W 0.108 0.120 0.113 0.117 0.095

√
MSE

̂̃
dN 0.175 0.140 0.130 0.127 0.154

X(D,D′), D′ = 1
√
MSE d̂MS 0.092 0.089 0.113* 0.107* 0.100*√
MSE d̂R 0.093 0.111 0.129 0.124 0.111√
MSE d̂W 0.217 0.209 0.211 0.201 0.189

√
MSE

̂̃
dN 0.070* 0.088* 0.120 0.142 0.156

N = 104 −→

Model
√
MSE d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4

fGn (H = d + 1/2)
√
MSE d̂MS 0.040 0.031 0.032 0.035 0.035√
MSE d̂R 0.040 0.027 0.029 0.031 0.030√
MSE d̂W 0.129 0.045 0.026 0.022 0.020

√
MSE

̂̃
dN 0.023* 0.022* 0.017* 0.018* 0.017*

FARIMA(0, d, 0)
√
MSE d̂MS 0.036 0.030 0.031 0.035 0.032√
MSE d̂R 0.031 0.028 0.027 0.029 0.029√
MSE d̂W 0.020* 0.018* 0.023 0.025* 0.028*

√
MSE

̂̃
dN 0.076 0.034 0.018* 0.025* 0.033

FARIMA(1, d, 1)
√
MSE d̂MS 0.035 0.033 0.032 0.036 0.031√
MSE d̂R 0.031* 0.029* 0.030* 0.032* 0.027*√
MSE d̂W 0.054 0.054 0.050 0.052 0.048

√
MSE

̂̃
dN 0.112 0.078 0.058 0.053 0.038

X(D,D′), D′ = 1
√
MSE d̂MS 0.029 0.037* 0.035* 0.041* 0.038*√
MSE d̂R 0.032 0.041 0.037 0.041* 0.039√
MSE d̂W 0.110 0.115 0.115 0.112 0.114

√
MSE

̂̃
dN 0.019* 0.065 0.100 0.095 0.085

Table 2: Comparison of the different log-memory parameter estimators for processes of the benchmark. For

each process and value of d and N ,
√
MSE are computed from 100 independent generated samples.
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N = 103 −→

Model+Innovation
√
MSE d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4

FARIMA(0, d, 0) Uniform
√
MSE d̂MS 0.189 0.090 0.091 0.082* 0.092√
MSE d̂R 0.171 0.104 0.109 0.102 0.086√
MSE d̂W 0.111* 0.066* 0.072* 0.118 0.129

√
MSE

̂̃
dN 0.190 0.083 0.077 0.105 0.083*

FARIMA(0, d, 0) Burr (α = 2)
√
MSE d̂MS 0.181 0.087 0.092 0.084 0.091*√
MSE d̂R 0.183 0.104 0.097 0.107 0.079√
MSE d̂W 0.149* 0.086* 0.130 0.101 0.129

√
MSE

̂̃
dN 0.230 0.106 0.084* 0.081* 0.110

FARIMA(0, d, 0) Cauchy
√
MSE d̂MS 0.202 0.080* 0.069* 0.108 0.123√
MSE d̂R 0.197* 0.093 0.088 0.090* 0.078*√
MSE d̂W 0.287 0.228 0.298 0.221 0.180

√
MSE

̂̃
dN 0.437 0.256 0.104 0.336 0.465

GARMA(0, d, 0)
√
MSE d̂MS 0.092 0.089 0.113* 0.107* 0.100*√
MSE d̂R 0.093 0.111 0.129 0.124 0.111√
MSE d̂W 0.217 0.209 0.211 0.201 0.189

√
MSE

̂̃
dN 0.070* 0.088* 0.120 0.142 0.156

Trend
√
MSE d̂MS 1.307 0.891 0.538 0.290 0.150√
MSE d̂R 0.900 0.700 0.498 0.275 0.087√
MSE d̂W 0.222* 0.103* 0.083 0.071* 0.059

√
MSE

̂̃
dN 1.79 0.588 0.049* 0.089 0.046*

Trend + Seasonality
√
MSE d̂MS 1.178 0.803 0.477 0.238 0.123√
MSE d̂R 0.900 0.700 0.498 0.284 0.091*√
MSE d̂W 0.628* 0.407* 0.318 0.274 0.283

√
MSE

̂̃
dN 1.56 1.089 0.301* 0.151* 0.166

N = 104 −→

Model+Innovation
√
MSE d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4

FARIMA(0, d, 0) Uniform
√
MSE d̂MS 0.177 0.039 0.033 0.034 0.034√
MSE d̂R 0.171 0.032 0.030 0.028* 0.032*√
MSE d̂W 0.125* 0.027* 0.025 0.028* 0.035

√
MSE

̂̃
dN 0.170 0.048 0.019* 0.029 0.038

FARIMA(0, d, 0) Burr (α = 2)
√
MSE d̂MS 0.18 0.036 0.041 0.033 0.032√
MSE d̂R 0.169 0.031 0.030 0.031 0.029√
MSE d̂W 0.138* 0.068 0.065 0.076 0.066

√
MSE

̂̃
dN 0.218 0.075 0.020* 0.037 0.071

FARIMA(0, d, 0) Cauchy
√
MSE d̂MS 0.175 0.028* 0.013* 0.053 0.092√
MSE d̂R 0.169* 0.025 0.013* 0.033* 0.043*√
MSE d̂W 0.185 0.117 0.195 0.200 0.207

√
MSE

̂̃
dN 0.411 0.249 0.070 0.298 0.418

GARMA(0, d, 0)
√
MSE d̂MS 0.092 0.089 0.113* 0.107* 0.100*√
MSE d̂R 0.093 0.111 0.129 0.124 0.111√
MSE d̂W 0.217 0.209 0.211 0.201 0.189

√
MSE

̂̃
dN 0.070* 0.088* 0.120 0.142 0.156

Trend
√
MSE d̂MS 1.16 0.785 0.450 0.171 0.072√
MSE d̂R 0.900 0.700 0.431 0.192 0.067√
MSE d̂W 0.135 0.046 0.021 0.019 0.021

√
MSE

̂̃
dN 0.018* 0.017* 0.020* 0.017* 0.017*

Trend + Seasonality
√
MSE d̂MS 1.219 0.841 0.474 0.194 0.099√
MSE d̂R 0.900 0.700 0.431 0.189 0.063√
MSE d̂W 0.097* 0.073* 0.063 0.065 0.051*

√
MSE

̂̃
dN 0.811 0.152 0.019* 0.052* 0.057

Table 3: Comparison of the different log-memory parameter estimators for processes of the benchmark. For

each process and value of d and N ,
√
MSE are computed from 100 independent generated samples.
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