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Abstract

A new class of statistical deformable models is introduced to study high-dimensional curves or
images. In addition to the standard measurement error term, these deformable models include an
extra error term modeling the individual variations in intensity around a mean pattern. It is shown
that an appropriate tool for statistical inference in such models is the notion of sample Fréchet
means, which leads to estimators of the deformation parameters and the mean pattern. The main
contribution of this paper is to study how the behavior of these estimators depends on the number
n of design points and the number J of observed curves (or images). Numerical experiments are
given to illustrate the finite sample performances of the procedure.
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1 Introduction

1.1 A statistical deformable model for curve and image analysis

In many applications, one observes a set of curves or grayscale images which are high-dimensional data.
In such settings, it is reasonable to assume that the data at hand Yf, denoting the /-th observation
for the j-th curve (or image), satisfy the following regression model:

Vi =fit)+oel, j=1,...,J, and £=1,...,n, (1.1)

where f; : @ — R are unknown regression functions (possibly random) with Q a convex subset of
R, the t,’s are non-random points in © (deterministic design), the error terms 6§
variables with zero mean and variance 1, and o > 0. In this paper, we will suppose that the f;’s are
random elements which vary around the same mean pattern. Our goal is to estimate such a mean
pattern and to study the consistency of the proposed estimators in various asymptotic settings: either
when both the number n of design points and the number .J of curves (or images) tend to infinity, or

when n (resp. J) remains fixed while J (resp. n) tends to infinity.

are i.i.d. normal



In many situations, data sets of curves or images exhibit a source of geometric variations in time or
shape. In such settings, the usual Euclidean mean Y* = % Z}]:1 Yf in model (L)) cannot be used to
recover a meaningful mean pattern. Indeed, consider the following simple model of randomly shifted
curves (with d = 1) which is commonly used in many applied areas such as neuroscience [TIR10] or
biology |[Rgn01],

filte) = f(te—67), j=1,....J, and L=1,...,n, (1.2)

where f : ) — R is the mean pattern of the observed curves, and the 0;’5 are i.i.d. random variables
in R with density g and independent of the af’s. In model (L2), the shifts 87 represent a source of
variability in time. However, in (L2)) the Euclidean mean is not a consistent estimator of the mean
pattern f since by the law of large numbers

T R .
Jim V0= Jim jzl flte—63) = /f(tg —0)g(0)d0 a.s.

The randomly shifted curves model (I.2]) is close to the perturbation model introduced by [Goo91]
in shape analysis for the study of consistent estimation of a mean pattern from a set of random planar
shapes. The mean pattern to estimate in [Goo91] is called a population mean, but to stress the fact that
it comes from a perturbation model [Hucl0] uses the term perturbation mean. To achieve consistency
in such models, a Procrustean procedure is used in [Goo91], which leads to the statistical analysis of
sample Fréchet means [Fré48] which are extensions of the usual Euclidean mean to non-linear spaces
using non-Fuclidean metrics. For random variables belonging to a nonlinear manifold, a well-known
example is the computation of the mean of a set of planar shapes in the Kendall’s shape space [Ken84]
which leads to the Procrustean means studied in [Goo91]. Consistent estimation of a mean planar
shape has been studied by various authors, see e.g. [Goo91l, [KM97, [KBCL99, Le98, LK00]. A detailed
study of some properties of the Fréchet mean in finite dimensional Riemannian manifolds (such as
consistency and uniqueness) has been performed in [Zie77, [OC95, BP03, BP05, Hucl0, HuclTl [Afs11]

The main goal of this paper is to introduce statistical deformable models for curve and image
analysis that are analogue to Goodall’s perturbation models [Goo91], and to build consistent estimators
of a mean pattern in such models. Our approach is inspired by Grenander’s pattern theory which
considers that the curves or images f; in model (ILT]) are obtained through the deformation of a mean
pattern by a Lie group action [Gre93, [(GMO07]. In the last decade, there has been a growing interest in
transformation Lie groups to model the geometric variability of images, and the study of the properties
of such deformation groups is now an active field of research (see e.g. [MYO0Il [TY05] and references
therein). There is also currently a growing interest in statistics on the use of Lie group actions to
analyze geometric modes of variability of a data set [HHMI10al, [HHMIOb].

To describe more formally geometric variability, denote by L?(Q) the set of square integrable real-
valued functions on €2, and by P an open subset of RP. To the set P, we associate a parametric
family of operators (Tp)gep such that for each @ € P the operator Ty : L?(2) — L?(Q2) represents
a geometric deformation (parametrized by @) of a curve or an image. Examples of such deformation
operators include the cases of:

- Shifted curves: Tof(t) := f(t — ), with @ = [0,1], f € L2,([0,1]) (the space of periodic functions
in L%(]0,1]) with period 1) and P an open set of R.

- Rigid deformation of two-dimensional images:
Tof(t):= f(e*Rat —b), for 8 = (a,,b) € P,

cos(a) —sin(a)
sin(a)  cos(a)

a

with Q = R?, P C R x R x R? where R, = < ) is a rotation matrix in R?, e

is an isotropic scaling and b a translation in R2.



- Deformation by a Lie group action: the two above cases are examples of a Lie group action on the
space L2(2) (see [Hel01] for an introduction to Lie groups). More generally, assume that G is
a connected Lie group of dimension p acting on {2, meaning that for any (g,t) € G x Q the
action - of G onto () is such that g -t € 2. In general, G is not a linear space but can be locally
parametrized by a its Lie algebra G ~ RP using the exponential map exp : G — G. If P C RP.
This leads for (0, f) € P x L?(Q2) to define the deformation operators

Tof(t) = f (exp(0) - 1).

- Non-rigid deformation of curves or images: assume that one can construct a family (1g)gecp of
parametric diffeomorphisms of Q (see e.g. [BGL0O9]). Then, for (8, f) € P x L?*(QQ), define the
deformation operators

To f(t) := [ (¥a(t)).

Then, in model (LT), we assume that the f;’s have a certain homogeneity in structure in the sense
that there exists some f € L?(£2) such that

fit) = To: [f+Z;](t), forallte, and j=1,...,J, (1.3)

where 0; € P, j=1,...,J are ii.d. random variables (independent of the af’s) with an unknown
density g with compact support © included in P satisfying:

Assumption 1.1. The density g of the 0; ’s is continuously differentiable on P and has a compact
support © included in P C RP. We assume that © can be written

@:{0:(61,...,97’)€Rp, 071 < p, 1 <p1 <p} (1.4)
where p > 0.

The function f in model (L3]) represents the unknown mean pattern of the f;’s. The Z,’s are
supposed to be independent of the €§’S and are i.i.d. realizations of a second order centered Gaussian
process Z taking its values in L?(£2). The Zj’s represent the individual variations in intensity around
[, while the random operators Ty, model geometric deformations in time or space. Then, if we assume
that the Tp’s are linear operators, equation (L3]) leads to the following statistical deformable model
for curve or image analysis

Y =Ty f(te) + To: Zj(te) + o5, j=1,...,J, and £=1,...,n, (1.5)

where af are i.i.d. normal variables with zero mean and variance 1.
Model (L) could be also called a perturbation model using the terminology in [Goo91l [Hucl0] for
shape analysis. To be more precise, let Y € R"*2? be a set of n points in R? representing a planar

shape. Define a deformation operator Ty for 8 = (a,a,b) € © = R x [0,27] x R? acting on R"*? in
the following way

ToY = "Y' R, + 1,0/, where R, — [ (@) —simn(a@) )
sin(a)  cos(a)

and 1, = (1,...,1) € R™. Consistent estimation of a mean shape has been first studied in [Goo91]
when a set of random shapes Yi,...,Y s is drawn from the following perturbation model
Y =To:(u+¢y). g =1,....J (1.6)

Model (L8) is similar to the statistical deformable model (LH), where 1 € R™*2 is the unknown
perturbation mean to estimate, and ¢; are i.i.d. random vectors in R™*2 with zero mean. Nevertheless,
there exists major differences between our approach and the one in [Goo91]. First, in model (L), the



deformations parameters 8 are assumed to be random variables following an unknown distribution,
whereas they are just nuisance parameters in model (L6]) for shape analysis, see [Goo91, [KM97]. In
some applications (e.g. in biomedical imaging [JDJGO04]), it is of interest to reconstruct the unobserved
parameters 0; and to estimate their distribution. One of the main contribution of this paper is then
to construct upper and lower bounds for the estimation of such deformation parameters. Moreover,
in model (LX), they are too additive error terms, whereas the model (L)) only include the error term
¢;- In model ([L3H), the e? is an additive noise modeling the errors in the measurements, while the Z;’s
model (possibly smooth) variations in intensity of the individuals around the mean pattern f.

In [KM97], the authors studied the relationship between isotropicity of the additive noise ¢ ; and
the convergence of Procrustean procedures to the perturbation mean p as J — +o0. It is shown in
[KM97] that, for isotropic errors, Procrustean means are consistent, but that, for non-isotropic errors,
they may not converge to . For a recent discussion on the issues of consistency of sample Procrustes
means in perturbation models and extension to non-metrical Fréchet means, we refer to [Hucl0] and
[Hucll]. In this paper, we carefully analyze the role of the dimension n and the number of samples
J on the consistency of Procrustean means in model (LH)). To obtain consistent procedures, we show
that it is not required to impose very restrictive conditions on the error terms Z; such as isotropicity
for the ¢; in (L)) for shape analysis. Here, the key quantity is the dimension n of the data (number of
design points) which plays the central role to guarantee the converge of our estimators. This point is
another major difference with the approach of statistical shape analysis [Goo91] that does not take into
account the dimensionality of the shape space to analyze the consistency of Procrustean estimators.

Note that a subclass of the deformable model (LH]) is the so-called shape invariant model (SIM)

Ysz@ﬂQ%ﬂm? j=1,...,J, and £=1,...,n, (1.7)

i.e. without incorporating in (L3]) the additive terms Z;.

The goal of this paper is twofold. First, we propose a general methodology for estimating f and the
0;’8 based on observations coming from model (L5]). For this purpose, we show that an appropriate
tool is the notion of sample Fréchet mean of a data set [Fré48| [Zie77, BP03] that has been widely
studied in shape analysis [Goo91l [KM97, [Le98| [LK0O, [Hucl0] and more recently in biomedical imaging
[JDJGO04, [Pen06]. Secondly, we study the consistency of the resulting estimators in various asymptotic
settings: either when n and J both tend to infinity, or when n is fixed and J — 400, or when J is
fixed and n — 4o0.

1.2 Organization of the paper

Section 2] contains a description of our estimating procedure and a review of previous work in mean
pattern estimation. In Section B we derive a lower bound for the quadratic risk of estimators of the
deformation parameters. In Section [, we discuss some identifiability issues in model (L5]). In Section
we derive consistency results for the Fréchet mean in the case (L2) of randomly shifted curves.
In Section [l and Section [7, we give general conditions to extend these results to the more general
deformable model (LH]). Section B contains some numerical experiments. A small conclusion with
some perspectives are given in Section [@ All proofs are postponed to a technical Appendix.

2 The estimating procedure

2.1 A dissimilarity measure based on deformation operators

To define a notion of sample Fréchet mean for curves or images, let us suppose that the family
of deformation operators (Tp)gep is invertible in the sense that there exists a family of operators
(Tp)eep such that for any (0, f) € P x L*(Q)

Tof € L*(Q) and TpTpf = f.



Then, for two functions f,h € L?(£2) introduce the following dissimilarity measure

- 2
i) = jut, [ (Tah(t) - )" dr
If d2.(h, f) = 0 then there exists 8 € P such that f = Tph meaning that the functions f and h are
equal up to a geometric deformation. Note that dr is not necessarily a distance on L%(Q), but it
can be used to define a notion of sample Fréchet mean of data from model (LE]). For this purpose
let F denote a subspace of L?(Q2) and suppose that fj are smooth functions in F C L?(2) obtained
from the data Yf, {=1,...,nfor j=1,...,J, see Section and Section for precise definitions.
Following the definition of a Fréchet mean in general metric space [Fré48], define an estimator of the
mean pattern f as

J
f= argmin% Zd%p(f],f) (2.1)
j=1

fer

Note that f falls into the category of non-metrical sample Fréchet means whose definitions and asymp-
totic properties are discussed in [Hucl0] for random variables belonging to Riemannian manifolds.
However, unlike the usual approach in shape analysis, the Fréchet mean (2I]) is based on smoothed
data. In what follows, we show that smoothing is a key preliminary step to obtain the convergence of
f to the mean pattern f in the deformable model (IH]). It can be easily shown that the computation
of f can be done in two steps: first minimize the following criterion

(61,...,05) = argmin M(64,...,0;), (2.2)
(01,...,.0.,)€67
where
1 o A 2
M(6y,....0,) = Z/ﬂ <T9jfj(t) -5 > To, N)) dt, (2.3)
j=1 J'=1
which gives an estimation of the deformation parameters 07, ...,0%, and then in a second step take
. 1< .
ft) =+ > Ty filt), forteq, (2.4)
j=1

as an estimator of the mean pattern f.

Note that this two steps procedure belongs to the category of Procrustean methods (see e.g [DM98],
Goo91]). A similar approach to (22)) has been developed by [JDJG04] in the context of biomedical
images using diffeomorphic deformation operators.

2.2 Previous work in mean pattern estimation and geometric variability analysis

Estimating the mean pattern of a set of curves that differ by a time transformation is usually referred
to as the curves registration problem, see e.g. [GK92] Big06, RL0O1, WG97, [LM04]. However, in these
papers, studying consistent estimators of the mean pattern f as the number of curves J and design
points n tend to infinity is not considered. For the SIM (7)), a semiparametric point of view has
been proposed in [GLMO07] and [Viml10| to estimate non-random deformation parameters (such as
shifts and amplitudes) as the number n of observations per curve grows, but with a fixed number J of
curves. A generalisation of this semiparametric approach for two-dimensional images is proposed in
[BGV09]. The case of image deformations by a Lie group action is also investigated in [BLV10] from
a semiparametric point of view using a SIM.

In the simplest case of randomly shifted curves in a SIM, [BG10] have studied minimax estimation
of the mean pattern f by letting only the number J of curves going to infinity. Self-modelling regression
(SEMOR) methods proposed by [KG88] are semiparametric models where each observed curve is a



parametric transformation of the same regression function. However, the SEMOR approach does not
incorporate a random fluctuations in intensity of the individuals around a mean pattern f through an
unknown process Z; as in model ([H). The authors in [KG88] studied the consistency of the SEMOR
approach using a Procrustean algorithm. Recently, there has also been a growing interest on the
development of statistical deformable models for image analysis and the construction of consistent
estimators of a mean pattern, see [GMO01, BGV09, BGL09, [AAT07, [AKT09|.

3 Lower bounds for the estimation of the deformation parameters

In this section, we derive non-asymptotic lower bounds for the quadratic risk of an arbitrary estimator
of the deformation parameters under the following smoothness assumption of the mapping (0,t) —

To f(t).

Assumption 3.1. For all @ = (0',...,0°) € P, Ty : L*(Q) — L%(Q) is a linear operator such that
the function t — Ogr1 To f (t) exists and belongs to L*() for any p1 = 1,...,p. Moreover, there exists
a constant C(O, f) > 0 such that

100 To f 172 < C(O, ),

forallpyr=1,...,p and 6 € O.

3.1 Shape Invariant Model

Theorem 3.1. Consider the SIM (1) and suppose that Assumption m holds. Assume that g
satisfies Assumption [L1, and that [g ||9g log (g(8)|* 9(8)dO < +o0. Let 6 € P be any estimator (a
measurable function of the data) of 0 = (07,...,0%). Then, for anyn >1 and J > 1,

o’n~t

©.7) 1 o*n " J 199108 (9(6))[7 9(8)d6’

where C(O, f) is the constant defined in Assumption[31), and ||-|gps is the standard Euclidean norm
in RP/,

15 *
B 31061 | > (3.1)

The lower bound given in inequality (B.I]) does not decrease as J increases. Thus, if the number n of
design points is fixed, increasing the number J of curves (or images) does not improve the quality of
the estimation of the deformation parameters for any estimator 6. Nevertheless, this lower bound is
going to 0 as the dimension n — 400.

3.2 General model

The main difference between the general model (L5]) and the SIM (7)) is the extra error terms Ty: Z;,

j=1,...,J. In what follows, Eg[ - ] denotes expectation conditionally to @ € ©7. Since the random
processes Z;’s are observed through the action of the random deformation operators Te;‘f it is necessary
to specify how the Tg; ’s modify the law of the process Z;.

Assumption 3.2. There exists a positive semi-definite symmetric n x n matriz %, (0) such that the
covariance matriz of Z = [Z(t;)|}_, satisfies Eg[ToZ(ToZ)'| = ,(0).

This assumption means that the law of the random process Z is somewhat invariant by the de-
formation operators Ty. Such an hypothesis is similar to the condition given in [KM97] to ensure
consistency of Fréchet mean estimators in Kendall’s shape space using model similar to (L3]) with
o = 0. After a normalization step, the deformations considered in [KM97] are rotations of the plane,
and the authors in [KM97] study the case where the law of the error term Z is isotropic, that is to
say, invariant by the action of rotations.



Theorem 3.2. Consider the general model (LA). Suppose that Assumption[31] and[32 hold. flssume
that the density g satisfies Assumption [L1] and that [ ||0glog (9(0))|* 9(8)d6 < +oo. Let @ € P’
be any estimator (a measurable function of the data) of 6 = (07,...,0%). Then, for any n > 1 and

J > 1, we have
1 - X o2 +s2(0)nt
E [jne—e ||§W} > 5 2( 71( ) > :
C(O,f) + (02 + s3(©))n~" [o 106, log (9(8))]” 9(6)d6
where C(©, f) is the constant defined in Assumption [31), and s2(0) denotes the smallest eigenvalue
of £,(0).
Again, the lower bound (B.2]) does not depends on J. Thus, increasing the number J of observations

does not decrease the quadratic risk of any estimator of the deformations parameters. Moreover, the
lower bound (3.2) tends to zero as n — +oc only if lim, 1 n " 1s2(0) = 0.

(3.2)

3.3 Application to the shifted curves model

Consider the shifted curves model (I.2]) with an equi-spaced design, namely

Vi=f(£-6)+27(£L-6))+oc}, j=1,...,J and £=1,...,n (3.3)
Theorem 3.3. Consider the model [B.3]). Assume that f is continuously differentiable on [0,1] and
that Z is a centered stationary process with value in L2..([0,1]). Suppose that © = [—p,p] with

p <3 and Jo (Oglog (g (0)))*g(0)dO < +0co. Let @ € R be any estimator of the true random shifts
0" = (07,...,0%), i.e. a measurable function of the data in model (3.3). Then, for any n > 1 and
J>1

n~lo2

B |10 -1 ] > - —
10: 113, + 1102 [ (9 log (9(6)))* 9(6)d6
where (|04 f || = supyepo,1) {10:f (t)|} with O f denoting the first derivative of f.

(3.4)

4 Identifiability conditions

4.1 The shifted curves model

Without any further assumptions, the randomly shifted curves model (B3] is not identifiable. Indeed,
if Oy € O satisfies 05 + 09 € ©, j = 1,...,J, then replacing f(-) by f(- — 6o) and 8} by 87 + 6 does
not change the formulation of model ([B.3]). Choosing identifiability conditions amounts to impose
constraints on the minimization of the criterion

JZ/( f(t— 65 +6;) sz 0;,+0j,)>2dt, (4.1)

for & = (01,...,0;) € ©7, which can be interpreted as a version without noise of the criterion
(Z2) using the ideal smoothers f;(-) = f(- — 7). Obviously, the criterion D(6) has a minimum at
0* = (07,...,60%) such that D(6*) = 0, but this minimizer of D on © is clearly not unique. If the true
shifts are supposed to have zero mean (i.e. [ 8g(6)d6 = 0) it is natural to introduce the constrained
set

©y=1{(01,...,0,) €O’ 0, +...+6;=0}. (4.2)
It is shown in [BGI0] Lemma 6, that if f € L?([0,1]) is such that [ f(t)e=2™dt # 0 and if p < 1/4
(recall that © = [—p, p]), then the criterion D(0) has a unique minimum on @ in the sense that

D(6) > D(0g,) for all 8 € ©¢ with 8 # 0g  where

*
0o,

J
. _ 1
— (07 —6",...,0% —0") with 6" jz 0;. (4.3)



Under such assumptions, we will compute estimators of the random shifts by minimizing the criterion
(Z2)) over the constrained set ®( and not directly on ©7. Consistency of such constrained estimators
will then be studied under the following identifiability conditions:

Assumption 4.1. The mean pattern f is such that fol ft)e~2mtdt £ 0.

Assumption 4.2. The support of the density g is included in [—p', p] for some 0 < p' < & < 1/4 and
is such that [o 0g(0)d6 = 0.

Under such assumptions, D(6) can be bounded from below by the quadratic function 1 (/6 — 6% |2

which will be an important property to derive consistent estimators.

Proposition 4.1. Suppose that Assumptions [4.1] and hold with p < 1/16. Then, for any 6 =
(01,...,07) € Oq, one has that

* 1 *
D(6) — D(0e,) = C(f,p) 516 - 06, !°,
where C(f, p) > 0 is a constant depending only on f and p.

Assumption and the condition that p < 1/16 in Proposition .J] mean that the support of
the density g of the shifts is sufficiently small, and that the shifted curves f;(t) = f(t — ;) are in
some sense concentrated around the mean pattern f. Such an assumption of concentration of the
data around the same mean pattern has been used in various papers to prove the uniqueness and the
consistency of Fréchet means for random variables lying in a Riemannian manifold, see [Kar77, [L.e98|,
BP03l [Afs11l [Ken90].

4.2 The general case

In the case of general deformation operators, define for @ = (81,...,0;) € ©7 the criterion

= %i/ <Tg Tor f(t) — = Z Te ,Te* ) dt. (4.4)

Obviously, using that for all @ € ©, TyTyf = f, the criterion D(6) has a minimum at 8* = (6%,... ,07%)
such that D(6*) = 0. However, without any further restrictions the minimizer of D(0) is not neces-
sarily unique on ©7.

Assumption 4.3. Let ® C ©7 such that there exists a unique 0 € © satisfying D(0g) = 0.

Then, © is the set onto which we will carry the minimization of the criterion M (6) (2.3]). In the case
of shifted curves and under Assumption 4.1] and 2] the only set onto which the criterion D vanishes
is the line {8* 4+ 0¢1;, 6y € R} C R/, where 1; = (1,...,1)’ € R’. An easy way to choose the set ©
is to take a linear subset of ©”, see Figure [ for an illustration. By considering the subset

O =0'N1+={(6,...,0,)c0’ 6, +...+6;,=0},

where 1 ;% is the orthogonal of 1; in R”, then Assumption 3] is satisfied with 8 given in (E3).
More generally, if the deformation parameters ;, j = 1,...,J are supposed to be random variables
with zero mean, then optimizing D(0) on ®y is a natural choice. Another identifiability condition for
shifted curves is proposed in |[GLMO07] and [Vim10] by taking

0,=0"net={(6,...,0;) 0’ 6, =0} (4.5)

where e; = (1,0,...,0) € R’. In this case, 8, = (0,05 — 67,...,0% — 07). Choosing to minimize
D(6) on ©®; amounts to choose the first curve as a reference onto which all the others curves are
aligned, meaning that the first shift 8] is not random, see Figure [I1
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Figure 1: Choice of identifiability conditions for shifted curves in the case J = 2.

Following the classical guidelines in M-estimation (see e.g. [vdV98§|), a necessary condition to
ensure the convergence of M -estimators such as (22]) is that the local minima of D(0) over © are
well separated from the global minimum of D(0) at 6 = 0 (satisfying D(6g) = 0). The following
assumption can be interpreted in this sense.

Assumption 4.4. For all @ € ©® we have
D(0) — D(0g) > C(O, ]:) HO 05| (4.6)

for a constant C(©,F) > 0 independent of J.

In the shifted curve model, Assumption [£.4]is verified if Assumption LIl and .21 hold (see Proposition

[4.1]).

5 Consistent estimation in the shifted curves model

In this section, we give conditions to ensure consistency of the estimators defined in Section 2] in the
shifted curves model ([B:3]) with an equi-spaced design.

5.1 The random perturbations Z;

Following the assummtions of Theorem [3.3] Z will be supposed to be a stationary process Z with
covariance function R : [0,1] — R. The law of Z is thus invariant by the action of a shift. Condi-
tionally to 6} € O, the covariance of the vector Tg; Z; = [Zj(ﬁ — 0;)]?:1 is a Toeplitz matrix equals

to
Xin = Eq; [T"; Z;(To; z))] = [E [Z (2)2 (%>HZW:1 - [R (M_—"ZII)}ZW:l ' (5.1)

Let Ymax(X5) be the largest eigenvalue of the matrix 3,,. It follows from standard results on Toeplitz
matrices (see e.g. [HJ90]) that

*ymaX(E < lim Z|R (5.2)

n—+oco n

where v = fol |R(t)| dt is a positive constant independent of n representing an upper bound of the
variance of Z.



5.2 Choice of the smoothed estimators fj

A convenient choice for the smoothing of the observed curves in (3.3)) is to do low-pass Fourier filtering.
Let ¢, = 237, Yfe_m’rk% for k=—(n—-1)/2,...,(n—1)/2 (assuming for simplicity that n is odd),
and define for a spectral cut-off parameter A € N and ¢ € [0, 1] the linear estimators

By=">" éne™. (5.3)

[ <A

Then, define the Sobolev ball Hs(A) of radius A > 0 and regularity s > 0 as

H(A) = { € L2,(0,1), Y- (1 + K1) e () < A}, (5.4)

kEZ

with ¢ (f) = fol ft)e™2mktqt k€ 7 for a function f € L2,.([0,1]), and take F = H,(A) as the

per
smoothness class to which the mean pattern f is supposed to belong.

5.3 Consistent estimation of the random shifts

Using low-pass filtering, and following the discussion in Section ] on identifiability issues, the esti-
mators of the random shifts 67, ..., 0% are given by

0" =(),....0))= argmin My(61,....0,). (5.5)
(61,..-,67)€O0

where the criterion My (0) = My(01,...,0;) for 8 € ©7 is

J

J 2
M,\(6) = %Z/Q (f}(tJrej) - % > fj,(t+9j,)> dt
j=1

s/

j'=1
and @O is the constrained set defined in (4.2)).

Theorem 5.1. Consider the model (3.3) and let 0" be the estimator defined by (B.0). Assume that
F = Hs(A) for some A > 0 and s > 1, and that Z is a centered stationary process with value in
L2..([0,1]) and covariance function R : [0,1] — R. Suppose that Assumptions [{1] and [{-3 hold with
p < 1/16. Then, for any A > 1 and x > 0

P(%Hé)\ - G*HI%&’ > Cl(@7f7 f)Al(xa J77’L,)\70'2,’)’) + AZ('%'7 J)) < 467:’37

with Ay (x, J,n,\,02,7) = (02+7)< v(z, J,n, A)+vu(z, J,n,A))—i—(\/B()\,n)—{—B()\,n)) and Ay (z, J) =

2
< 27’“" + %) , where C1(©,F, f) > 0 is constant depending only on ©, F, f, v(x, Jyn,\) = ”‘TH (1 +475 + w/4%)
, BOyn) =2 4 X2 and y = [ |R(t)] dt.

First, remark that for fixed values of n and A, then limy_,, o A2(x,J) = 0. The term Ay (z, J,n, X, 02,7)
depends on the spectral cutoff A via the bias B(\, n) and the variance v(z, J,n, \) of the estimators fj.
By choosing a sequence A = A, such that lim,,_, o Ay, = +00 and lim,,_, | )‘7" = 0 (tradeoff between
low variance and low bias) it follows that for fixed J and z > 0, then lim,, s o0 A1 (2, J, 1, Ap,02,7) = 0.
However, if n remains fixed, then lim_, o A1 (z,J,n, A, 02,7) > 0.

Thus, Theorem E.1] is consistent with the conclusions of Theorem B.3], that is, if n is fixed, then
it is not possible to estimate 8* by letting only J grows to infinity. Hence, under the assumptions of
Theorem (.1l one can only prove the convergence in probability of 9)\ to the true shifts 8* by taking
the double asymptotic n — 400 and J — +o00, provided the smoothing parameter A = )\, is well
chosen.
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5.4 Consistent estimation of the mean pattern

In the case of randomly shifted curves, the Fréchet mean estimator ([2.]) of f is f AMt) = % Z}]:l f]?‘(t—{—
A\
0;).

Theorem 5.2. Under the assumptions of Theorem [5.1l, for any A > 1 and x > 0
PQMNamézcw&fjwmmxmAJ%w+cw&fmxaﬂ>s4fﬂ

where Ay(x, J,n,\,0%,7v) and As(z,J) are defined in Theorem [51, Co(O,F,f) and C3(O, f) are
positive constants depending only on ©,F, f, and Hf)‘ — fH%2 = fol |f>‘(t) — f(t)‘th.
Similar comments to those made on the consistency of the estimators of the shifts can be made.

A double asymptotic in n and J is needed to show that the Fréchet mean f A converges in probability
to the true mean pattern f. Moreover, if A, is too large (e.g. such that lim, )‘7" # 0, which

correspond to undersmoothing), then Theorem cannot be used to prove that f)‘ converges to f in
probability. This illustrates the fact that, to achieve consistency, a sufficient amount of pre-smoothing
is necessary before computing the Fréchet mean (2.1]).

5.5 A lower bound for the Fréchet mean

From the results of Theorem [33] it is expected that the Fréchet mean f* does not converge to f in
the setting n fixed and J — +o0. To support this argument, consider the following ideal estimator

~ 1< PO 1< w  aX
f(t):j;fj(tJrej):j;f(t—ejJrej), for all t € [0,1], (5.6)

where f;(t) = f(t — 07),j = 1,...,J. This corresponds to the case of an ideal smoothing step from

the data (3.3]) that would yield fj = fjforall j =1,...,J. Obviously, f(t) is not an estimator since
it depends on the unobserved quantities f and 9;, but we can consider it as a benchmark to analyse
the converge of the Fréchet mean f* to f.

Theorem 5.3. Suppose that the assumptions of Theorem[3.3 are satisfied with p < %. Then, for any
n > 1, there exists Jg € N such that J > Jg implies

n~lo?

19:f1%, +n~1o? [o (e log (9(6)))* 9(6)d6
where the constant C(f, p) > 0 depends on f and p.

E(f — fllz2] = C(f,p) : (5.7)

Hence, in the setting n fixed and J — +o0, even the ideal estimator f does not converge to f for
the expected quadratic risk. This illustrates the central role played by the dimension n of the data to
obtain consistent estimators.

6 Notations and main assumptions in the general case

6.1 Smoothness of the mean pattern and the deformation operators

In this part, the notation (Lg)gep is used to denote either (Ty)gep or their inverse (Tg)gep.

Assumption 6.1. For all @ € P, Lg : L>(Q) — L?(Q) is a linear operator satisfying Lof € F for
all f € F. There exists a constant C(©) > 0 such that for any f € L*(Q) and 6 € ©

Lo /172 < CO) 7
and a constant C(F,©) > 0 such that for any f € F and 61,05 € O,
170, f = To. f72 < C(F,0) 101 = 621"

11



Assumption can be interpreted as a Lipschitz condition on the mapping (f,0) — Lgf. The
first inequality, that is ||Lof]|32 < C(O) | f||32, means that the action of the operator Ly does not
change too much the norm of f when @ varies in ©. Such an assumption on Ty and its inverse Ty
forces the optimization problem (2.2]) to have non trivial solutions by avoiding the functional M (0)
in ([2.3]) being arbitrarily small. It can be easily checked that Assumption is satisfied in the case
([LC2) of shifted curves with F = Hs(A) and s > 1.

6.2 The preliminary smoothing step

For j =1,...,J the fj’s are supposed to belong to the class of linear estimators in the sense of the
following definition:

Definition 6.1. Let A denote either N or Ry (set of smoothing parameters). To every X € A is
associated a non-random vector valued function Sy : Q@ — R™ such that for all j = 1,...,J and all
te)

fit) = F(t) = (Sa(1), Y;),

where (-,-) denotes the standard inner product in R™ and Y; = (Yf);z:l e R™

Assumption 6.2. For all\ € A and all £ =1,... n, the function t — Sf\(t) belong to L*(Q), where
Sf\(t) denotes the {-th component of the vector Sx(t). Moreover, for all A € A, f € F and 0 € ©, the
function t — (S\(t), Tef) belongs to F where Tof = (Tgf(tg))?zl.

In the case (I.2)) of randomly shifted curves with an equi-spaced design, then Assumption [6.2] holds

. n
with Sy (t) = [% 2 lkl<x 6227Tk(t_%)] . Let us now specify how the bias/variance behavior of the linear

estimators fj)‘ depends on the smoothing parameter A. For this, consider for some function f € F the
following regression model
Y8 = f(ty) +oet, £=1,...,n,

where the /’s are i.i.d normal variables with zero mean and variance 1. The performances of a linear
estimator fA(¢) = (S\(t),Y), where Y = (Y;)}7_,, can be evaluated in term of the expected quadratic
risk Ry(f?, f) defined by

R 1) =E| (= 1) :/Q|BA<f,t)|2dt+02A2VA(t>dt,

where By and Vj denote the usual bias and variance of f* given by Bx(f,t) = (Sx(t),f) — () and
VA(t) = [|Sa(t)|2n , for t € Q, where f = (f(tg))?zl. Define also V/(A) = [, Va(t)dt, and let us make

the following assumption on the asymptotic behavior of the bias/variance of f)‘:

Assumption 6.3. There exist a constant k(F) > 0 and a real-valued function X\ — B(X), such that
for all f € F,

IBACS, 72 = 16SA(), £) = F()lI72 < K(F)BA).
Moreover there exists a sequence of smoothing parameters (Ap)nen € AN with limy, 400 Ay = +00 such
that limy,—, 1 oo B(Ay) = 0 and lim, 10 V(A,) = 0.

Let us illustrate Assumption in the case of shifted curves with an equi-spaced design, and a
smoothing step obtained by low-pass Fourier filtering. As in Section [ take F = Hg(A) defined in
(E4). In this setting, V(X) = 2L It can be also checked that || By(f, 22 < C(A)B(N) for some
positive constant C'(A) depending only on A, and B(\) = % + A725. Thus, Assumption holds

_1
with A\, = n2s+1.
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6.3 Random perturbation of the mean pattern f by the Z;’s
Assumption 6.4. For any n > 1, there exists a real v,(©) > 0 such that for any 6 € ©

Ymax (EO [TBZ(TOZ)/] ) < 771(6)

where ToZ = (TgZ(tg)) € R", and Ymax(A) denotes the largest eigenvalue of a symmetric matriz
A. Moreover,
lim v,(0)yV(A\,) =0, (6.1)
n—oo

where V(\,) is the variance defined in Assumption [6.3.

Intuitively, the condition (6.I) means that the variance of the linear smoother Sy(-) has to be
asymptotically smaller that the maximal correlations (measured by 7,(©)) between TpZ(t;) and
ToZ (ty) for £,/ = 1,...,n and all @ € ©. In the case of randomly shifted curves with an equi-
spaced design, a simple condition for which Assumption holds is the case where Z is stationary
process (see the arguments in Section [5.1]).

7 Consistency in the general case

7.1 Consistent estimation of the deformation parameters

Consider for A € A the following estimator of the deformation parameters

6" = argmin M, (),
6cO

where
_1 Z/ <T9 (Sx(t) - ZTO (Sx(t) >>2d , (7.1)

A\
and O is the constrained set introduced in Assumption [£3l The estimator 6 thus depends on the

choice of ®, and it will be shown that 9)\ is a consistent estimator of the vector Og € RP/ defined
in Assumption L3l Note that depending on the problem at hand and the choice of the constrained
set O, it can be shown that Og is close to the true deformation parameters 8*. For example, in the
case of shifted curves, if @ = @ defined in (A2 and if the density g of the shifts has zero mean,

then Og, = (87 —0",...,0% — 0") with 6" = %Zj 1 05 can be shown to be close to 6" (see Lemma
in the Appendix). This allows to show the consistency of 9 to 8" as formulated in Theorem B.11

~A
Therefore, the next result only bounds the distance between 8 and 0.

Theorem 7.1. Consider the model (LX) and suppose that Assumptions L1}, [{-3, and [6.1] to
hold withm > 1 and J > 2. Then, for any A € A and z >0

(—He — 052, >C1(0,0 ff)[( (0 )+02)< v(m,J,)\)+v(:v,J,)\))

+ <\/B()\) + B(A))]) <277, (7.2)
with C1(0,0,F, f) >0, v(x,J,\) :== V() (1 +4% + ,/4T).
Using Assumptions [6.3] and [64], it follows that lim,,, 'yn(@)< v(z, J, Ap) +o(z, J, )\n)) =0 for

A
any > 0 and J > 2. If J remains fixed, Theorem [ I] thus implies that @ converges in probability
to Bg as n — +o0o0. To the contrary, let us fix n, and consider an asymptotic setting where only
J — +oo. For any x > 0 and A € A, limj oo v(z,J,A) = V(A). Therefore, Theorem [7.1] cannot

) «
be used to prove that 8 converges to g as J — +oo. This confirms that 8 is not a consistent
estimator of g (and thus of 8*) as n remains fixed and J tends to infinity.
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7.2 Consistent estimation of the mean pattern
Recall that the estimator f>‘ of the mean pattern f is defined as f)‘ = %Z}]:l Té/\ fj‘ We study the
i

consistency of f)‘ with respect to the shape function

J
ZT% To: f,

defined for Og = ([0g]1,---,[06]s). Again, depending on the problem at hand and the choice of
the constrained set @, it can be shown that fg is close to the true mean pattern f. For example,
in the case of shifted curves with ® = @q defined in (&2)), then 8o, = (05 —0",...,0% — 67) with
0" = %Z}] 107 In this case f§ () := %Z}Ll f(t =05+ [0g,];) = f(t - 0"). Hence, under the
condition that f@ 0g(6)d6 = 0, then 6° ~ 0 for J sufficiently large, and thus f&(t) is close to f which
allows to show the consistency of f)‘ to f as formulated in Theorem

%IH

Theorem 7.2. Consider the model (LI) and suppose that Assumptions L1}, [{.3, and [6.1] to
hold. Then, for any A € A and x > 0

P17 - follts Ca(0.0.7. 1)[(22(0) + %) (Ve 70 + (e 1)
+ (VB + B(A)>]> <27, (7.3)

where C2(0©,0, F, f) > 0 is a constant depending only ©, ©, F, and f.

The consistency of f* to f& is thus guaranteed when n goes to infinity provided the level of
smoothing A = A, is chosen so that lim, . V(\,) = lim,, 1o B(\,) = 0. Again, if n remains fixed
and only J is let going to infinity then Theorem cannot be used to prove the convergence of f* to

fe-

8 Numerical experiments for randomly shifted curves

Consider the model (33]) with random shifts 8; having a uniform density g with compact support
equal to [—1, 1], and f(t) = 9sin(2mt) + 2cos(8xt) for ¢ € [0,1] as a mean pattern, see Figure
For the constrained set we took

©u={0c[-4.4)7, 01+ 40,0},

We use Fourier low pass filtering with spectral cut-off to A = 7 which is reasonable value to reconstruct
f representing a good tradeoff between bias and variance. We present some results of simulations under
various assumptions of the process Z and the level o of additive noise in the measurements.

Shape invariant model (SIM). The first numerical applications illustrate the role of n and J in the
SIM model. Figure gives a sample of the data used with ¢ = 2. The factors in the simulations
are the number J of curves and the number of design points n. For each combination of these two
factors, we simulate M = 20 repetitions of model (B.3]). For each repetition we computed %H@A — 0|2
and || /A — f |2,. Boxplot of these quantities are displayed in Figure and respectively, for
J =20,40,...,100 and n = 512 (in gray) and n = 1024 (in black). As the smoothing parameter is
fixed to A = 7, increasing n simply reduces the variance of the linear smoothers f;‘ Recall that the

A
lower bound given in Theorem [3.3] shows that %E[HO* — 0"||?] does not decrease as J increases but
should be smaller when the number of point n increases. This is exactly what we observe in Figure Bl
Similarly, the quantity || f* — f ||%2 is clearly smaller with n = 1024 than with n = 512.
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Figure 2: @ mean pattern f. @ J = 3 noisy curves in the SIM with ¢ = 2. J = 3 noisy curves
with ¢ = 0 and a stationary process Z with ¢ = 4.
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Figure 3: Boxplot of 2(|0” — 05, |1 [(a)] and || f* — fe,l%. [(B)] over M = 20 repetitions from a SIM
model of shifted curves. Boxplot in gray correspond to n = 512, and in black to n = 1024.

Complete model. We now add the terms Z; in (3.3]) to model linear variations in amplitude of the
curves around the template f. First, we generate a stationary periodic Gaussian process. To do this,
the covariance matrix must be a particular Toeplitz matrix. As suggested in [Gre93|] one possibility is
to choose

,e?(t=1/2) 4 o=0(t=1/2)

6¢>/2 + e*¢/2 ’

where ¢ is a strictly positive parameter (we took ¢ = 4) and ¢ a variance parameter. The level
of additive noise is 0 = 8, and we took ¢ = 4. As an illustration, in Figure we plot f + Z;,

A
j=1,2,3 with ¢ = ¢ = 4. Over M = 20 repetitions, we have computed the values of +||8" — 6>

and || f)‘ — f@OH%2 for J is varying from 20 to 100 and n = 512,1024. The results are displayed in
Figure and [4(b)l We observe the same behaviors than in the simulations with the SIM model:

the variance of %Hé — 0%, ||* does not decrease as J increases (see Figure and ||f* — fe, || has
a smaller mean and variance as n increases.

We finally run the same simulations with a non stationary noise Z;(t) = a;i(t) where ¢ is a
positive periodic smooth deterministic function such that |[1[|;> = 1 and a; ~ N(0,¢%) with ¢ = 4.
Note that, in this case, the sequence 7, (0) is of order n and Assumption is not verified. The
levels of noise (0 and ¢) are the same than in the stationary case in order to make things comparable.

A

The rAesults are presented in the same manner in Figure for %HG — 0%, l? and in Figure
for || f* — fe,l%,. One can see that the results are very different. The estimators of the shifts have
I

R(t)=¢

. . ~A . .
a much larger mean and variance, and the variance of%”@ — 0, || remains rather high even when

n or J increases (see Figure [5(a)). The convergence to zero of || f* — feoll2: which was clear in the
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Figure 4: Boxplot of %(|6” — 0%, [|*[(a)] and %||f* — fe,|/*[(b)] in model (B3] with a stationnary error
term Z. Boxplot in gray correspond to n = 512, and in black to n = 1024.

stationary case, is now not so obvious in view of the numerical results displayed in Figure
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Figure 5: Boxplot of %{|6” — g, || [(&)] and %[/ f* — fe,l* [(P)] in model ([B3) with a non-stationnary
error term Z. Boxplot in gray correspond to n = 512, and in black to n = 1024.

9 Conclusion and perspectives

We have proposed to use a Fréchet mean of smoothed data to estimate a mean pattern of curves
or images satisfying a non-parametric regression model including random deformations. Upper and
lower bounds (in probability and expectation) for the estimation of the deformation parameters and
the mean pattern have been derived. Our main result is that these bounds go to zero as the dimension
n of the data (the number of sample points) goes to infinity, but that an asymptotic setting only
in J (the number of observed curves or images) is not sufficient to obtain consistent estimators. An
interesting topic for future investigation would be to study the rate of convergence of such estimators
and to analyze their optimality (e.g. from a minimax point of view).

A Proof of the results in Section
A.1 Proof of Theorem [3.7]

Write 0 = ([9*]]1, s [07]7), and let Y = (Y1q,...,Y ) € R™ be the column vector of the observations
generated by model (7). Conditionally to 8%, Y is a Gaussian vector and its log-likelihood is equal
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to
. Jn J y
log(p(Y|60%)) = —710g(27r) —log (det(A = g (Y; = To:£)'A(Y; — To:f), (A1)

where A = 07 2Id,,. Therefore, we have the expected score Eg- [0}g-71 log(p(Y|67))] = 0 for all j; =
J1
.,Jandp; =1,...,pand

Eg* [Orgp1 log(p(Y]0%))8;p.1v2 log (p(Y[6%))] = ’ if j1 # J2,
4 [9*}?11 g\p [G*E); g\p -3\ _ [(3[9*]‘_’1 TB* f)/ A (a[ *]1_’2 Te* )]Z17p2:1 i jl _ j2’
(A.2)

where 3[9*];911 Tg;lf = [8[9*}2 Tg;lf(tg)]?zl. Then, for each j; =1,...,J and p; = 1,...,p we have
(001 Tos, ' A O T, ) < 72010 Ty, £ < C(O, o (A3)

where the last inequality is a consequence of AssumptionBIl From now on, 8 = 8(Y) = (01(Y),...,0:(Y))
is an arbitrary estimator (i.e any measurable function of Y) of the true parameter 8*. Let also

U=6-6" and V= |90 log(p(Y(0")g(0" ) _y.-- . [0y og(p(Y10%)g(6"))]},

be a matrix of column vectors of RP/. Then, Cauchy-Schwarz inequality implies
(E[U'V])? < E[U'UE[V'V]. (A.4)

In the sequel we note g7 (8)d6 = g(81)...9(0;)d0; ...d0 ;. We have

M“

/RnJ le (y) = [0] )8[0* r1(p(y|0)g ( ))d@dy

<.
Il

)3
*

Il
H M&

RnJepl /3 i (p(y]0)9” (8))dOdy

£5

[ 012051 0010)5” @)) 01
nJ J@J

Assumption [T and the differentiability of ¢ imply that for all p; = 1,...,p and all 8 € © we have
limgr1 _,, 9(@) = 0. Then, an integration by part and Fubini’s theorem give [g g (p(y|0)g” (8))d =
J
0. Again, with the same arguments, [g,[¢ plaw* n (p(y|0)g”’(6))d6 = — [, p(y|0)g’ (6)d6 and thus
E[U'V] = pJ.

Now, using that the expected score is zero and equation (A.2]) we have

M~
M@

E[V'V] = E[(0yg-72 1o8(p(Y16°))?] + E[(0)y- s 1oa(9(07))?)

1

1p1

<.
Il

I
M~
M“@

[ @ T, & g To,, 019 0)d6 + 7 [ 00, 105 (9(61)]” (61)d01.
o

1p1

<.
Il

where O, log (9(61)) = [Jjg)1 log (9(01)) , ..., g log (9(01))] € RP. Then, using inequality [A.3] it
gives E[V'V] < pJnC(0©, flo2 + J [q H@gl log( (01))]* 9(61)d6,. Hence, using equation (AA) for
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any estimator 8 = 8(Y) (see Theorem 1 in [GL95])

R J
E[l6-67] = QT 2
nC(©, fla=2+p~ [, 10, log (9(61))]I” 9(61)d6x

a*n~lpJ

> .
~C(O, f)+nlplo? [, [|0s, log (9(61)) % 9(61)d6:

And since p > 1, the claim in Theorem BTl is proved. O

A.2 Proof of Theorem

As above, let Y € R™ is the column vector generated by model (LH). Then, conditionally to 8%, Y
is a Gaussian vectors and Assumption ensures that its log-likelihood has the same expression as
in equation (A.I]) but with

A= A(©) = (0*1dy + Eg+[To: Z;(Tg: Z;)']) ! = (07 1dy + £n(0)) "

As the matrix 3,(0) is positive semi definite with it smallest eigenvalue denoted by s2(©) (see
Assumption [3.2)), the uniform bound (AZ3) becomes

(00 T, £)' A©) (9 Tos, £) < (0 + 52(0)) ™ 0. T £ < C(O, n(o? + 55(0)) ",

forallpy =1,...,pand j =1,...,J. As above the last inequality is a consequence of Assumption [B.1]
and the rest of the proof is identical to the proof of Theorem [3.11 O

A.3 Proof of Theorem

For all 8 € R the operators Tpf(-) = f(- — 6) are isometric from L2([0,1]) to L?([0,1]) as a change
of variable implies immediately that | Ty f||32 = ||f]/32. For all continuously differentiable function
f, we have 0gTp f(t) = —sign(0)0,f(t — 6), where sign(-) is the sign function. Then, for all 8 € O,
106To f1|2: = 1101 f]122 < [|0:f||% and Assumption Bl is satisfied with C(©, f) = ||8;f||%,. Finally, as
the error terms Z;’s are i.i.d stationary random process the covariance function is invariant by the
action of the shifts and Assumption B.2]is satisfied with ¥,,(0) = X,, defined in (5.1) (see Section [5.1]
for further details). Then, the result of Theorem B3 follows as an application of Theorem O

B Proof of the results in Section 4l

B.1 Proof of Proposition 4.1

Remark that D(0) = >, ., |ci|*( 1 —
to Assumption 4.1l it follows that for any 0 € ©,

2
%Zj:l e!2mk(0;=67) >, where ¢ = fol f(t)e~?mktdt. Thanks

3 ei2n(6;-6))

J=1

<l

D©) > I (1~ ) (B.1)

with ¢] # 0. Then, remark that

2 J—-1

J
1 2 * *
=S+ > D cos(2n((0;—67) — (0, —67))).
1 j=1j'=j+1

i2m(6;-67)

DY

<=

J
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Using a second order Taylor expansion and the mean value theorem, one has that cos(2mu) < 1 —
C(p)|u|? for any real u such that |u| < 4p < 1/4 with C(p) = 272 cos(8mp) > 0. Therefore, the above
equality implies that for any 8 € ©

1< . S| 2
‘jzel%(% 075) Sj_{_ﬁ Z 1—0(/))‘(9 —0*) (9 0*){
j=1 J=1j'=j+1
g J=1 I 2
<S1-5>0 Y C)|6;-65) - (0, -6
J=1j'=j+1

since |(0; —67) — (0, —07,)| < 4p < 1/4 for all m,q = 1,...,n by Assumption L2 and the hypothesis
that p < 1/16. Hence, using the lower bound (B.I]), it follows that for all 6 € ©

2

J—1 J
<>>CpriZZ (8, - 63) — (8, — 63) (B.2)

with C(f,p) = 2|c;|?C(p). Now assume that @ € ®,. Using the properties that ZJ 0; = 0 and

Z;’Zl(ej—e;) — 57, 0% = 8", it follows from elementary algebra that 1 Z Zj —jit1 (6; — 65) —

j=1"j —

ijl(Gj — (65 — 0"))2. This equality together with the lower bound (B.2]) completes the proof. [

C Proof of the results in Section

C.1 Proof of Theorem 5.1

Let us state the following lemma which is direct consequence of Bernstein’s inequality for bounded
random variables (see e.g. Proposition 2.9 in [Mas07]):

Lemma C.1. Suppose that Assumption[{.9 holds. Then, for any x > 0

1 * * (12 2 x 2 —x
— _ > — < .
IP’(JHOGO 0% > p (,/ - +3J> 2e

Using the inequality }HéA 0*|? < 3H9A —05,|1> + 211605, — 0*|1%, it follows that Theorem [E.1]
is a consequence of Lemma [C. 1] and Theorem Iﬂl Indeed it can be easily checked that, under the
assumptions of Theorem Bl Assumptions [6.1] to [6.4] are satisfied in the case of randomly shifted
curves with an equi-spaced design and low-pass Fourier filtering, see the various arguments given in
Section [6]). The identifiability condition of Assumption 44l is given by Proposition [4.1] 0

C.2 Proof of Theorem

Consjc}er the following inequality ||/ — f||2 < 2||/* — fo, I + 2|l fo, — ||, where fo,(t) = f(t —0")
and 6" = %Z}] 107 € ©. As f is assumed to be in Hg(A), there exists a constant C'(©, f) > 0 such
that || fe, — fl|2. < C(O, f)|0"|* = C(O, f)3]105, — 6*||*. As explained in part [CI] the assumptions
of Theorem are satisfied in the case of randomly shifted curves with an equi-spaced design and

low-pass Fourier filtering. The result then follows from Theorem O

C.3 Proof of Theorem 5.3
Let n > 1. We have that

E[|f — fllz2] = EIlf = foo + foo = fllzz = | Ellf — feoll2 —Ell fo, — /I (C.1)

A B
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where for all ¢ € [0,1], f(t) = 5 Z] JE =65+ 9;), and fe,(t) = f(t+0"), with 8" = %Zj 105

In the rest of the proof we show that A is bounded from below by a quantity Co(f,g,n,02,p) =

-1 2
cif.p) 108 £11% +n— 102 f@ (9g log(g(0)
goes to zero as J goes to infinity. Then, these two facts imply that there exists a Jy € N such that
J > Jo implies that E||f — f|;2 > %Co(f, g,m,02, p), which will yield the desired result.

IE independent of J (this statement is made precise later) and that B

Lower bound on A. Recall that ¢ = fol f(t)e~¥?mktdt then

N[

2
*
Ck‘)’

J
Z ( i2mk(—0 +67) _ ei27rké*)

j=1

<=

1 = foullie = H—Zf P f<-+é*>||Lz=(Z

keZ

J

Z 127r9 _OGO]J _1)

> |Cl|

)

where 0g, = (6] — 9*, ...,0% — "), the right hand side of the preceding inequality being positive
~A
since Assumption [£.2] ensures that c¢j # 0 for all j =1,...,J. Let u; = 27(0; — [0g,];),i =1,...,J

. Since 23'121 uj =0 and |u;| < 4mp <3, j=1,...,J (by our assumption on p), Lemma [E.T] implies
that

If = feollzz > C(f, o)~ II‘9 — 06,/ (C.2)

Now, remark that E[1]6”" — 65, [|12] > E[1[0" - 67|2] — C with C = 2E[[6"| 1 27, 16} — 07]]. By
applying Theorem B.3] we get that

n~lo?

100f |15 + 1102 [o (99 log (9(6)))*

Then, remark that C < 4p\/E|é*|2 < C(p, g)J_l/Q. Hence C tends to 0 as J goes to infinity.

Therefore, using equation (C.2), it follows that there exists Co(f, g,n,02%,7,p) > 0 and J; € N such
that J > J; implies that

AN %
E[%HO -0 HQ] >C(f,g,n,0 ), with C(f,g,n,o )

A =E[||/* = fllz2] = Co(f,9,n,07, p). (C.3)

Upper bound on B. By assumption, f is continuously differentiable on [0, 1] implying that || fe, —

— — Sk (2 —
fllz = 1f(-+8") = fll2 < 18l |6"|. Therefore, E[| fo, — fllz2 < [10:f]l o \/E 07| < C(f,9) /2.
Hence, there exists a Jy € N such that J > Jo implies

~ ~ 1
B = E[Hf@o - fHL2] < 500(.]0797”70-27/))' (04)
To conclude the proof, equations (C.I)), (C.3) and (C.4) imply that there exists a Jo € N such that
J > Jo implies E||f* — f|lz2 > |A = B| > L1Co(f, 9,1, 0%, p). O

D Proof of the results in Section [7]

D.1 Proof of Theorem [T.1]

We explain here the main arguments of the proof of Theorem [[.Il Technical Lemmas are given in the
second part of the Appendix. Let 8 = (61,...,0,) = (01,...,67,...,60%,...,6%) € RP and decompose
the criterion (Z.1]) as follows,

Z/ <T9 (S, (t) ——ZTQ (S, () >>2dt

= D(6) + |[R\(8) + @Aw)] + [QA (0) + RY(0) + RL°(0) + Q5(0) + R3(6)]

20



2
where D(0) = %Z;’Zl Jo <T9jT9;f(t) — %Z;‘I’:l ng,Tg;/f(t)) dt, the terms Ry and Q) are due to

the smoothing, namely,

k.l'—‘

k.l'—‘

é/
A

'=1

and the others terms contain the Z;’s and €;’s error terms. Let To:2; = (Tg; Zj (tg))?zl and Tg;f =
(Tg;f(tg))?zl, then

j=1
J J
R%(0) = %; /Q <T9J (S\(1), To;f ) — %J}Zjl To,, (S(1), To: f>>
x <~9] (3(1), T, ;) - % EJ: To,, (S\(), Tor, Zy ) >dt,
§'=1
J J
RZ<(0) = 27 jzl/ﬁ <ng <SA(t), Te*zj> - %ETQ , <S,\(t),T9;/ zj/>>
X <~9] (Sx(t), &) %ZJ:T} ) <SA(t),sj/>>dt
§'=1
Q5(0) = 072321/9 <T01 (Sx(t),&5) — %]/é ~93/ <S/\(t)a5J’> >2dt
J J
5(0) = 27(’ ]Z:; /Q (Tej (5\(1), Ta;) - %;Te (S(1), To: f>)

)
At this stage, recall that 0g = argming.g D(0) and 6 = argmingcg M) (0). The proof follows a
classical guideline in M-estimation: we show that the uniform (over ®) convergence in probability of

A\
the criterion M) to D, yielding the convergence in probability of their argmins g and 6" respectively.
Assumption [£4] ensures that there is a constant C'(0,F, f) > 0 such that,

1, .2 X ~ A N
116”7 - 05[* < C(6,0, 7, f) |D(6") - D(95) (D.1)
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Then, a classical inequality in M-estimation and the decomposition of M) () given above yield

A

D) = D(B)| < 25up[D(6) ~ M(6)| (D-2)
—25up { R\(0) + Qa(0) } + 2 5up { QF(6) + RE(6) + R{*(9) + Q3(6) + R3(6) }
0co® 6cO
B A\

The rest of the proof is devoted to control the B and V terms.

<

2
Control of B. Using Assumption [6.3] and [6.1] we have that Q,(0) < @ J HBA Tg* f,t) L

C(0,F)B()\). Now by applying the Cauchy-Schwarz inequality, |R)(0)| < sup{\/ 0)}/Qx(0). By
Assumption [6.1] there exists a constant such sup{D(0)} < C(©,F, f) and thus
0cO

B < C(0,F, f)(BA) +vB(). (D.3)

Control of V. We give a control in probability of the stochastic quadratic term Qf and Q5. As
previously, one can show that there is a constant C(©,F, f) > 0 such that,

Q% (6) + F(6) + RE“(6) + 3(6) + 5 (0)] < C(0.7.1) /@ (6) + Q£ (6) + 5(0) + \/@50))

where we have used the inequality 2ab < a® + b2, valid for any a,b > 0 to control the term R)Z\’8
The quadratic terms Qf and Q5 are controlled by Corollaries [E.I] and [E.2] respectively. It yields
immediately to

P <V > C(Ga ]:a f)(rymax(n) + 0'2)(U($, Ja )‘) + U(x’ J’ A))) < 267:’3, (D4)

where v(z, J,A) = V(A) (1 +4% + /4 )
Putting together equations (D.Il), (D.2), (D.3]) and (D.4), we have

1 PO)
P(jne*@ =02 = C(0,0,F, )| (max(n) + %) (Volw, TN + v(a, ) ) + (BO) + B(A))]) <27,
which completes the proof of Theorem [l O

D.2 Proof of Theorem [7T.2]

In this part, we use the notations introduced in the proof of Theorem [T Il We have,

< JZHT%] To: f — Tiog, (Sx(), Tg*f>‘

L2

B/

Tiog), <SA Te;f> —Tg; (Sx(), Y;)

2J
>3

N~

V/

Again, the first term above depends on the bias, and the second term (stochastic) can be controlled
in probability. Under Assumptions and we have that

7
B' < c®) ; H<5A(')7T9;f> - Te;fH; < C(0,F)B()N),
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Vv = %jZJ; [0@)] <S)\( ) ngf> — Té;\ <S>\(),T9jf> + Té; <S)\(),T9;f> — Téj <S)\(')?Yj> iQ
<@ > (167 - 106112 + [ (5100, ¥; 1)),

j=1
< cto.5) (19"~ oeli+ 53 (530 T+ )

The stochastic term % 23'121 ‘<S,\(-), T@; Z; + €j>HL2 in the above inequality can be been controlled

using Lemma [E.2] and the arguments in the proof of Corollaries [E.1] and [E.2] to obtain that for any
x>0

]P’(% i H<S,\(-),T9;Zj + €j>H; > C(0,F, f)(Ymax(n) + 02)< v(z, J,\) +v(z, J, A))) <e 7,
j=1
Then, from Theorem [[1] it follows that
IP’(B’ +V' > (0,0, F,f) [(’ymax(n) + 02)( v(@, JN) + vz, J, A)) + (B()\) + B(A))D < 2e77,

which completes the proof. O

E Technical Lemmas

Lemma E.1. Let u = (uy,...,uy) such that Z}]:1 uj = 0 with |uj| <6 for some 0 < 6 < 3 for all
j=1,...,J. Then, there exists a constant C () > 0 such that |+ ijl(ei“f = 0(5 |u|® where
Jul* = ud + ...+ 43

Proof. Let F(uy,...,uy) = %Z}Ll e™i. A Taylor expansion implies that there exits t; € [—4,0],
j=1,...,J such that

. J 1 J i J s,
F(ul,..., = Z _ﬁz —le je 7,
j=1 j=1 j=

holds for all |u;| < §. Now, since zjzl uj = 0 it follows that

k‘ |

J

J . J J .
1 - 1 2 2 3 it 1 3 it
bzewﬂ—11:1—gzuj—@zujew S - 13 e
J=1 =1 j=1 j=1 —1
Since i Z}f . u}g’e” <3 Z] | 4| which finally implies that ‘ J e 1‘ >
65} ;] 1 ], which proves the result by letting C'(§) = 365 > 0 since § < 3. 0

J
Lemma E.2. Let &, j(4;,...,A;) =1 2 H(S)\('),Ajsj>Hig, where €; ~ N(0,1,) and the A;’s are
j=1

nonrandom mnon-negative n X n symmetric matrices. Then, for all x > 0 and all n > 1,

1 T [ x
> — — - < —1‘.
P<£)\,J(Ala aAJ) = JHAH <1+4J+ 4J)> < e

J n , n
where ||Al| = > Y 70 with v, being the (-th eigenvalue of the matriz Aj; = A; {(Sﬁ, S >L2L£ ) Aj.
j=1é=1 A=
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Proof. Some parts of the proof follows the arguments in [BM98] (Lemma 8, part 7.6). We have

L2 J
&\,JZ}Z Z ;A jej,
=1 =

n

> SA0)[Aeylf

(=1

n

J
1 ! /
= DY (S5 S elA 51 [Aje )t =
j=16,0=1

2

kIH

Lo

n

where A; = A;S)\A; with Sy = |:<S§,S§/>L2:| . Now, denote by ;1 > ... > r;, the eigenval-

00=1
1 1
ues of Aj with rj; > ... > rj, > 0 and ry = max;{r;,}. We can write A; = (Sy24;) (Sx24;)

~ J
and is positive semi-definite. Then, let {\ ; = J&\ 7 — JE g = Z(s;-Ajsj —trAj). Let o > 0,

» 2 >

by Markov’s inequality it follows that for all u € <O L), P <§>\ J> a) =P <e“5~%(’ > e“o‘> <

e U szl E [e“sj,Aﬁsi —utr AJ} , since the €;’s are independent. The log-Laplace transform of ¢y ; =

ej/Aje; — trA; is log (E [e"i]) = o7 —urj, — 2log (1 —2urj,). We now use the inequality

—z — $log(l — 2z) < 12 for all 0 < < 3 which holds since u € (O, o ) This implies that

2
log (E [GWPA,J'D < Zz L 1“ 7.0 < u?|lrsll where Hrj||2 _

2u7’][ — 1—-2ury’

rjz.,l +...+ T‘?L,j. Finally, we have

P (o2 a) <o = (va- Z ﬂr_j”m)) —exp ( — (ua- M—Q“u)) (B.1)

where ||r||* = ijl > 71 7% The right hand side of the above inequality achieves its minimum at

u= % (1 - %W) Evaluating (EI) at this point and using the inequality (1+z)%2 <1+ 2,

valid for all x > —1, one has that

_ a?
P <§,\,J > Oé) < exp <— >
2ryo+ 2 |7[* + 21|71 (1 + dary /(2 |r)1%)) /2

<o (- i)
exp| ——m—— ),
=P\ a4

o’ We derive the following concentration inequality for & ; = %g} J+

drra-talr?

%Z;’Zl tr(A;), P(f)\ >4 5 Z] L2 T AT+ Izl \/43:) < e~ *. To finish the proof, remark that

by setting x =

2
|r||* = Z;.le Doy 7"]2.76 < (ijl Dy rj,g) since all the 7; ’s are positive. O

Corollary E.1. Under Assumptions[6.1 to[6.3, there exists a constant C(©,F) > 0 such that for all

x>0,
P <sup Q5(0) > C(0, F)o?V()\) (1 +4Z 4+, /4f>> <e T
e J J

Proof. Assumption gives the uniform bound

J
Z/ Tg S)\ O’€]>> dt< @ ]: Z O'Ef] HLQ

=C(0,F)r (0ldy, ... 0ldy),

where &y j(0ld,,...,old,) is defined in Lemma and does not depend on 6. Thus, the result
immediately follows from Lemma [E.2l O
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Corollary E.2. Under Assumptions[6.1] to there exists a constant C(©,F) > 0 such that for all
>0,

P (328 Q%(8) > C(0, F)ym(©)V(N) <1 + 4§ + 4§>> <eT.

Proof. Assumption gives the uniform bound

2

020 3 [ (1, (50T = S5 (5w

Hence, conditionally on 8* we have that supgcgs Q%(0) < C(0, F)&r (A1, ..., Ay), where &y j(Ar,..., Ay)
1
is defined in Lemma [E.2l with A; = Eg+ [Tg; Zj(Te;ﬁ Zj)’] 2, Let us now give an upper bound on the

n

largest eigenvalues of the matrices A; = A;S\A; with Sy = [<S§,S§I>L2]“/:1-
6.4 we have that tr(A;) < Ymax(A;) tr Sy < 7, (©)V(A), for all j =1,...,.J and any 8* € ©7. Thus,
the result follows by arguing as in the proof of Lemma [E.2 and by taking expectation with respect to
0. O

Under Assumption
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