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Abstract

A new class of statistical deformable models is introduced to study high-dimensional curves or
images. These models are useful to analyze the geometric modes of variation of a data set around a
common mean pattern. It is shown that an appropriate tool for statistical inference in such models
is the notion of empirical Fréchet mean. This leads to a new procedure to construct a mean pattern
from a set of curves or images, and to estimate the shape variability of such data. Using a non-
asymptotic framework, we propose consistent estimators of the mean pattern and the deformation
parameters modeling the geometric variability of curves or images. Numerical experiments are
given to illustrate the finite sample performances of the procedure. An application to the analysis
of the geometric variability of a set of images is also proposed.
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1 Introduction

1.1 A statistical deformable model for curve and image analysis

In many applications, one observes a set of curves or grayscale images which are high-dimensional
data. Let Ω be a subset of Rd, with d = 1 for modeling curves and d = 2, 3 for modeling two or three
dimensional images. In such settings, it is reasonable to assume that the data at hand Y ℓ

j , denoting
the ℓ-th observation for the j-th curve (or image), satisfy the following regression model:

Y ℓ
j = fj(tℓ) + σεℓj , j = 1, . . . , J, and ℓ = 1, . . . , n, (1.1)

where fj : Ω −→ R are unknown regression functions (possibly random), the tℓ’s are non-random
points in Ω (deterministic design), the error terms εℓj are independent and identically distributed
(i.i.d.) normal variables with zero mean and variance 1, and σ represents the level of additive noise.

Here, we suppose that the individual curves or images possess a certain common structure we want
to recover. It may lead to the assumption that the observations are random elements which vary around
a common mean pattern. Estimating such a mean pattern and characterizing the mode of variations of



the individuals around this common pattern is of fundamental interest in many applications. Principal
components analysis (PCA) is widely used to estimate the linear variations in intensity of a data set
of curves or images around the usual empirical mean Ȳℓ =

1
J

∑J
j=1 Y

ℓ
j , ℓ = 1, . . . , n. However, in many

situations, such data also exhibit a source of geometric variations in time or space which cannot be
recovered by standard PCA. Indeed, consider the following simple model of randomly shifted curves
(with d = 1) which is commonly used in many applied areas such as neuroscience [TIR10] or biology
[Røn01]

fj(tℓ) = f∗(tℓ − θ∗
j ), j = 1, . . . , J, and ℓ = 1, . . . , n, (1.2)

where f∗ : Ω −→ R is the common mean pattern of the observed curves, and the θ∗
j ’s are i.i.d. random

variables in R with density g and independent of the εℓj’s. In model (1.2), the shifts θ∗
j represent a

source of variability in time. However, in such a model, the usual empirical mean is not a consistent
estimator of the mean pattern f∗ since by the law of large numbers

lim
J→∞

Ȳℓ = lim
J→∞

1

J

J∑

j=1

f∗(tℓ − θ∗
j ) =

∫

f∗(tℓ − θ)g(θ)dθ a.s.

Therefore, in model (1.2), estimating by standard PCA the modes of variation of the data around the
usual empirical mean Ȳℓ is not very meaningful. In such settings, a possible approach is Grenander’s
pattern theory which considers that the curves or images fj, j =, 1, . . . , J are obtained through the
deformation of a common mean pattern (also called template). More precisely, in Grenander’s pattern
theory [Gre93], [GM07], images are considered as points in an infinite dimensional manifold and the
variations of the images are modeled by the action of Lie groups on the manifold. In the last decade,
there has been a growing interest in transformation Lie groups to model the geometric variability of
images, and the study of the properties of such deformation groups is now an active field of research
(see e.g. [MY01], [TY05] and references therein).There is also currently a growing interest in statistics
on the use of Lie group actions to analyze geometric modes of variability of a data set, and we refer
to [HHM10a], [HHM10b] and the discussion therein for further details.

To describe more formally such a source of geometric variability, denote by F some subspace of
L2(Ω) (the set of square integrable real-valued functions on Ω with respect to the Lebesgue measure
dt on R

d) and by Θ a compact subset of R
p. To the set Θ, we associate a parametric family of

operators (Tθ)θ∈Θ such that for each θ ∈ Θ the operator Tθ : L2(Ω) −→ L2(Ω) represents a geometric
deformation (parametrized by θ) of a curve or an image. Examples of such deformation operators
include the cases of:

- Randomly shifted curves: for every (θ, f) ∈ Θ×F , define the deformation operators

Tθf(t) := f(t− θ),

with d = 1, Ω = [0, 1], F ⊂ L2
per([0, 1]) (the space of periodic functions in L2([0, 1]) with period

1) and Θ a compact interval of R.

- Rigid deformation of two-dimensional images: for every (θ, f) ∈ Θ × F , define the deformation
operators

Tθf(t) := f (eaRαt− b) , for θ = (a, α, b) ∈ Θ (1.3)

with d = 2, Ω = R
2, F ⊂ L2(Ω) , Θ = [−A,A] × [0, 2π] × [−B,B]2 for A,B > 0 where Rα =

(
cos(α) − sin(α)
sin(α) cos(α)

)

is a rotation matrix in R
2, ea is an isotropic scaling and b a translation

in R
2.

- Deformation by a Lie group action: the two above cases are examples of a Lie group action on the
space F (see [Hel01] for an introduction to Lie groups). More generally, assume that G is a
connected Lie group of dimension p acting on Ω, meaning that for any (g, t) ∈ G×Ω the action
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· of G onto Ω is such that g · t ∈ Ω. In general, G is not a linear space but can be locally
parametrize by a its Lie algebra G which is a vector space endowed with an extra structure,
the Lie bracket. Indeed, there is a canonical local parametrization around the identity given by
the exponential map at the identity exp : G → G. If Θ is a compact subset of G such that the
restriction of exp to Θ is a diffeomorphism, then for every (θ, f) ∈ Θ×F define the deformation
operators

Tθf(t) := f (exp(θ) · t) .

- Non-rigid deformation of curves or images: let us recall that a diffemorphism of Ω is a smooth
map ψ : Ω −→ Ω having a smooth inverse with ψ(Ω) = ψ−1(Ω) = Ω, and assume that one can
construct a family (ψθ)θ∈Θ of parametric diffeomorphisms of Ω (further details on how to build
such a family will be given later on). Then, for every (θ, f) ∈ Θ × F , define the deformation
operators

Tθf(t) := f (ψθ(t)) .

Modeling the geometric variability of curves or images in F ⊂ L2(Ω) by a generic family of
deformation operators (Tθ)θ∈Θ thus includes the point of view of Grenander’s pattern theory. However,
our setting is more general as it is not required that the operation of (Tθ)θ∈Θ on L2(Ω) corresponds
to a Lie group action. Then, in model (1.1), we assume that the fj’s have a certain homogeneity in
structure in the sense that there exists some f∗ ∈ F such that

fj(t) = Tθ∗

j

[
f∗ + Zj

]
(t), for all t ∈ Ω, and j = 1, . . . , J, (1.4)

where θ∗
j ∈ Θ, j = 1, . . . , J are i.i.d. random variables (independent of the εℓj ’s) with an unknown

density g with compact support in Θ. The function f∗ represents the unknown mean pattern common
to all the fj’s. The Zj’s are supposed to be independent realizations of a second order centered
Gaussian process Z taking its values in L2(Ω) independent of the εℓj ’s. The Zj ’s represent the individual
variations in amplitude/intensity around the mean pattern f∗. Thus, they correspond to a classical
source of variability in intensity that could be analyzed by standard PCA. To the contrary, the random
operators Tθj

model geometric deformations in time or space, and thus correspond to a source of
variability in shape in the data. Therefore, if we assume that that the Tθ’s are linear operators,
equation (1.4) leads to the following statistical deformable model for curve or image analysis

Y ℓ
j = Tθ∗

j
f∗(tℓ) + Tθ∗

j
Zj(tℓ) + σεℓj , j = 1, . . . , J, and ℓ = 1, . . . , n. (1.5)

We emphasis that the error terms εℓj and the zero-mean Gaussian processes Zj are of different kind.

The εℓj is an additive noise modeling the errors in the measurements while the Zj’s model linear
variations in intensity of the individuals around a common mean pattern. Note that a subclass of the
deformable model (1.5) is the so-called shape invariant model (SIM)

Y ℓ
j = Tθ∗

j
f∗(tℓ) + σεℓj , j = 1, . . . , J, and ℓ = 1, . . . , n, (1.6)

i.e. without incorporating in (1.5) the additive terms Zj for j = 1, . . . , J . However, the SIM is not
very realistic in practice as observed curves or images generally exhibit a variation in intensity, and
we thus focus on the more general deformable model (1.5).

The main goal of this paper is to propose a general methodology for estimating f∗ and the θ∗
j ’s

based on observations coming from model (1.5). For this purpose, we show that an appropriate tool to
use is the notion of empirical Fréchet mean of a data set [Fré48], [BP03], [BP05] that has been widely
studied in shape analysis [LK00], [Le98], [Goo91], [KM97], and more recently in biomedical imaging
[JDJB04]. In this setting, we derive non-asymptotic consistency results by keeping fixed the number
J of observed curves (or images) and the number n of design points. The estimation of f∗ and the
parameters θ∗

j in models such as (1.5) can then be used to study geometric modes of variation in a
data set when standard PCA is not appropriate.
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1.2 Organization of the paper

Section 2 contains a description of our estimating procedure and a review of previous work in mean
pattern estimation. In Section 3, we present in detail the case (1.2) of randomly shifted curves, and
we give some consistency results for the Fréchet mean in this framework. In Section 4 and Section
5, we give general conditions to extend to the more general deformable model (1.5) the consistency
results obtained in the setting of shifted curves. Section 6 contains some numerical experiments, and
we present an application to geometric PCA of images using a parametric family of diffeomorphisms.
All proofs are postponed to a technical Appendix.

2 The estimating procedure

2.1 Fréchet mean

Fréchet [Fré48] has extended the notion of averaging to general metric spaces via mean squared error
minimization in the following way: if Y1, . . . ,YJ denotes i.i.d. random variables with values in a
metric space M with metric dM : M × M −→ R

+, then the empirical Fréchet mean YM of the
sample Y1, . . . ,YJ is defined as a minimizer (not necessarily unique) of

YM ∈ argmin
y∈M

J∑

j=1

d2M(y,Yj). (2.1)

If M is a Hilbert space endowed with inner product 〈·, ·〉 and associated distance dM(y, y′)2 = 〈y −
y′, y − y′〉, then the empirical Fréchet mean is unique, and it coincides with the usual empirical mean
YM = 1

J

∑J
j=1Yj . When M is not a vector space but a nonlinear manifold, a well-known example

is the computation of the mean of a set of planar shapes when M = Σn
2 is the Kendall’s shape space

[Ken84]. LetY ∈ R
n×2 be a set of n points in R

2 representing a planar shape, and define a deformation
operator Tθ for θ = (a, α, b) ∈ Θ = R× [0, 2π] × R

2 acting on R
n×2 in the following way

TθY = eaYRα + 1nb
′, where Rα =

(
cos(α) − sin(α)
sin(α) cos(α)

)

and 1n = (1, . . . , 1)′ ∈ R
n.

Then, two shapes Y1,Y2 ∈ R
n×2 are said to be equivalent if there exists θ ∈ Θ such that Y1 =

TθY2. The set of equivalent classes under this relation is by definition the Kendall’s shape space Σn
2 .

Consistent estimation of a mean shape in Σn
2 has been studied by various authors, see e.g. [LK00],

[Le98], and in particular by [Goo91] and [KM97] when a set of random shapes Y1, . . . ,YJ is drawn
from the following model

Yj = Tθ∗

j
(µ+ ζj), j = 1, . . . , J (2.2)

which is very similar to the statistical deformable model (1.5), where µ ∈ R
n×2 is the unknown mean

shape to estimate, the θ∗
j ’s are i.i.d. random variables in Θ, and the ζj’s are i.i.d. centered Gaussian

error terms.
More generally, a detailed study of some properties of the Fréchet mean (such as consistency and

uniqueness) has been proposed in [BP03] and [BP05] when M is a finite dimensional Riemannian
manifold and dM is the geodesic distance (which includes the case of Kendall’s shape space).

2.2 A dissimilarity measure based on deformation operators

However, the general framework in [BP03] and [BP05] is not adapted to the study of curves or images
which are high-dimensional random variables. To define a notion of empirical Fréchet mean for such
objects, let us suppose that the family of deformation operators (Tθ)θ∈Θ is invertible in the sense that
there exists a family of operators (T̃θ)θ∈Θ such that for any (θ, f) ∈ Θ× L2(Ω)

T̃θf ∈ L2(Ω) and T̃θTθf = f.
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Then, for two functions f, h ∈ L2(Ω) introduce the following dissimilarity measure

d2T (h, f) = inf
θ∈Θ

∫

Ω

(

T̃θh(t)− f(t)
)2
dt.

If d2T (h, f) = 0 then there exists θ ∈ Θ such that f = T̃θh meaning that the functions f and h are
equal up to a geometric deformation. Note that dT is not necessarily a distance on L2(Ω), but it can be
used to define a notion of empirical Fréchet mean of data from model (1.5). For this purpose, suppose
that f̂j are smooth functions in L2(Ω) obtained from the data Y ℓ

j , ℓ = 1, . . . , n for j = 1, . . . , J (further
details on this smoothing step will be given later on). Following the definition (2.1) of a Fréchet mean,
define an estimator of the mean pattern f∗ as

f̂ = argmin
f∈L2(Ω)

1

J

J∑

j=1

d2T (f̂j , f). (2.3)

Then, remark that the computation of f̂ can be done in two steps: first minimize the following criterion

(θ̂1, . . . , θ̂J) = argmin
(θ1,...,θJ )∈ΘJ

M(θ1, . . . ,θJ), (2.4)

where

M(θ1, . . . ,θJ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
f̂j(t)−

1

J

J∑

j′=1

T̃θj′
f̂j′(t)

)2

dt, (2.5)

which gives an estimation of the deformation parameters θ∗
1, . . . ,θ

∗
J , and then in a second step take

f̂(t) =
1

J

J∑

j=1

T̃
θ̂j
f̂j(t), for t ∈ Ω, (2.6)

as an estimator of the mean pattern f∗.
Note that this two steps procedure does not require the use of a reference template to compute

estimators θ̂1, . . . , θ̂J of the deformation parameters. Thus, it differs from standard algorithms used to
compute a mean pattern. Classical approaches are based on an iterative algorithm which is an alter-
native scheme between computation of deformation parameters θ̂j and averaging of back-transformed
curves or images using the inverse deformation operators T̃

θ̂j
. Such iterative algorithms lead to the

well known Procrustean method,see e.g. [DM98], [Goo91]. The formulation (2.4) is thus an alternative
solution to Procrustean methods and, in this paper, we show that minimization of (2.4) can be done
by a gradient-descent algorithm.

2.3 Previous work in mean pattern estimation and geometric variability analysis

The problem of estimating the mean pattern of a set of curves that differ by a time transformation
is usually referred to as the curve registration problem. Among the various methods that have been
proposed, one can distinguish between landmark-based approaches see e.g. [GK92], [Big06], and non-
parametric time warping to align a set of curves see e.g. [RL01], [WG97], [LM04]. However, in these
papers, studying consistent estimators of the common shape f∗ as the number of curves J and design
points n tend to infinity is not considered. For the SIM (1.6), a semiparametric point of view has been
proposed in [GLM07] and [Vim10] to estimate non-random deformation parameters (such as shifts and
amplitudes) as the number n of observations per curve grows, but with a fixed number J of curves. A
generalisation of this semiparametric approach for the estimation of scaling, rotation and translation
parameters for two-dimensional images is also proposed in [BGV09], but also with a fixed number
J of observed images. The case of image deformations by a Lie group action is also investigated in
[BLV10] from a semiparametric point of view using a SIM.
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In the simplest case of randomly shifted curves in a SIM, [BG10] have studied minimax estimation
of the mean pattern f∗ by letting only the number J of curves going to infinity. Self-modelling
regression (SEMOR) methods proposed by [KG88] are semiparametric models where each observed
curve is supposed to be a parametric transformation of a common regression function. However, the
SEMOR approach does not incorporate a random fluctuations in intensity of the individuals around
a mean pattern f∗ through an unknown process Zj as in model (1.5). This is a limitation of the
SEMOR approach as, in a lot of applications, the functions fj are varying locally in intensity from
one individual to another. Estimation in the SEMOR model is done using a Procrustean algorithm,
and [KG88] studied the consistency of such procedure in an asymptotic framework where both the
number of curves J and the number n of design points grow to infinity.

The model (1.5) is also very much connected to the well-known problem of image warping. There
is a wide literature on this subject. Recently, there has been a growing interest on the development
of statistical deformable models for image analysis and the construction of consistent estimators of
a mean pattern, see [GM01], [BGV09], [BGL09], [AAT07], [AKT09] and references therein. The
deformable model (1.5) to account for variability in shape and intensity is also related to the theory of
metamorphoses developed by [TY05] in which infinitesimal variations of curves or images are modeled
as a combination of elastic deformations and photometric variations. However, the approach followed
in [TY05] is purely deterministic in the sense that it is not focused on the analysis of random variations
in shape and intensity or on the estimation of a mean pattern.

In this paper, a general theory is sought to unify previous work in statistics on curve registration
and image warping. For this purpose, we propose to use the notion of empirical Fréchet mean, which,
to the best of our knowledge, has not been considered before in a statistical setting using general
deformable models such as (1.5).

3 The case of randomly shifted curves

Let us first consider the case of randomly shifted curves (1.2) with an equispaced design to give an
idea of the consistency results that can be expected using an estimating procedure based on empirical
Fréchet mean. In this setting, the model (1.5) can be written as

Y ℓ
j = f∗

(
ℓ
n − θ∗

j

)
+ Zj

(
ℓ
n − θ∗

j

)
+ σεℓj , j = 1, . . . , J, and ℓ = 1, . . . , n. (3.1)

3.1 The random perturbations Zj

First, let us make the following assumption on the random perturbation Z of the mean pattern f∗.

Assumption 3.1. The Zj ’s in (3.1) are i.i.d. copies of a second order stationary Gaussian process
Z taking its value in L2

per([0, 1]) with zero mean and covariance function R : [0, 1] → R.

Under Assumption 3.1, the law of Z is thus invariant by the action of a shift. This hypothesis is
similar to the condition given in [KM97] to ensure consistency of Fréchet mean estimators in model
(2.2), where, after a normalization step, the deformations considered are rotations of the plane. The
authors in [KM97] study the case where the law of the error term ζj in (2.2) is isotropic, that is to
say, invariant by the action of rotations.

Throughout this paper Eθ[·] denotes expectation conditionally to θ ∈ ΘJ . For any random element
θ∗
j ∈ Θ, the vector Tθ

∗

j
Zj =

[
Zj(

ℓ
n − θ∗

j)
]n

ℓ=1
is, conditionally on θ∗

j , a centered Gaussian random
variable and its covariance matrix is a Toeplitz matrix equals to

Σn = Eθ
∗

j

[
Tθ

∗

j
Zj(Tθ

∗

j
Zj)

′
]
=
[

E

[

Z
(
ℓ
n

)
Z
(
ℓ′

n

)]]n

ℓ,ℓ′=1
=
[

R
(
|ℓ−ℓ′|
n

)]n

ℓ,ℓ′=1
.

Let γmax(Σn) be the largest eigenvalue of the matrix Σn. It follows from standard results on Toeplitz
matrices (see e.g. [HJ90]) that

γmax

(
Σ
)
≤ lim

n→+∞

1

n

n∑

k=1

∣
∣R
(
k
n

)∣
∣ = γ (3.2)
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where γ =
∫ 1
0 |R(t)| dt is a positive constant independent of n. The constant γ can be interpreted as

a measure of the “variance” of the random perturbations Zj, j = 1, . . . , J in model (3.1).

3.2 Choice of the smoothing estimators f̂j

A convenient choice for the smoothing of the observed curves in (3.1) is to do low-pass Fourier filtering.

Define the empirical Fourier coefficient at the frequency k by ĉj,k = 1
n

∑n
ℓ=1 Y

ℓ
j e

−i2πk ℓ
n for k = −(n−

1)/2, . . . , (n − 1)/2 (assuming for simplicity that n is odd). It gives for a fixed smoothing parameter
λ ∈ N and t ∈ [0, 1] the following linear estimators

f̂λj (t) =
∑

|k|≤λ

ĉj,ke
i2πkt =

1

n

∑

|k|≤λ

n∑

ℓ=1

e−i2π ℓ
n
kei2πktY ℓ

j =
1

n

n∑

ℓ=1

∑

|k|≤λ

ei2πk(t−
ℓ
n
)Y ℓ

j = 〈Sλ(t),Yj〉 , (3.3)

where Sλ(t) =
[
1
n

∑

|k|≤λ e
i2πk(t− ℓ

n
)
]n

ℓ=1
. Then, define the following Sobolev ball Hs(A) of radius

A > 0 and regularity s > 0 using a characterization in term of the Fourier coefficients ck(f) =
∫ 1
0 f(t)e

−i2πktdt, k ∈ Z for a function f ∈ L2
per([0, 1]),

Hs(A) =
{

f ∈ L2
per([0, 1]),

∑

k∈Z

(1 + |k|2)s |ck(f)|2 < A
}

. (3.4)

Then, as a possible choice for the smoothness class F to which the mean pattern f∗ is supposed to
belong, take F = Hs(A).

3.3 Identifiability conditions

Suppose that Θ = [−ρ, ρ] for some ρ > 0. Using low-pass filtering, the estimators of the random shifts
θ∗
1, . . . ,θ

∗
J are given by

(θ̂1, . . . , θ̂J) = argmin
(θ1,...,θJ )∈ΘJ

Mλ(θ1, . . . ,θJ), (3.5)

where the criterion Mλ(θ) = Mλ(θ1, . . . ,θJ) for θ ∈ ΘJ , see equation (2.5), has a simple expression
in the Fourier domain. Indeed, thanks to Parseval’s relation and the fact that the translation of a
function corresponds to a frequency modulation of its Fourier coefficients, it follows that

Mλ(θ) =
1

J

J∑

j=1

∫

Ω

(

f̂j(t+ θj)−
1

J

J∑

j′=1

f̂j′(t+ θj′)

)2

dt

=
1

J

J∑

j=1

∑

|k|≤λ

∣
∣
∣
∣
ĉj,ke

i2πkθj − 1

J

J∑

j′=1

ĉj′,ke
i2πkθj′

∣
∣
∣
∣

2

.

However, the minimization (3.5) is not well defined. Indeed, if θ0 ∈ Θ satisfies θ̂j+θ0 ∈ Θ, j = 1, . . . , J ,

then (θ̂1+θ0, . . . , θ̂J +θ0) is also a global minimum ofMλ(θ). This comes from the fact that, without
any further assumptions on the set ΘJ and the density g of the random shifts, then the model (3.1) is
not identifiable (to see this, simply replace in (3.1) f∗(·) by f∗(· − θ0) and θ∗

j by θ∗
j + θ0). Choosing

identifiability conditions in model (3.1) amounts to impose constraints on the minimization of the
criterion

D(θ) =
1

J

J∑

j=1

∫

Ω

(

f∗(t− θ∗
j + θj)−

1

J

J∑

j′=1

f∗(t− θ∗
j′ + θj′)

)2

dt. (3.6)

This criterion D(θ) can be interpreted as a version without noise of the criterion Mλ(θ). Obviously,
the criterion D(θ) has a minimum at θ∗ = (θ∗

1, . . . ,θ
∗
J) such that D(θ∗) = 0. However, the minimizer
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of D on ΘJ is clearly not unique, and minimizing Mλ(θ) does not allow to recover the true shifts θ∗

nor the true mean pattern f∗. If the true shifts are supposed to have zero mean (i.e.
∫

Θ θg(θ)dθ = 0)
it is natural to introduce the constrained set

Θ0 = {(θ1, . . . ,θJ) ∈ ΘJ , θ1 + . . . + θJ = 0} (3.7)

It is shown in [BG10] (Lemma 6) that if f∗ is such that
∫ 1
0 f

∗(t)e−i2πtdt 6= 0 and if ρ < 1/4 (recall
that Θ = [−ρ, ρ]), then the criterion D(θ) has a unique minimum on Θ0 at

θ∗
Θ0

= (θ∗
1 − θ̄

∗
, . . . ,θ∗

J − θ̄
∗
) where θ̄

∗
=

1

J

J∑

j=1

θ∗
j . (3.8)

Under such assumptions, it is thus natural to compute an estimator θ̂
λ
of the random shifts over the

constrained set Θ0 defined as

θ̂
λ
= (θ̂

λ

1 , . . . , θ̂
λ

J) = argmin
(θ1,...,θJ )∈Θ0

Mλ(θ1, . . . ,θJ). (3.9)

Therefore, introduce the following identifiability conditions:

Assumption 3.2. The support of the density g is included in Θ = [−ρ, ρ] for some 0 < ρ < 1/4 and
is such that

∫

Θ θg(θ)dθ = 0.

Assumption 3.3. The mean pattern f∗ is such that
∫ 1
0 f

∗(t)e−i2πtdt 6= 0.

Following the classical guidelines in M -estimation (see e.g. [vdV98]), a necessary condition to
ensure the convergence of M -estimators such as (3.9) is that the local minima of D(θ) over Θ0 are
well separated from the global minimum of D(θ) at θ = θ∗

Θ0
(satisfying D(θ∗

Θ0
) = 0). An example of

such a separability condition is the following one:

Assumption 3.4. For any δ > 0, there exists a constant C(Θ, f∗, δ) > 0 (not depending on J) such
that for any θ∗ ∈ ΘJ

min
θ∈Bc(θ∗

Θ0
,δ)
D(θ) ≥ C(Θ, f∗, δ), (3.10)

where Bc(θ∗
Θ0
, δ) denotes the complementary of B(θ∗

Θ0
, δ) =

{
θ ∈ Θ0,

∣
∣θj − [θ∗

Θ0
]j
∣
∣ ≤ δ, j = 1, . . . , J

}
,

where θ∗
Θ0

=
(
[θ∗

Θ0
]1, . . . , [θ

∗
Θ0

]J
)
is the vector defined in (3.8) and Θ0 is the constrained set (3.7).

Assumption 3.2 implies that the criterion D(θ) has a unique minimum on Θ0. The condition (3.10)
guarantees that, outside a ball B(θ∗

Θ0
, δ) centered at θ∗

Θ0
, the local maxima of D(θ) for θ ∈ Θ0 are

sufficiently separated from 0. In Assumption 3.4, the important fact is that the constant C(Θ, f∗, δ)
does not depend on the dimension J of the set Θ0 of parameters onto whichMλ and D are minimized.
In the Fourier domain, the criterion D(θ) can be written as

D(θ) =
∑

k∈Z

|c∗k|2
(

1−
∣
∣
∣
∣

1

J

J∑

j=1

ei2πk(θj−θ
∗

j )

∣
∣
∣
∣

2)

, where c∗k =

∫ 1

0
f∗(t)e−i2πktdt.

Thus the value of the constant C(Θ, f∗, δ) depends on a precise upper bound on the exponential
sums 1

J

∑J
j=1 e

i2πk(θj−θ
∗

j ) for k ∈ Z and θ = (θ1, . . . ,θJ) ∈ Bc(θ∗
Θ0
, δ) which is a delicate problem.

Nevertheless, if the size of Θ is sufficiently small, the following proposition shows that Assumption
3.4 is satisfied.

Proposition 3.1. Suppose that Assumptions 3.2 and 3.3 hold with ρ < 1/16. Then, Assumption 3.4
is satisfied with

C(Θ, f∗, δ) = C(f∗, ρ)δ2,

where C(f∗, ρ) > 0 is a constant depending only on f∗ and ρ.
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A proof is given in the Appendix. The condition that ρ < 1/16 means that the support of the
density g of the shifts is sufficiently small and that the shifted curves fj(t) = f∗(t− θ∗

j) are in some
sense concentrated around the mean pattern f∗. Such an assumption of the concentration of the data
around a common mean pattern has been used in various papers to prove the uniqueness and the
consistency of Fréchet mean for random variables lying in a Riemannian manifold, see [BP03], [BP05],
[LK00], [Le98].

3.4 Consistent estimation of the random shifts

Under such assumptions, the theorem below gives the deviation in probability between θ̂
λ
and θ∗ =

(θ∗
1, . . . ,θ

∗
J).

Theorem 3.1. Consider the model (3.1). Let θ̂
λ
be the estimator defined by (3.9) and assume that

F = Hs(A) for some A > 0 and s ≥ 3. Suppose that Assumptions 3.1 to 3.4 hold. Then, for any
λ ≥ 1 and x > 0

P

(
1

J
‖θ̂λ − θ∗‖2 ≥ C1(Θ,F , f∗)A1(x, J, n, λ, σ

2, γ) +A2(x, J)

)

≤ 4e−x,

with

A1(x, J, n, λ, σ
2, γ) = (σ2 + γ)

(√

υ(x, J, n, λ) + υ(x, J, n, λ)
)

+
(√

B(λ, n) +B(λ, n)
)

and

A2(x, J) =

(√

2x

J
+

x

3J

)2

,

where C1(Θ,F , f∗) > 0 is constant depending only on Θ,F , f∗, ‖.‖ is the standard Euclidean norm in
R
J ,

υ(x, J, n, λ) =
2λ+ 1

n

(

1 + 4
x

J
+

√

4
x

J

)

and B(λ, n) =
2λ+ 1

n
+ λ−2s.

Let us make some comments on the deviation inequality in Theorem 3.1. The result follows from
the inequality,

1

J
‖θ̂λ − θ∗‖2 ≤ 2

J
‖θ̂λ − θ∗

Θ0
‖2 + 2

J
‖θ∗

Θ0
− θ∗‖2.

The term A1(x, J, n, λ, σ
2, γ) comes from the control of the quantity 2

J ‖θ̂
λ − θ∗

Θ0
‖2, while the term

A2(x, J) is derived from a Bernstein’s inequality on 2
J ‖θ∗

Θ0
−θ∗‖2 = 2

∣
∣
∣
1
J

∑J
j=1 θ

∗
j

∣
∣
∣

2
(see the Appendix

for further details). Remark that for fixed values of the number of design points n and the spectral
cutoff λ, then limJ→+∞A2(x, J) = 0. This means that for J sufficiently large then θ̄

∗
= 1

J

∑J
j=1 θ

∗
j ≈ 0

and thus θΘ0 ≈ θ∗. Hence, the convergence in probability of θΘ0 to θ∗ is ensured by an asymptotic
only in J .

The term A1(x, J, n, λ, σ
2, γ) is more complex. It depends on the spectral cutoff λ via the bias

B(λ, n) and the variance υ(x, J, n, λ) used to define the smoothing estimators f̂j. An optimal choice
of the parameter λ depends on n. By choosing a sequence λ = λn such that limn→+∞ λn = +∞ and
limn→+∞

λn

n = 0, we have a tradeoff between low variance and low bias. By using such a choice for λ, it
follows that for fixed J and x > 0, then limn→+∞B(λn, n) = limn→+∞ υ(x, J, n, λn) = 0, which implies
that limn→+∞A1(x, J, n, λn, σ

2, γ) = 0. However, if n remains fixed, then limJ→+∞A1(x, J, n, λ, σ
2, γ) =

h(2λ+1
n ) + h(2λ+1

n + λ−2s), where h(u) =
√
u+ u, for all u ≥ 0. Thus, an asymptotic only in J is not

sufficient to ensure that A1(x, J, n, λ, σ
2, γ) converges to 0.

Hence, under the assumptions of Theorem 3.1, one can only prove the convergence in probability

of θ̂
λ
to the true shifts θ∗ by taking a double asymptotic setting by letting n and J going to +∞

(provided the smoothing parameter λ = λn is well chosen)). This would suggest that, if the number
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n of design points is fixed, then it is in general not possible to estimate θ∗ as the number of curves J

grows to infinity. Nevertheless, if J is fixed, θ̂
λ
converges in probability to θ∗

Θ0
as n goes to infinity.

This means that Theorem 3.1 gives an upper bound on 1
J ‖θ̂

λ−θ∗‖2 which suggests that an asymptotic
only in J with n fixed is not sufficient to estimate θ∗. In fact, the next theorem shows that it is possible

to derive a lower bound on 1
J ‖θ̂

λ − θ∗‖2.

Theorem 3.2. Consider the model (3.1). Suppose that Assumption 3.1 holds, that f∗ is continu-
ously differentiable on [0, 1], and that the support of the density g is included in Θ = [−ρ, ρ] with
limθ→±ρ g(θ) = 0 and

∫

Θ (∂θ log (g(θ)))
2 g(θ)dθ < +∞. Let θ̂ ∈ R

J be any estimator of the true
random shifts θ∗, i.e. a measurable function of the data in model (3.1). Then, for any n ≥ 1 and
J ≥ 1

E

[
1

J
‖θ̂ − θ∗‖2

]

≥ n−1(σ2 + γ)

‖∂tf∗‖2∞ + n−1(σ2 + γ)
∫

Θ (∂θ log (g(θ)))
2 g(θ)dθ

(3.11)

where ‖∂tf∗‖∞ = supt∈[0,1] {|∂tf∗(t)|}, with ∂tf∗ and denoting the first derivative of f∗.

The important fact is that the right hand side of inequality (3.11) does not depend on J . Therefore,
if the number of design points n is fixed, then Theorem 3.2 shows that it is impossible to recover the
true shifts in model (3.1) by letting only the number of curves J going to +∞. On the other hand,
the lower bound (3.11) tends to zero as n → +∞, which is consistent with the above discussion on

the fact that θ̂
λ
converges to θ∗ as n→ +∞ and J → +∞. An illustration of these facts are given in

Section 6 on numerical experiments.

3.5 Consistent estimation of the mean pattern

The Fréchet mean estimator of f∗ defined by (2.6) can now be written as

f̂λ(t) =
1

J

J∑

j=1

f̂λj (t+ θ̂
λ

j ) =
1

J

J∑

j=1

〈

Sλ(t+ θ̂
λ

j ),Yj

〉

, for all t ∈ [0, 1]. (3.12)

The theorem below gives a deviation in probability between f̂λ and f∗.

Theorem 3.3. Under assumptions of Theorem 3.1, for any λ ≥ 1 and x > 0

P

(

‖f̂λ − f∗‖2L2 ≥ C2(Θ,F , f∗)A1(x, J, n, λ, σ
2, γ) + C3(Θ, f

∗)A2(x, J)

)

≤ 4e−x,

where A1(x, J, n, λ, σ
2, γ) and A2(x, J) are defined in Theorem 3.1, C2(Θ,F , f∗) and C3(Θ, f

∗) are

positive constants depending only on Θ,F , f∗, and ‖f̂λ − f∗‖2L2 =
∫ 1
0

∣
∣fλ(t)− f∗(t)

∣
∣2 dt.

The proof is given in the Appendix. The terms appearing in the deviation inequality given in
Theorem 3.3 are the same as those appearing in Theorem 3.1. Therefore, similar comments to those
made on the consistency of the estimators of the shifts can be made. Consider the function f∗

Θ0
(t) :=

1
J

∑J
j=1 f

∗(t−θ∗
j +[θ∗

Θ0
]j) = f∗(t− θ̄

∗
) for t ∈ [0, 1], where θ∗

Θ0
= ([θ∗

Θ]1, . . . , [θ
∗
Θ]J) and the following

inequality ‖f̂λ−f∗‖2L2 ≤ 2‖f̂λ−f∗
Θ0

‖2L2+2‖f∗
Θ0

−f∗‖2L2 .Again, A1(x, J, n, λ, σ
2, γ) controls the quantity

‖f̂λ − f∗
Θ0

‖2L2 while A2(x, J) controls ‖f∗Θ0
− f∗‖2L2 . Thus, a double asymptotic in n and J is needed

to show that the Fréchet mean f̂λ converges in probability to the true mean pattern f∗. If J remains
fixed, the Fréchet mean converges to the shifted version f∗

Θ0
of f∗ as n→ +∞.

When the number of design points n is fixed and we only let J going to infinity, Theorem 3.2 shows
that it is not possible to recover the true shifts. It is thus expected that the Fréchet mean f̂λ should
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not converge to the mean pattern f∗ in the setting n fixed and J → +∞. To support this argument,
consider the following ideal estimator

f̃(t) =
1

J

J∑

j=1

f∗j (t+ θ̂
λ
j ) =

1

J

J∑

j=1

f∗(t− θ∗
j + θ̂

λ
j ), for all t ∈ [0, 1], (3.13)

where f∗j (t) = f∗(t− θ∗
j), j = 1, . . . , J . This corresponds to the case of an ideal smoothing step from

the data (3.1) that would yield f̂j = f∗j for all j = 1, . . . , J . Obviously, f̃(t) is not an estimator since
it depends on the unobserved quantities f∗ and θ∗

j , but we can consider it as a benchmark to analyse

the converge of the Fréchet mean f̂λ to f∗.

Theorem 3.4. Suppose that the assumptions of Theorem 3.2 are satisfied with ρ < 3
4π . Then, for any

n ≥ 1, there exists J0 ∈ N such that J ≥ J0 implies

E‖f̃ − f∗‖L2 ≥ C(f∗, ρ)
n−1(σ2 + γ)

‖∂tf∗‖2∞ + n−1(σ2 + γ)
∫

Θ (∂θ log (g(θ)))
2 , (3.14)

where the constant C(f∗, ρ) depends on f∗ and ρ.

As for Theorem 3.2 the right hand side of inequality (3.14) does not depend on J . Thus, in the
setting n fixed and J → +∞, the ideal estimator f̃ does not converge to f∗ for the expected quadratic
risk. This supports the argument that, when using the Fréchet mean f̂λ, one cannot reconstruct the
mean pattern f∗ when the shifts are estimated in an asymptotic setting where the number of design
points n is fixed. Indeed, in such a setting, the estimation of the shifts θ∗

j , j = 1, . . . , J is limited by
the “variance” γ of the random perturbations Zj and the variance σ2 of the additive Gaussian noise
in model (3.1).

3.6 Discussion on the various asymptotic settings

To sum up the above discussion, we compile the results on the convergence (in probability or in

expectation) of θ̂
λ
and f̂λ in the following diagram,

θ̂
λ −→

n,J
θ∗ θ̂

λ
9
J

θ∗ (n fixed) θ̂
λ −→

n
θ∗
Θ0

(J fixed) θ̂
λ
9
J

θ∗
Θ0

(n fixed)

f̂λ −→
n,J

f∗ f̂λ −→
n

f∗Θ0
(J fixed)

where a parameter (n or J) appearing under an arrow means that it is let going to infinity while the
other remains fixed. A crossed arrow means that consistency is not guaranteed.

In the above results, it has been assumed that the process Z is stationary, and we have restricted
the analysis to the case of random shifts in dimension d = 1. The purpose of the next sections is to
give sufficient conditions to generalize these results to the case of more complex deformation operators
and non-stationary processes Z.

4 Notations and main assumptions in the general case

In this section, we define our main assumptions on the shape function f∗, the smoothing step, the
family of deformation operators, and the random processes Zj , j = 1, . . . , J . As an illustrative example,
necessary conditions for which such assumptions hold are given for the randomly shifted curve model
(1.2). In what follows, C,C0, C1, C2, denote positive constants whose value may change from line
to line. The notations C(.) specify the dependency of C on some quantities. We use a bold symbol
θ = (θ1, . . . ,θJ) ∈ ΘJ ⊂ R

pJ to denote a J-ads of vectors in Θ, and the notation θj = (θ1j , . . . , θ
p
j ) ∈ R

p

to denote the components of the vector θj ∈ Θ ⊂ R
p. Note that, when context is clear, we also use

the notation θ to denote an element θ = (θ1, . . . , θp) ∈ Θ. The standard Euclidean norm of a vector
c in R

k is denoted by ‖c‖. The L2 norm of a function f ∈ L2(Ω) is denoted by ‖f‖2L2 =
∫

Ω |f(t)|2 dt.
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4.1 Smoothness of the mean pattern and the deformation operators

The following assumptions on the deformation operators will be used throughout the paper. In this
part, the notation (Lθ)θ∈Θ is used to denote either (Tθ)θ∈Θ or their inverse (T̃θ)θ∈Θ.

Assumption 4.1 (Smoothness class F and regularity of the deformation operators). For all θ ∈ Θ,
Lθ : L2(Ω) −→ L2(Ω) is a linear operator satisfying Lθf ∈ F for all f ∈ F . The smoothness class F
is such that the functions t 7−→ ∂θp1Lθf(t), t 7−→ ∂θp2∂θp1Lθf(t) and t 7−→ ∂θp3∂θp2∂θp1Lθf(t) belong
to L2(Ω) for any f ∈ F and all p1, p2, p3 = 1, . . . , p.

Assumption 4.2 (Continuity of the deformation operators). There exists a constant C(Θ) > 0 such
that for any f ∈ L2(Ω),

‖Lθf‖2L2 ≤ C(Θ) ‖f‖2L2 ,

and a constant C(F ,Θ) > 0 such that for any f ∈ F and θ1,θ2 ∈ Θ,

‖T̃θ1f − T̃θ2f‖2L2 ≤ C(F ,Θ) ‖θ1 − θ2‖2 .

Assumption 4.3 (Differentiability of the deformation operators). There is a constant C(Θ,F , f∗) > 0
such that,

max
{
‖∂θp12 T̃θ2Tθ1f

∗‖2L2 , ‖∂θp22 ∂θp12 T̃θ2Tθ1f
∗‖2L2 , ‖∂θp32 ∂θp22 ∂θp12 T̃θ2Tθ1f

∗‖2L2

}
≤ C(Θ,F , f∗),

for all p1, p2, p3 = 1, . . . , p and θ1,θ2 ∈ Θ.

Assumption 4.2 can be interpreted as a Lipschitz condition on the mapping (f,θ) 7−→ Lθf and
Assumption 4.1 ensures the differentiability of the functionalM(θ) defined in (2.5). The first inequality
of Assumption 4.2, that is ‖Lθf‖2L2 ≤ C(Θ) ‖f‖2L2 , means that the action of the operator Lθ does not
change too much the norm of f when θ varies in Θ. Such an assumption on Tθ and its inverse T̃θ
forces the optimization problem (2.4) to have non trivial solutions by avoiding the functional M(θ) in
(2.5) being arbitrarily small. Indeed, consider as an illustration the case where p = 1, Ω = [0, 1] and
the Tθ’s are the following scaling operators:

Tθf(t) = eθf(t) and T̃θf(t) = e−θf(t)

for all t ∈ Ω. In this case ‖Tθf‖2L2 = e2θ‖f‖2L2 and ‖T̃θf‖2L2 = e−2θ‖f‖2L2 . To satisfy Assumption
4.2, a convenient choice is Θ = [−ρ, ρ] for ρ > 0. Suppose now that we do not restrict to a compact
set and we have Θ = R. Since M(θ1, . . . ,θJ) ≤ 1

J

∑J
j=1 e

−2θj‖f̂j‖2L2 , one could let the θj’s going

to +∞ and the optimization problem (2.5) would have a trivial solution at θ̂j = +∞, j = 1, . . . , J
such that M(θ1, . . . ,θJ) = 0. A particular case where the first inequality of Assumption 4.2 holds is
when the Lθ’s are isometric, i.e ‖Lθf‖2L2 = ‖f‖2L2 , for any f ∈ L2(Ω). In [HHM10a] and [HHM10b],
the authors study the case of compact Lie groups acting isometrically on a finite dimensional space
(e.g. rigid deformation of k-ads of the plane) which allows them to derive nice geometric structure
on the quotient spaces. However this condition is rather restrictive and in a lot of applications, the
deformations operators are not isometric, e.g. in the non-rigid deformation of images or curves.

As an illustration we now check these assumptions in the case (1.2) of randomly shifted curves.
One has that p = 1, Ω = [0, 1], Tθ(f)(t) = f(t − θ) and T̃θ(f)(t) = f(t + θ). These operators act
isometrically on L2

per([0, 1]), as a change of variable implies immediately that ‖Lθf‖2L2 = ‖f‖2L2 . To
verify Assumptions 4.1, 4.2 and 4.3, take as in Section 3

F = Hs(A) with s ≥ 3, see equation (3.4).

This implies that a function f ∈ F is at least three times differentiable and that

max
{
‖∂tf‖2L2 , ‖∂2t f‖2L2 , ‖∂3t f‖2L2

}
≤ A.
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Moreover, we have ∂θLθf(t) = ±∂tf(t ± θ), ∂2θLθf(t) = ∂2t f(t ± θ) and ∂3θLθf(t) = ±∂3t f(t ± θ),
where for a function f ∈ F , ∂tf denotes its first derivative, ∂2t f its second derivative at point t and
so on. Thus, Assumption 4.3 is verified with the constant C(Θ,F) = A. Then, remark that a change
of variable gives for any θ1,θ2 ∈ Θ, ‖T̃θ1f − T̃θ2f‖2L2 = ‖f(· + θ1 − θ2) − f‖2L2 . Since f ∈ Hs(A),

the mean value theorem can be used to prove that ‖T̃θ1f − T̃θ2f‖2L2 ≤ C(A,Θ)‖θ1 − θ2‖2 for some
constant C(A,Θ) > 0, and thus Assumption 4.2 holds.

4.2 The preliminary smoothing step

For j = 1, . . . , J the f̂j’s are supposed to belong to the class of linear estimators in the sense of the
following definition:

Definition 4.1. Let Λ denote either N or R+ (set of smoothing parameters). To every λ ∈ Λ is
associated a non random vector valued function Sλ : Ω −→ R

n such that for all j = 1, . . . , J and all
t ∈ Ω

f̂j(t) = f̂λj (t) = 〈Sλ(t),Yj〉,
where 〈·, ·〉 denotes the standard inner product in R

n and Yj =
(
Y ℓ
j

)n

ℓ=1
∈ R

n.

Assumption 4.4. For all λ ∈ Λ and all ℓ = 1, . . . , n, the function t 7−→ Sℓ
λ(t) belong to L2(Ω), where

Sℓ
λ(t) denotes the ℓ-th component of the vector Sλ(t). Moreover, for all λ ∈ Λ, f ∈ F and θ ∈ Θ, the

function t 7−→ 〈Sλ(t),Tθf〉 belongs to F where Tθf =
(
Tθf(tℓ)

)n

ℓ=1
.

Note that it follows from the above assumption, that the functions t 7−→ f̂j(t) = 〈Sλ(t),Yj〉,
j = 1, . . . , J belong to L2(Ω). Typically the vector Sλ(t) depends on the design points (tℓ)

n
ℓ=1. In a

one-dimensional setting (d = 1) and for Ω = [0, 1] a typical example is low-pass Fourier filtering with
an equi-spaced design as defined in Section 3. Another illustrative example is spline smoothing in the
setting of Reproducing Kernel Hilbert Spaces (RKHS), for which Λ = R+ but not necessarily with an
equi-spaced design (see [Wah90] for an introduction to spline smoothing and RKHS).

Let us now specify how the bias/variance behavior of the linear estimators f̂λj depends on the
smoothing parameter λ. For this, consider for some function f ∈ F the following regression model

Y ℓ = f(tℓ) + σεℓ, ℓ = 1, . . . , n,

where the εℓ’s are i.i.d normal variables with zero mean and variance 1. The performances of a
linear estimator f̂λ(t) = 〈Sλ(t),Y〉, where Y = (Yℓ)ℓ=1,...,n, can be evaluated in term of the expected

quadratic risk Rλ(f̂
λ, f) defined by

Rλ(f̂
λ, f) := E

∥
∥
(
f̂λ − f

)∥
∥2

L2 =

∫

Ω
|Bλ(f, t)|2 dt+ σ2

∫

Ω
Vλ(t)dt,

where Bλ and Vλ denote the usual bias and variance of f̂λ given by Bλ(f, t) = 〈Sλ(t), f〉 − f(t) and
Vλ(t) = ‖Sλ(t)‖2Rn , for t ∈ Ω, where f =

(
f(tℓ)

)n

ℓ=1
. Define also V (λ) =

∫

Ω Vλ(t)dt, and let us make

the following assumption on the asymptotic behavior of the bias/variance of f̂λ:

Assumption 4.5. There exist a constant κ(F) > 0 and a real-valued functions λ 7−→ B(λ), such
that for all f ∈ F , ‖Bλ(f, ·)‖2L2 = ‖〈Sλ(·), f〉 − f(·)‖2L2 ≤ κ(F)B(λ). Moreover there exists a se-
quence of smoothing parameters (λn)n∈N ∈ ΛN with limn→+∞ λn = +∞ such that limn→+∞B(λn) =
0 and limn→+∞ V (λn) = 0.

Let us illustrate Assumption 4.5 in the case of the randomly shifted curves model (1.2) for which
Ω = [0, 1]. Assume that the design points are equi-spaced and that the smoothing step is obtained by
low-pass Fourier filtering. Following Section 3, take F = Hs(A) defined in (3.4). In this setting, V (λ) =
2λ+1
n and ‖Bλ(f, ·)‖2L2 =

∑

|k|≤λ |c̃k(f)− ck(f)|2+
∑

|k|>λ |ck(f)|2 where c̃k(f) =
1
n

∑n
ℓ=1 f(

ℓ
n)e

−i2πk ℓ
n .

Therefore, ‖Bλ(f, ·)‖2L2 ≤ C(A)B(λ) for some positive constant C(A) depending only on A, and

B(λ) = 2λ+1
n + λ−2s. Thus, Assumption 4.5 holds with λn = n

1
2s+1 .
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4.3 Identifiability conditions

Let us now make the following assumptions on the set Θ and the density g of the random deformation
parameters:

Assumption 4.6. The support of the density g is included in Θ which is a compact set of Rp of the
form

Θ =
{

θ = (θ1, . . . , θp) ∈ R
p, |θk| ≤ ρk, 1 ≤ k ≤ p

}

(4.1)

where ρk > 0, k = 1, . . . , p, are positive constants.

In the case of randomly shifted curves (1.2) one has Θ = {θ ∈ R, |θ| ≤ ρ1} with 0 < ρ1 < 1. Recall
that it has been discussed in Section 3 that without any further assumptions on the set ΘJ and the
density g of the random shifts, the model (1.2) is not identifiable. In the case of general deformation
operators, choosing identifiability conditions in model (1.5) amounts to impose constraints on the
minimization of the following criterion θ 7−→ D(θ) defined for all θ = (θ1, . . . ,θJ) ∈ ΘJ by

D(θ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
Tθ∗

j
f∗(t)− 1

J

J∑

j′=1

T̃θj′
Tθ∗

j′
f∗(t)

)2

dt. (4.2)

This criterion D(θ) can be viewed as the deterministic version of M(θ) defined in (2.5). Obviously,
using that T̃θTθf

∗ = f∗, the criterion D(θ) has a minimum at θ∗ = (θ∗
1, . . . ,θ

∗
J) such that D(θ∗) = 0.

However, without any further restrictions the minimizer of D(θ) is not necessarily unique on ΘJ , and
minimizingM(θ) does not allow to recover the true parameters of deformation θ∗ nor the true function
f∗. Let us now explain how to define a constraint set Θ ⊂ ΘJ to impose identifiability conditions.

The case of randomly shifted curves

In the case of shifted curves, Θ = {θ ∈ R, |θ| ≤ ρ1} and for any θ0 ∈ Θ, we have D(θ∗
1 + θ0, . . . ,θ

∗
J +

θ0) = 0. In other terms, the criterion D vanishes along the line {θ∗ + θ01J , θ0 ∈ R} ⊂ R
J , where

1J = (1, . . . , 1)′ ∈ R
J . Identifiability conditions in models such as (1.5) are discussed in [GLM07],

[Vim10], [BG10] for shifted curves models. Recall that for shifted curves, it is shown in [BG10]
that if f∗ is such that

∫ 1
0 f

∗(t)e−i2πtdt 6= 0 and Θ0 = {(θ1, . . . ,θJ) ∈ ΘJ , θ1 + . . . + θJ = 0}
with Θ ⊂ [−ρ1, ρ1] and 0 < ρ1 < 1

4 , then the criterion D(θ) has a unique minimum on Θ0 at

θ∗
Θ0

= (θ∗
1 − θ̄

∗
, . . . ,θ∗

J − θ̄
∗
) where θ̄

∗
= 1

J

∑J
j=1 θ

∗
j . This amounts to add a linear constraint in the

optimization of D(θ) by choosing Θ0 = 1J
⊥ (the orthogonal of 1J in R

J). As shown in Section 3,
this choice is well suited if it is assumed that the density g of the random shifts has zero mean. More
generally, if the deformation parameters θj , j = 1, . . . , J are supposed to be random variables with
zero mean, then optimizing D(θ) on Θ0 is a natural choice.

Another identifiability condition for shifted curves is proposed in [GLM07] and [Vim10] by taking

Θ1 = {(θ1, . . . ,θJ) ∈ ΘJ , θ1 = 0}. (4.3)

This is again a linear constraint by choosing Θ1 = e1
⊥ where e1 = (1, 0, . . . , 0) ∈ R

J . If one supposes
that θ∗

1 = 0 and
∫ 1
0 f

∗(t)e−i2πtdt 6= 0, then it can be easily shown that the criterion D(θ) has a unique
minimum on Θ1 at θΘ1 = (0,θ∗

2, . . . ,θ
∗
J). Choosing to minimize D(θ) on Θ1 amounts to choose the

first curve as a reference onto which all the others curves are aligned, meaning that the first shift θ∗
1

is not random. A graphical illustration of such choices of identifiability conditions is given in Figure
1.

The case of a Lie group action

Let us now consider the case where the deformation operators possess a Lie group structure. Recall
that it means that Tθf(t) = f (exp(θ) · t) where Θ denotes a compact subset of the Lie algebra G of

14



Θ1

Θ0 ΘJ

θ∗
Θ0

θ∗
Θ1

{θ∗ + θ01J , θ0 ∈ R}

θ∗

Figure 1: Choice of identifiability conditions for shifted curves in the case J = 2.

a connected Lie group G of dimension p acting on Ω, and exp : G → G denotes the exponential map
(see [Hel01] for an introduction to Lie groups). In this framework, the shifted curve model (1.2) is
a particular case of a commutative group with G = (S1,+) the torus in dimension one, G = R with
vanishing Lie brackets, and exp(θ) = θ mod 1. In this case the deformation operators satisfy the
commutative relations

T̃θ1Tθ2 = Tθ2 T̃θ1 = Tθ2−θ1 . (4.4)

If G is a commutative group then the deformation operators Tθf(t) = f (exp(θ) · t) and T̃θf(t) =
f (exp(−θ) · t) will also satisfy the relations (4.4). Using equation (4.4), one can see that the criterion
D vanishes along the affine subspace {θ∗ + 1J ⊗ θ0, θ0 ∈ R

p} ⊂ R
pJ where ⊗ is the tensor product. In

this situation, using the arguments given in the case of shifted curves, identifiability conditions can be
given by restricting the optimization ofD(θ) over the subsetsΘ0 = {(θ1, . . . ,θJ) ∈ ΘJ , θ1+. . .+θJ =
0} or Θ1 = {(θ1, . . . ,θJ) ∈ ΘJ , θ1 = 0}.

When the group G is not commutative, then choosing identifiability conditions is more problematic.
As an example consider the case (1.3) of rigid deformation of two dimensional images, for which there
exists again a subset of ΘJ onto which D(θ) is 0. However, this subset is no longer a line. To see
this, recall the notations of model (1.3). We have θi = (ai, αi, bi) for i = 1, 2 and let θ1 ⋆ θ2 =
(a1 + a2, α1 + α2, e

a2Rα2b1 + b2) and θ2 ⋆ θ1 = (a1 + a2, α1 + α2, e
a1Rα1b2 + b1). Then, contrary to

relations (4.4) in the commutative case, one has that

Tθ1Tθ2 = Tθ1⋆θ2 6= Tθ2⋆θ1 = Tθ2Tθ2 (4.5)

In this example, for θ0 = (a0, α0, b0), we have that D(θ0 ⋆θ
∗
1, . . . ,θ0 ⋆θ

∗
J) = 0. In other terms, the set

Θ ∗ θ∗ = {(θ0 ⋆ θ
∗
1, . . . ,θ0 ⋆ θ

∗
J), θ0 ∈ Θ} ⊂ ΘJ

onto which D vanishes is no longer a line in ΘJ . A graphical illustration of this fact is displayed in
Figure 2. In this case it is always possible to choose, says, the first observation as a reference image,
and match all the other images onto it. It amounts to optimize D(θ) on Θ1.

The case of general deformation operators

Let us now discuss the more general case. Conditions to guarantee the uniqueness of a minimum of
D over a restricted set Θ ⊂ ΘJ can also be given. First, recall that the criterion D has a minimum
at θ∗ such that D(θ∗) = 0. If θ ∈ ΘJ with θ 6= θ∗ is such that D(θ) = 0 then (by definition of D)

T̃θj
Tθ∗

j
f∗ = T̃θ1Tθ∗

1
f∗ for all 1 ≤ j ≤ J. (4.6)

Now, let θ1,θ2 ∈ Θ, and suppose that the function f∗ is such that: if T̃θ2Tθ1f
∗ = f∗ then necessarily

θ1 = θ2. Such an assumption implies, among other things, that the function f∗ cannot be invariant
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Θ1Θ0 ΘJ

θ∗
Θ1

Θ ∗ θ∗

θ∗
Θ0

Figure 2: Choice of identifiability conditions for rigid deformation of images when J = 2.

by the action of the deformation operators. Under such a condition and if one further assumes that
θ∗
1 = 0, it can be checked that equation (4.6) implies that the criterion D(θ) has a unique minimum

on Θ1 = {(θ1, . . . ,θJ) ∈ ΘJ , θ1 = 0} at θ1 = (0,θ∗
2, . . . ,θ

∗
J). Deriving other identifiability conditions

depends on the specific form of the deformation operators. Nevertheless, in what follows, we propose
to use general assumptions that will be shown to guaranty identifiability in the model (1.5).

A pre-constrained optimization problem

In what follows, we will suppose that there exists a linear subset Θ of ΘJ onto which D has a unique
minimum. Throughout the paper we denote by A′ the transpose of a matrix A ∈ R

k×k′, k, k′ ∈ N.
Let us first define the set Θ.

Definition 4.2. Let I ≤ J be a positive integer and T a compact subset of RpI . Let φ : RpI −→ R
pJ

be an orthogonal linear mapping (i.e. φ′φ = IdpI where IdpI is the pI × pI identity matrix). Then,

Θ := φT = {φτ ; τ ∈ T } .

Using the above definition, our first identifiability condition is the following assumption:

Assumption 4.7. The criterion D has a unique minimum on Θ at θ = θ∗
Θ
that is θ∗

Θ
= argminθ∈ΘD(θ).

Equivalently, it means that there exist a unique τ ∗
Θ

∈ T such that τ ∗
Θ

= argmin
τ∈T

D̃(τ), where D̃(τ) :=

D(φτ) and θ∗
Θ

= φτ ∗
Θ
.

In the examples discussed above I = J − 1. For the constrained set Θ1 = e1
⊥ a possible choice for

φ is

φ1 : T1 ⊂ R
p(J−1) −→ Θ1 ⊂ R

pJ

τ = (τ 1, . . . , τ J−1) 7−→ θ = (0, τ 1, . . . , τ J−1).

with T1 = ΘJ−1 (remark that φ′1φ1 = Idp(J−1)). Recall that in the case of shifted curves, if one sup-

poses that θ∗
1 = 0 and

∫ 1
0 f

∗(t)e−i2πtdt 6= 0, then Assumption 4.7 is satisfied with θ∗
Θ

= (0,θ∗
2, . . . ,θ

∗
J).

For more general deformation operators, Assumption 4.7 is satisfied when using the mapping φ1 and
the condition that T̃θ2Tθ1f

∗ = f∗ implies that θ1 = θ2 for any θ1,θ2 ∈ Θ.
We detail also the case of the constraint Θ0 (3.7) for p = 1. Define,

φ0 : T0 ⊂ R
J−1 −→ Θ0 ⊂ R

J

τ = (τ 1, . . . , τ J−1) 7−→ Hτ
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where H ∈ J × (J − 1) is a so-called Helmert sub-matrix such that the j-th column of H, for 1 ≤
j ≤ J − 1, is given by (hj , . . . , hj

︸ ︷︷ ︸

j times

,−jhj , 0, . . . , 0
︸ ︷︷ ︸

J−j−1 times

)′, where hj = (j(j + 1))−
1
2 . It simply means that

the column of H define an orthonormal basis of 1J
⊥. For more details on Helmert matrices in shape

analysis, we refer to Definition 2.5 in [DM98]. By construction one has H ′H = IdJ−1 and φT0 = Θ0.
Thus, in the case of shifted curves, if one supposes that

∫ 1
0 f

∗(t)e−i2πtdt 6= 0 then Assumption 4.7 is
satisfied with θ∗

Θ0
= (θ∗

1 − θ̄
∗
, . . . ,θ∗

J − θ̄
∗
).

Uniqueness of global minimum

It is important to control the Hessian of the criterion D on the the compact set T = φ−1Θ around
its minimum at θ = θ∗

Θ
. Let us suppose that Assumption 4.7 is satisfied and introduce the following

definition:

Definition 4.3. Let γmin(J, f
∗,θ∗,Θ) be the smallest eigenvalue of the pI × pI matrix φ′[∇2D(θ∗

Θ
)]φ

that is

γmin(J, f
∗,θ∗,Θ) = min

τ∈RpI

τ ′φ′[∇2D(θ∗
Θ
)]φτ

τ ′τ
= min

τ∈RpI

τ ′[∇2D̃(τ ∗
Θ
)]τ

τ ′τ
,

where ∇2D denotes the Hessian of D and ∇2D̃ denotes the Hessian of D̃.

We give here the expression of ∇2D at θ = θ∗
Θ. The Hessian of D can be decomposed into a sum

of a block diagonal and a block symmetric pJ × pJ matrix,

∇2D(θ∗
Θ) =

2

J2

(

J Diag
j1=1,...,J

(Aj1,j1)−
[
Aj1,j2

]J

j1,j2=1

)

,

where Aj1,j2 =

[〈

∂θp1j1
f∗
θ
∗

j1

, ∂θp2j2
f∗
θ
∗

j2

〉

L2

]p

p1,p2=1

∈ R
p×p and ∂θp1j1

f∗
θ
∗

j1

= ∂θp1j1

[
T̃θTθ∗

j1
f∗
]

|
θ=θ∗

Θ

. The Diag

notation stands for the block diagonal matrix. For the general expression of the gradient and the
Hessian of D at θ 6= θ∗

Θ, refer to the Appendix C.
Finally, the minimum of D on Θ at θ = θ∗

Θ should be sufficiently well separated from other local
minima of D in the sense of the following assumption:

Assumption 4.8. There is a constant C1(Θ, f
∗) > 0 (not depending on J) such that for any θ∗ ∈ ΘJ

Jγmin(J, f
∗,θ∗,Θ) ≥ C1(Θ, f

∗). (4.7)

For any δ > 0, there exists a constant C2(Θ, f
∗, δ) > 0 (not depending on J) such that for any θ∗ ∈ ΘJ

min
θ∈Bc(θ∗

Θ
,δ)
D(θ)−D(θ∗

Θ) ≥ C2(Θ, f
∗, δ), (4.8)

where Bc(θ∗
Θ
, δ) denotes the complementary of the set

B(θ∗
Θ, δ) =

{

θ ∈ Θ,
∣
∣
∣θ

p1
j − [θ∗

Θ]p1j

∣
∣
∣ ≤ δ, j = 1, . . . , J, p1 = 1, . . . , p

}

Let us discuss the above assumptions. The first assertion (4.7) of Assumption 4.8 is used in the
proofs to derive a lower quadratic bound in a neighborhood of θ∗

Θ of the criterion D(θ) of the form
D(θ) − D(θ∗

Θ) ≥ C(Θ,F , f∗) 1J ‖θ − θ∗
Θ‖2. In the case of randomly shifted curves, if Θ = Θ0 or

Θ = Θ1, we have that ∇2D(θ∗
Θ
) = 2

J2 ‖∇f∗‖2L2 (JIdJ − 1J×J). for any value of θ∗, where ∇f∗
denotes the first derivative of f∗. The eigenvalues of ∇2D(θ∗

Θ) are 0 and 2
J ‖∇f∗‖2L2 with multiplicity

1 and J − 1 respectively. Thus, for Θ = Θ0 ∇2D̃(τ ∗
Θ0

) = φ′0∇2D(θ∗
Θ0

)φ0 =
2
J ‖∇f∗‖2L2 IdJ−1 and

Jγmin(J, f
∗,θ∗,Θ0) = 2 ‖∇f∗‖2L2 ,
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which shows that the first assertion of Assumption 4.8 is satisfied. If we choose a constraint of the
type Θ1 = {θ ∈ Θ, θ1 = 0}, we have that φ′1∇2D(θ∗

Θ1
)φ1 = 2

J2 ‖∇f∗‖2L2 (JIdJ−1 − 1(J−1)×(J−1)).

Therefore, Jγmin(J, f
∗,θ∗,Θ1) =

2
J ‖∇f∗‖2L2 , and Assumption 4.8 is not satisfied. Hence, the choice

of Θ = Θ0 improves by a factor J the conditioning of the Hessian of the criterion and leads to a
constrained set satisfying the first assertion of Assumption 4.8.

The second assertion (4.8) of Assumption 4.8 guarantees that the local minima of D(θ) are well
separated from its global minimum which is a standard assumption in M -estimaton (see e.g [vdV98]).
We have discussed such an assumption in the case of shifted curves in Section 3 with Θ = Θ0 , and
Proposition 3.1 gives simple conditions to verify it. However, deriving simple conditions such that
assertion (4.8) is satisfied in the case of more general operators depends on the problem of interest.

4.4 Random perturbation of the mean pattern f ∗ by the Zj’s

Let us recall that the Zj ’s in model (1.5) are independent realizations of a second order Gaussian
process Z taking its values in L2(Ω). These random processes model the linear variations in intensity
of the curves/images around the mean pattern f∗. However, there are observed through the action
of the random deformation operators Tθj

, j = 1, . . . , J . Therefore, to study the consistency of the
estimators, it is important to specify how the action of Tθj

modifies the law of the process Zj. In
particular, the action of the deformation operator Tθj

Zj(tℓ) and Tθj
Zj(tℓ′) modifies the structure

of the correlations between Zj(tℓ) and Zj(tℓ′) for ℓ 6= ℓ′. It is thus important to give conditions
that guarantee that the smoothing step control these correlations. For this purpose, let us make the
following assumption on the Gaussian process Z:

Assumption 4.9. The process Z is a second order Gaussian process taking its values in L2(Ω) with
zero mean. For any n ≥ 1, there exists a real γn(Θ) > 0 such that for any θ ∈ Θ

γmax

(
Eθ

[
TθZ(TθZ)

′
])

≤ γn(Θ)

where TθZ =
(
TθZ(tℓ)

)n

ℓ=1
∈ R

n, and γmax(A) denotes the largest eigenvalue of a symmetric matrix
A. Moreover,

lim
n→∞

γn(Θ)
√

V (λn) = 0, (4.9)

where V (λn) is the variance defined in Assumption 4.5.

Intuitively, the condition (4.9) means that the variance of the linear smoother Sλ(·) has to be
asymptotically smaller that the maximal correlations (measured by γn(Θ)) between TθZ(tℓ) and
TθZ(tℓ′) for ℓ, ℓ

′ = 1, . . . , n and all θ ∈ Θ. In the case of randomly shifted curves with an equi-spaced
design, a simple condition for which Assumption 4.9 holds is the case where Z is stationary process.
Recall that in Section 3, we have introduced the covariance matrix Σn =

[
E[Z(tℓ)Z(tℓ′)]

]n

ℓ,ℓ′=1
=

[
R(|tℓ − tℓ′ |)

]n

ℓ,ℓ′=1
, see Assumption 3.1. If the design is equi-spaced, then the first assertion of As-

sumption 4.9 holds with γn(Θ) = γ =
∫ 1
0 |R(t)| dt. Thus, limn→∞ γn

√

V (λn) = limn→∞

√

V (λn) = 0,
which proves that Assumption 4.9 is satisfied.

5 Consistency in the general case

5.1 Consistent estimation of the deformation parameters

In this section, we use the notations introduced in Section 4, and we assume that identifiability
conditions have been chosen. With the notations introduced in Section 4.3, consider for λ ∈ Λ the
following estimator of the deformation parameters

θ̂
λ
= argmin

θ∈Θ
Mλ(θ),
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where

Mλ(θ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
〈Sλ(t),Yj〉 −

1

J

J∑

j′=1

T̃θj′

〈
Sλ(t),Yj′

〉
)2

dt, (5.1)

and Θ is the constrained set introduced in Definition 4.2. The estimator θ̂
λ
thus depends on the

choice of Θ, and it will be shown that θ̂
λ
is a consistent estimator of the vector θ∗

Θ
∈ R

pJ defined
in Assumption 4.7. Note that depending on the problem at hand and the choice of the constrained
set Θ, it can be shown that θ∗

Θ is close to the true deformation parameters θ∗. For example, in the
case of shifted curves, if Θ = Θ0 defined in (3.7) and if the density g of the shifts has zero mean,
then θΘ0 = (θ∗

1 − θ̄
∗
, . . . ,θ∗

J − θ̄
∗
) with θ̄

∗
= 1

J

∑J
j=1 θ

∗
j can be shown to be close to θ∗ (see Lemma

A.1 in the Appendix). This allows to show the consistency of θ̂
λ
to θ∗ as formulated in Theorem 3.1.

Therefore, the next result only bounds the distance between θ̂
λ
and θ∗

Θ.

Theorem 5.1. Consider the model (1.5) and suppose that Assumptions 4.1 to 4.9 hold with n ≥ 1
and J ≥ 2. Then, for any λ ∈ Λ and x > 0

P

(
1

J
‖θ̂λ − θ∗

Θ‖2 ≥ C1(Θ,F , f∗)
[

(γn(Θ) + σ2)
(√

υ(x, J, λ) + υ(x, J, λ)
)

+
(√

B(λ) +B(λ)
)])

≤ 2e−x,

(5.2)

with C1(Θ,F , f∗) > 0, υ(x, J, λ) := V (λ)
(
1 + 4x

J +
√
4x
J

)
and where ‖.‖ is the Euclidean norm in

R
pJ .

Let us comment the inequality (5.2). The term υ(x, J, λ) depends on the variance V (λ) of the linear
estimators f̂λj , j = 1, . . . , J , and recall that B(λ) is a uniform control on the bias of these estimators
(see Section 4.2). Using a classical tradeoff between variance and bias, Assumption 4.5 implies that
there exists a sequence of smoothing parameters λn such that limn→+∞ V (λn) = limn→+∞B(λn) = 0.

Moreover, using Assumption 4.9, it follows that limn→+∞ γn(Θ)
(√

υ(x, J, λn) + υ(x, J, λn)
)

= 0 for

any x > 0 and J ≥ 2. If the number of curves J remains fixed, Theorem 5.1 implies that θ̂
λ
converges

in probability to θ∗
Θ

as the number of design points n increases. Such an an asymptotic in n has
been considered in [GLM07] and in [Vim10] to estimate deterministic shifts in a SIM model using a
semiparametric framework.

To the contrary let us fix the number of design points n, and consider an asymptotic setting where
the number J of curves/images is let going to infinity. For any x > 0 and λ ∈ Λ, limJ→+∞ υ(x, J, λ) =

V (λ). Therefore, Theorem 5.1 cannot be used to prove that θ̂
λ
converges to θ∗

Θ as J tends to infinity.
To the contrary one has that

lim
J→+∞

(γn(Θ) + σ2)
(√

υ(x, J, λ) + υ(x, J, λ)
)

+
(√

B(λ) +B(λ)
)

= (γn(Θ) + σ2)h(V (λ)) + h(B(λ))

where h(u) =
√
u+ u for u ≥ 0. This would suggest that θ̂

λ
is not a consistent estimator of θ∗

Θ (and
thus of θ∗) as n remains fixed and J tends to infinity. This fact has already been noticed in Section

3, since the lower bound given in Theorem 3.2 shows that θ̂
λ
is not a consistent estimator of θ∗ as

J → +∞ when the process Z is stationary. The following theorem shows that a similar phenomenon
arises under the following assumption on the process Z,

Assumption 5.1. The process Z is a second order Gaussian process taking its values in L2(Ω) with
zero mean. Moreover, there exists a positive semi-definite symmetric n×n matrix Σ(Θ) such that for
any random vector θ ∈ Θ the covariance matrix of Z = [Z(tℓ)]

n
ℓ=1 satisfies Eθ

[
TθZ(TθZ)

′
]
= Σ(Θ).

This assumption means that the law of the random process Z is invariant by the deformation
operators Tθ for θ ∈ Θ.
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Theorem 5.2. Consider the model (1.5). Suppose that Assumptions 4.1, 4.2, 4.3 , 4.6 and 5.1 hold.
Assume the density g is continuously differentiable, that its support strictly include in Θ, and that
∫

Θ (∂θ log (g(θ)))
2 g(θ)dθ < +∞. Let θ̂ ∈ R

pJ be any estimator (a measurable function of the data) of
θ∗. Then,

E

[
1

J
‖θ̂ − θ∗‖2

]

≥ n−1(σ2 + γ̃n(Θ))

C(Θ,F , f∗) + n−1(σ2 + γ̃n(Θ))
∫

Θ (∂θ log (g(θ)))
2 g(θ)dθ

(5.3)

where C(Θ,F , f∗) is a strictly positive constant and γ̃n(Θ) denotes the largest eigenvalue of Σ(Θ).

The right hand side of the inequality (5.3) gives a lower bound on E[ 1J ‖θ̂
λ − θ∗

Θ
‖2]. This bound

is independent of J , and thus if the number of design points n is fixed, increasing the number
of curves/images does not improve the quality of the estimation of the deformation parameters
for any estimators θ̂. Nevertheless, this lower bound is going to 0 as n → +∞ (provided that
limn→+∞ n−1γ̃n(Θ)) which is consistent with the results given by Theorem 5.1.

5.2 Consistent estimation of the mean pattern

From equation (2.6), recall that an estimator f̂λ of the mean pattern f∗ is defined as

f̂λ =
1

J

J∑

j=1

T̃
θ̂
λ

j

f̂λj =
1

J

J∑

j=1

T̃
θ̂
λ

j

〈Sλ(.),Yj〉 . (5.4)

We study the consistency of f̂λ with respect to the shape function f∗
Θ

:= 1
J

∑J
j=1 T̃[θ∗

Θ
]jTθ∗

j
f∗, de-

fined for θ∗
Θ

= ([θ∗
Θ
]1, . . . , [θ

∗
Θ
]J). Again, depending on the problem at hand and the choice of the

constrained set Θ, it can be shown that f∗
Θ

is close to the true mean pattern f∗. For example, in
the case of shifted curves with Θ = Θ0 defined in (3.7), then θΘ0 = (θ∗

1 − θ̄
∗
, . . . ,θ∗

J − θ̄
∗
) with

θ̄
∗
= 1

J

∑J
j=1 θ

∗
j . In this case

f∗Θ0
(t) :=

1

J

J∑

j=1

f∗(t− θ∗
j + [θ∗

Θ0
]j) = f∗(t− θ̄

∗
) for all t ∈ [0, 1].

Hence, under the condition that
∫

Θ θg(θ)dθ = 0 (the shifts have zero mean), then θ̄
∗ ≈ 0 for J

sufficiently large, and thus f∗
Θ
(t) is close to f∗ which allows to show the consistency of f̂λ to f∗ as

formulated in Theorem 3.3.

Theorem 5.3. Consider the model (1.5) and suppose that Assumptions 4.1 to 4.9 hold. Then, for
any λ ∈ Λ and x > 0

P

(

‖f̂λ − f∗Θ‖2L2 ≥ C2(Θ,F , f∗)
[

(γn(Θ) + σ2)
(√

υ(x, J, λ) + υ(x, J, λ)
)

+
(√

B(λ) +B(λ)
)])

≤ 2e−x,

(5.5)

where C2(Θ,F , f∗) > 0 is a constant depending only Θ, F , and f∗.

Similar comments that those made for the consistency of the deformation parameters can be given
as the same terms appear in the deviation inequalities (5.2) and (5.5). The consistency of f̂λ to
f∗
Θ

is guaranteed when n goes to infinity provided the level of smoothing λ = λn is chosen so that
limn→+∞ V (λn) = limn→+∞B(λn) = 0. Again, if n remains fixed and only J is let going to infinity
then Theorem 5.3 cannot be used to prove the convergence of f̂λ to f∗

Θ
.
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6 Numerical experiments

6.1 A general gradient descent algorithm

To compute the estimator θ̂
λ
one has to minimize the criterion Mλ(θ) defined in (5.1). Generally, the

expression of the gradient ofMλ(θ) is available in a closed form, and thus a gradient descent algorithm
with an adaptive step can be easily implemented. More precisely the algorithm is composed of the
following steps:

Initialization: let θ0 ∈ Θ (if Θ = Θ0 a possible choice is θ0 = 0), γ0 =
1

‖∇Mλ(θ
0)‖

, F (0) =Mλ(u
0),

and set m = 0.

Step 2: let θnew = θm − γm∇Mλ(θ
m) and F (m+ 1) =Mλ(θ

new).
While F (m+ 1) > F (m) do

γm = γm/κ, and θnew = θm − γm∇Mλ(θ
m), and let F (m+ 1) =Mλ(θ

new).
End while
Then, take θm+1 = θnew. Set m = m+ 1

Step 3: if F (m) − F (m + 1) ≥ ρ(F (1) − F (m + 1)) then return to Step 2, else stop the iterations,

and take θ̂
λ
= θm+1.

In the above algorithm, ρ > 0 is a small stopping parameter and κ > 1 is a parameter to control
the choice of the adaptive step γm. In practice, one does not known the compact set Θ to which
the θ∗

j are supposed to belong. So it is difficult to constraint θm to belong to a specific compact
set. Nevertheless, depending on the choice of the constrained set Θ, it is possible to impose that θm

satisfies the same constraints. For instance, if Θ = Θ0 one can modify θm = (θm
j )j=1,...,J at each

iteration such that
∑J

j=1 θ
m
j = 0.

6.2 Randomly shifted curves

We present some simulations to illustrate the results given in Section 3. The random shift framework
was used as an example throughout this paper to illustrate the estimating procedure. In this setting,
d = 1, Ω = [0, 1] and F = H3(A) ⊂ L2

per([0, 1]). In the simulations, we took random shifts θj having

a uniform density g with compact support equal to [−1
5 ,

1
5 ].The model (3.1) is

Y ℓ
j = f∗( ℓn − θ∗

j ) + Zj(
ℓ
n − θ∗

j) + σεℓj , and j = 1, . . . , J, ℓ = 1, . . . , n (6.1)

and we took f∗(t) = 9 sin(2πt) + 2 cos(8πt) for t ∈ [0, 1] as a mean pattern, see Figure 3(a). For the
constrained set we took

Θ0 =
{

θ ∈
[
−1

2 ,
1
2

]J
, θ1 + · · ·+ θJ = 0

}

.

We consider the case where the linear smoothing is a Fourier low pass filter. In the following, we fix
the spectral cut-off to λ = 7 which is reasonable value to reconstruct f∗ representing a good tradeoff
between bias and variance. Choosing λ could also be done by a cross-validation procedure. However,
studying the theoretical properties of a data-based choice of λ is beyond the scope of the paper. In
the following, we present some results of simulations under various assumptions of the process Z and
the level σ of additive noise in the measurements.

Shape invariant model (SIM)

The first numerical applications illustrate the role of n and J in the SIM model, i.e without the addtive
term Z. Figure 3(b) gives a sample of the data used with small level noise σ = 2. In the simulations,
we took a larger level of noise σ = 8. In fact, the low pass filters efficiently smooth the white noise
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Figure 3: (a) mean pattern f∗. (b) J = 3 noisy curves in the SIM with σ = 2. (c) J = 3 noisy curves
with σ = 0 and a stationary process Z with ς = 4.

and the results remain good even with a relatively large σ. The factors in the simulations are the
number J of curves and the number of design points n. For each combination of these two factors,
we simulate M = 20 repetitions of model (6.1) with Zj = 0, j = 1, . . . , J . For each repetition we

computed 1
J ‖θ̂

λ − θ∗‖2 and ‖f̂λ − f∗‖2L2 . Boxplot of these quantities are displayed in Figure 4(a)
and 4(b) respectively, for J = 20, 40, . . . , 100 and n = 512 (in gray) and n = 1024 (in black). As
the smoothing parameter is fixed to λ = 7, increasing n simply reduces the variance of the linear

smoothers f̂λj . Recall that the lower bound given in Theorem 3.2 shows that 1
JE[‖θ∗ − θ̂

λ‖2] does not
decrease as J increases but should be smaller when the number of point n increases. This is exactly

what we observe in Figure 4. Indeed, the quantity 1
J ‖θ̂

λ − θ∗‖2 does not become smaller when J
grows, and it is noticeably smaller when n increases.

Similarly, the quantity ‖f̂λ − f∗‖2L2 is clearly smaller with n = 1024 than n = 512. One can also

see that the variance and the mean of ‖f̂λ − f∗‖2L2 over the simulations tend to decrease as J grows

but n remains fixed. This could be interpreted as a surprising fact since the quality of f̂λ depends

on the distance 1
J ‖θ̂

λ − θ∗‖2 which is not a decreasing function of J . However, note that the value

of 1
J ‖θ̂

λ − θ∗‖2 is of order 10−4 for all values of n and J . This mean that the shifts are very well

estimated and that f̂λ is close to the ideal estimator f̃λ that would be obtained if we knew the true
values of the shifts that is f̃λ(t) = 1

J

∑J
j=1 T̃θ∗

j
f̂λj (t) =

1
J

∑J
j=1 f̂

λ
j (t+ θ∗

j). It is clear from model (6.1)

that f̃λ can be shown to be consistent estimator of f∗ at the design points as J tends to infinity and
n remains fixed, provided that λ = λJ → +∞ is chosen in an appropriate way. This explains why, in
numerical experiments, the quantity ‖f̂λ − f∗‖2L2 is decreasing with J .
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Figure 4: Boxplot of 1
J ‖θ̂

λ − θ∗
Θ0

‖2 (a) and ‖f̂λ − f∗
Θ0

‖2L2 (b) over M = 20 repetitions from a SIM
model of shifted curves. Boxplot in gray correspond to n = 512, and in black to n = 1024.
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Complete model

We now add the terms Zj in (6.1) to model linear variations in amplitude of the curves around the
template f∗. First, we generate a stationary periodic Gaussian process. To do this, the covariance
matrix must be a particular Toeplitz matrix. As suggested in [Gre93] one possibility is to choose

K(s, s+ t) = ς2R(t) = ς2
eφ(t−1/2) + e−φ(t−1/2)

eφ/2 + e−φ/2
,

where φ is a strictly positive parameter (we took φ = 4) and ς a variance parameter. The level of
additive noise is σ = 8, and we took ς = 4. As an illustration, in Figure 3(c) we plot f∗ + Zj ,

j = 1, 2, 3 with ς = φ = 4. Over M = 20 repetitions, we have computed the values of 1
J ‖θ̂

λ − θ∗
Θ0

‖2
and ‖f̂λ − f∗

Θ0
‖2L2 for J is varying from 20 to 100 and n = 512, 1024. The results are displayed in

Figure 5(a) and 5(b). We observe the same behaviors than in the simulations with the SIM model:

the variance of 1
J ‖θ̂

λ−θ∗
Θ0

‖2 does not decrease as J increases (see Figure 5(a)) and ‖f̂λ−f∗
Θ0

‖2 has a
smaller mean and variance as n increases. Nevertheless, increasing n does not really change a lot the
results. Indeed, the level of noise (σ2 + ς2) is rather high, and thus the low pass filter fails to smooth
efficiently the low frequency part of the additive noise Z and ε.
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Figure 5: Boxplot of 1
J ‖θ̂

λ − θ∗
Θ0

‖2 (a) and 1
J ‖f̂λ − f∗

Θ0
‖2 (b) in model (3.1) with a stationnary error

term Z. Boxplot in gray correspond to n = 512, and in black to n = 1024.

We finally run the same simulations with a non stationary noise Zj(t) = αjψ(t) where ψ is a
positive periodic smooth deterministic function such that ‖ψ‖L2 = 1 and αj ∼ N (0, ς2) with ς = 4.
Note that, in this case, the sequence γn(Θ) is of order n and Assumption 4.9 is not verified. The
levels of noise (σ and ς) are the same than in the stationary case in order to make things comparable.

The results are presented in the same manner in Figure 6(a) for 1
J ‖θ̂

λ − θ∗
Θ0

‖2 and in Figure 6(b)

for ‖f̂λ − f∗
Θ0

‖2L2 . One can see that the results are very different. The estimators of the shifts have

a much larger mean and variance, and the variance of 1J ‖θ̂
λ − θ∗

Θ0
‖2 remains rather high even when

n or J increases (see Figure 6(a)). The convergence to zero of ‖f̂λ − f∗
Θ0

‖2L2 which was clear in the
stationary case, is now not so obvious in view of the numerical results displayed in Figure 6(b).

6.3 Geometric PCA of images

Let us consider images of handwritten digits taken from the Mnist database (see [LBBH98] for more
details on this data set). For each digit, one observes a set of J = 100 graylevel images of size 28× 28
pixels. Each image can thus be viewed as a noisy random function observed n = 784 points on a
regular grid of Ω = [0, 1]2. We only report results for digit 1, 3 and 5. In Figure 7 to Figure 9, we
display for each digit a sample of 8 images out of J = 100 to give an idea of the variability of such
data sets. Clearly, a large source of variability in such images is due to local geometric deformations.
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Figure 6: Boxplot of 1
J ‖θ̂

λ − θ∗
Θ0

‖2 (a) and 1
J ‖f̂λ − f∗

Θ0
‖2 (b) in model (3.1) with a non-stationnary

error term Z. Boxplot in gray correspond to n = 512, and in black to n = 1024.

Computing parametric diffeomorphisms

It is appropriate to model the geometric variability of such data by a local deformation operator
Tθf(t) := f (ψθ(t)) where ψθ : Ω → Ω is a diffeomorphism. To build a family (ψθ)θ∈Θ of parametric
diffeomorphisms of Ω, we follow the approach proposed in [BGL09]. Let v : Ω → R

2 be a smooth
parametric vector field given by a linear combination of known basis functions {hk : Ω → R, k =
1, . . . ,K}, such that

v(t) =





∑K
k=1 θ

(1)
k hk(t)

∑K
k=1 θ

(2)
k hk(t)



 ∈ R
2 for t ∈ Ω.

where the θ
(i)
k ’s are reals coefficients. The function v is thus parametrized by the set of coefficients

θ(1) = (θ
(1)
1 , . . . , θ

(1)
K )′ ∈ R

K and θ(2) = (θ
(2)
1 , . . . , θ

(2)
K )′ ∈ R

K , and we write v = vθ with θ =

(θ(1),θ(2)) ∈ R
p with p = 2K to stress this dependency. In what follows, it will be assumed that

the basis functions are continuously differentiable on Ω and such that hj and ∂thj vanish at the
boundaries of Ω. For the hj ’s we took in our simulations a set of K = 9 two-dimensional B-spline
functions obtained by the tensor product of one-dimensional B-spline of degree p = 3 using equally-
spaced knots on [0, 1]. Then, let t ∈ Ω and for u ∈ [0, 1] consider the following ordinary differential
equation (ODE)

∂

∂u
ψ(u, t) = vθ(ψ(u, t)) (6.2)

with initial condition ψ(0, t) = t. Then, it can be shown (see e.g. [BGL09]) that for any u ∈ [0, 1] the
solution of the above ODE is unique and such that t 7→ ψ(u, t) is a diffeomorphism of Ω such that
ψ(u,Ω) = Ω. Then, denote by ψθ(t) = ψ(1, t) the solution at u = 1. In this way, we finally obtain a
diffeomorphism ψθ that is parametrized by the set of coefficients θ ∈ R

p.

Fréchet mean versus the standard empirical mean

To smooth the images, we use the two-dimensional discrete Fourier transform of an N×N image (with
N = 28) and low-pass filtering (the frequency cutoff is chosen to λ = 10 in the horizontal and vertical
directions). Using the above described family of parametric diffeomorphisms, we compute the Fréchet
mean f̂λ of the smoothed images using the constraint that

∑J
j=1 θj = 0 (details on how to compute

the gradient of the criterion M(θ) using such deformation operators can be found in [BGL09]). The
results displayed in Figure 7 to Figure 9 clearly show the improvements obtained when using the
Fréchet mean instead of the usual empirical mean Ȳ. It can be seen that the Fréchet mean is an
image with sharper edges than the empirical mean which is a very blurred image.
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Geometric PCA

For each digit, one can perform a standard linear PCA by transforming the J = 100 images into
vectors of Rn with n = 748. Let us denote by ê1 ∈ R

n and ê2 ∈ R
n the first two principal component

vectors with associated eigenvalues σ̂21 and σ̂22 (by a slight abuse of notations these vectors can also be
viewed as images). Then, we define the first two linear modes of variations of the data as the images
Ȳ + α1ê1 and Ȳ + α2ê2 with α1 = 1.5σ̂1 and α2 = 1.5σ̂2. For the digit 1 and 5, it can be seen that
linear PCA is not appropriate to represent the shape variability of the data, as the second mode of
variation show geometric artifacts. The images in Figure 7(c) and Figure 9(c) are no longer a single
digit but rather the superposition of two digits in different orientations.

Denote by θ̂
(i)
1 , . . . , θ̂

(i)
J , i = 1, 2 be the estimated coefficients obtained by the minimization ofM(θ).

A geometric PCA can be obtained by performing a standard linear PCA of the vectors θ̂
(i)

j , j = 1, . . . , J

for each direction i = 1, 2. Let ê
(i)
1 ∈ R

K and ê
(i)
2 ∈ R

K be the first two principal component vectors

with associated eigenvalues σ̂2i,1 and σ̂2i,2 of the “data” θ̂
(i)
1 , . . . , θ̂

(i)
J for i = 1, 2. Then, define the first

two principal vector fields

v̂1(t) = 1.5




σ̂1,1

∑K
k=1 ê

(1)
1,khk(t)

σ̂2,1
∑K

k=1 ê
(2)
1,khk(t)



 and v̂2(t) = 1.5




σ̂1,2

∑K
k=1 ê

(1)
2,khk(t)

σ̂2,2
∑K

k=1 ê
(2)
2,khk(t)



 for t ∈ Ω,

and the two first modes of deformations ψ̂1 and ψ̂2 as the solution at u = 1 of the ODE (6.2) governed
by the vector field v̂1 and v̂2 respectively. Then, the first and second geometric mode of variation of
the data are defined as the images f̂λ ◦ ψ̂1 and f̂

λ ◦ ψ̂2. The results of such a geometric PCA procedure
is displayed in Figure 7(c) and Figure 9(c). For the digit 3, it gives results similar to standard linear
PCA but with images with sharper images. For the digits 1 and 5, it gives results of a different flavor.
Such a geometric PCA overcomes the artefacts observed with standard linear PCA, and clearly better
reflects the geometric variability of the observed images.

(a) Ȳ (b) Ȳ + α1ê1 (c) Ȳ + α2ê2 (d) f̂λ (e) f̂λ
◦ ψ̂1 (f) f̂λ

◦ ψ̂2

Figure 7: Digit 1 (Mnist database). First row: sample of 8 digits out of J = 100. Second row: (a)
empirical mean Ȳ, (b) Ȳ+ α1ê1 (first linear mode of variation), (c) Ȳ+ α2ê2 (second linear mode of
variation), (d) Fréchet mean f̂λ, (e) f̂λ ◦ ψ̂1 (first geometric mode of variation), (f) f̂λ ◦ ψ̂2 (second
geometric mode of variation).
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(a) Ȳ (b) Ȳ + α1ê1 (c) Ȳ + α2ê2 (d) f̂λ (e) f̂λ
◦ ψ̂1 (f) f̂λ

◦ ψ̂2

Figure 8: Digit 3 (Mnist database). First row: sample of 8 digits out of J = 100. Second row: (a)
empirical mean Ȳ, (b) Ȳ+ α1ê1 (first linear mode of variation), (c) Ȳ+ α2ê2 (second linear mode of
variation), (d) Fréchet mean f̂λ, (e) f̂λ ◦ ψ̂1 (first geometric mode of variation), (f) f̂λ ◦ ψ̂2 (second
geometric mode of variation).

(a) Ȳ (b) Ȳ + α1ê1 (c) Ȳ + α2ê2 (d) f̂λ (e) f̂λ
◦ ψ̂1 (f) f̂λ

◦ ψ̂2

Figure 9: Digit 5 (Mnist database). First row: sample of 8 digits out of J = 100. Second row: (a)
empirical mean Ȳ, (b) Ȳ+ α1ê1 (first linear mode of variation), (c) Ȳ+ α2ê2 (second linear mode of
variation), (d) Fréchet mean f̂λ, (e) f̂λ ◦ ψ̂1 (first geometric mode of variation), (f) f̂λ ◦ ψ̂2 (second
geometric mode of variation).

Appendices

A Proof of the consistency in the setting of randomly shifted curves

A.1 Proof of Theorem 3.1

Let us state the following lemma which is direct consequence of Bernstein’s inequality for bounded
random variables (see e.g. Proposition 2.9 in [Mas07]):

Lemma A.1. Suppose that Assumption 3.2 holds. Then, for any x > 0

P

(
1

J
‖θ∗

Θ0
− θ∗‖2 ≥ ρ2

(√

2x

J
+

x

3J

)2)

≤ 2e−x.

Using the inequality 1
J ‖θ̂λ − θ∗‖2 ≤ 2

J ‖θ̂λ − θ∗
Θ0

‖2 + 2
J ‖θ∗

Θ0
− θ∗‖2, it follows that Theorem 3.1

is a consequence of Lemma A.1 and Theorem 5.1. Indeed, it can be easily checked that, under the
assumptions of Theorem 3.1, Assumptions 4.1 to 4.9 are satisfied in the case of randomly shifted
curves with an equi-spaced design and low-pass Fourier filtering (see the various arguments given in
Section 4). �
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A.2 Proof of Proposition 3.1

The result of Proposition 3.1 is a direct consequence of the following lemma:

Lemma A.2. Suppose that Assumptions 3.2 and 3.3 holds with ρ < 1/16. Then, for any θ =

(θ1, . . . ,θJ) ∈ Θ0, one has that D(θ) ≥ C(f∗, ρ) 1J
∑J

j=1

∣
∣θj − [θ∗

Θ0
]j
∣
∣2 , where C(f∗, ρ) > 0 is a

constant depending only on f∗ and ρ.

Proof. By definition of D(θ) and thanks to Assumption 3.3, it follows that for any θ ∈ Θ,

M(θ) ≥ |c∗1|2
(

1−
∣
∣
∣
∣

1

J

J∑

j=1

ei2π(θj−θ
∗

j )

∣
∣
∣
∣

2)

(A.1)

with c∗1 6= 0. Then, remark that

∣
∣
∣
∣

1

J

J∑

j=1

ei2π(θj−θ
∗

j )

∣
∣
∣
∣

2

=
1

J
+

2

J2

J−1∑

j=1

J∑

j′=j+1

cos
(
2π
(
(θj − θ∗

j)− (θj′ − θ∗
j′)
))
.

Using a second order Taylor expansion and the mean value theorem, one has that cos(2πu) ≤ 1 −
C(ρ)|u|2 for any real u such that |u| ≤ 4ρ < 1/4 with C(ρ) = 2π2 cos(8πρ) > 0. Therefore, the above
equality implies that for any θ ∈ Θ

∣
∣
∣
∣

1

J

J∑

j=1

ei2π(θj−θ
∗

j )

∣
∣
∣
∣

2

≤ 1

J
+

2

J2

J−1∑

j=1

J∑

j′=j+1

1− C(ρ)
∣
∣(θj − θ∗

j)− (θj′ − θ∗
j′)
∣
∣2

≤ 1− 2

J2

J−1∑

j=1

J∑

j′=j+1

C(ρ)
∣
∣(θj − θ∗

j )− (θj′ − θ∗
j′)
∣
∣2 ,

since |(θj − θ∗
j )− (θj′ − θ∗

j′)| ≤ 4ρ < 1/4 for all m, q = 1, . . . , n by Assumption 3.2 and the hypothesis
that ρ < 1/16. Hence, using the lower bound (A.1), it follows that for all θ ∈ Θ

M(θ) ≥ C(f, ρ)
1

J2

J−1∑

j=1

J∑

j′=j+1

∣
∣(θj − θ∗

j )− (θj′ − θ∗
j′)
∣
∣2 (A.2)

with C(f, ρ) = 2|c∗1|2C(ρ). Now assume that θ ∈ Θ0. Using the properties that
∑J

j=1 θj = 0 and
∑J

j=1(θj − θ∗
j) = −∑J

j=1 θ
∗
j = J θ̄

∗
, it follows from elementary algebra that

1

J

J−1∑

j=1

J∑

j′=j+1

∣
∣(θj − θ∗

j )− (θj′ − θ∗
j′)
∣
∣2 =

J∑

j=1

(θj − (θ∗
j − θ̄

∗
))2.

The above equality together with the lower bound (A.2) completes the proof.

A.3 Proof of Theorem 3.2

The random variable θ∗
j ’s are i.i.d. with values in Θ and with density g : Θ −→ R. Denote by

Y = (Y1, . . . ,YJ) ∈ R
n×J the observations generated by the model (3.1). Under Assumption 3.1, the

log-likelihood of Y conditionally to θ∗ is equal to

log(p(Y|θ∗)) = −Jn
2

log(2π) +
J

2
log(det(Λ))− 1

2

J∑

j=1

(Yj − f∗(· − θ∗
j))

′Λ(Yj − f∗(· − θ∗
j )),
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where Λ = (σ2Idn +Σ)−1. Therefore, Eθ
∗ [∂θ∗

j1
log(p(Y|θ∗))] = 0 for all j1 = 1, . . . , J and

Eθ
∗

[
∂θ∗

j1
log(p(Y|θ∗))∂θ∗

j2
log(p(Y|θ∗))

]
=

{

0 if j1 6= j2,

∂tf
∗(· − θ∗

j1) Λ ∂tf
∗(· − θ∗

j1) if j1 = j2,

where ∂tf
∗(· − θ∗

j1) =
[
∂tf

∗(tℓ − θ∗
j1)
]n

ℓ=1
. Hence, under the assumptions of Theorem 3.2 on g, we can

apply the multivariate Van Tree inequality (see Theorem 1 in [GL95]), to obtain that for any estimator
θ̂ = θ̂(Y)

E

[
1

J
‖θ̂ − θ∗‖2

]

≥ J
∑J

j=1

∫

ΘJ ∂tf∗(· − θ∗
j )Λ∂tf

∗(· − θ∗
j)g

J (θ∗)dθ∗ + J
∫

Θ

(
∂θ∗

1
log (g(θ∗

1))
)2
g(θ∗

1)dθ
∗
1

≥ J

(σ2 + γ)−1
∑J

j=1

∫

ΘJ

∥
∥∂tf∗(· − θ∗

j)
∥
∥2 gJ(θ∗)dθ∗ + J

∫

Θ

(
∂θ∗

1
log (g(θ∗

1))
)2
g(θ∗

1)dθ
∗
1

≥ (σ2 + γ)

n ‖∂tf∗‖2∞ + (σ2 + γ)
∫

Θ

(
∂θ∗

1
log (g(θ∗

1))
)2
g(θ∗

1)dθ
∗
1

,

where gJ (θ∗) = g(θ∗
1) . . . g(θ

∗
J). �

A.4 Proof of Theorem 3.3

Consider the following inequality ‖f̂λ−f∗‖2 ≤ 2‖f̂λ−f∗
Θ0

‖2+2‖f∗
Θ0

−f∗‖2, where f∗
Θ0

(t) = f∗(t− θ̄
∗
)

and θ̄
∗
= 1

J

∑J
j=1 θ

∗
j ∈ Θ. As f∗ is assumed to be in Hs(A), there exists a constant C(Θ, f∗) > 0

such that ‖f∗
Θ0

− f∗‖2L2 ≤ C(Θ, f∗)|θ̄∗|2 = C(Θ, f∗) 1J ‖θ∗
Θ0

− θ∗‖2. As explained in part A.1 the
assumptions of Theorem 3.3 are satisfied in the case of randomly shifted curves with an equi-spaced
design and low-pass Fourier filtering. The result then follows from Theorem 5.3. �

A.5 Proof of Theorem 3.4

Let n ≥ 1. We have that

E[‖f̃ − f∗‖L2 ] = E‖f̃ − f∗Θ0
+ f∗Θ0

− f∗‖L2 ≥
∣
∣
∣ E‖f̃ − f∗Θ0

‖L2

︸ ︷︷ ︸

A

−E‖f∗Θ0
− f∗‖L2

︸ ︷︷ ︸

B

∣
∣
∣ (A.3)

where for all t ∈ [0, 1], f̃(t) = 1
J

∑J
j=1 f

∗(t− θ∗
j + θ̂

λ

j ), and f
∗
Θ0

(t) = f∗(t+ θ̄
∗
). with θ̄

∗
= 1

J

∑J
j=1 θ

∗
j .

In the rest of the proof, we show that A is bounded from below by a quantity C0(f
∗, g, n, σ2, γ, ρ) =

C(f∗, ρ) n−1(σ2+γ)

‖∂tf∗‖2
∞
+n−1(σ2+γ)

∫
Θ
(∂θ log(g(θ)))2

independent of J (this statement is made precise later) and

that B goes to zero as J goes to infinity. Then, these two facts imply that there exists a J0 ∈ N such
that J ≥ J0 implies that E‖f̃ − f̃∗‖L2 ≥ 1

2C0(f
∗, g, n, σ2, γ, ρ), which will yield the desired result.

Lower bound on A. Recall that c∗k =
∫ 1
0 f

∗(t)e−i2πktdt, then

‖f̃ − f∗Θ0
‖L2 = ‖ 1

J

J∑

j=1

f∗(· − θ∗
j + θ̂

λ
j )− f∗(·+ θ̄

∗
)‖L2 =

(
∑

k∈Z

∣
∣
∣
∣

1

J

J∑

j=1

(

ei2πk(−θ
∗

j+θ̂
λ

j ) − ei2πkθ̄
∗
)

c∗k

∣
∣
∣
∣

2)
1
2
,

≥ |c∗1|
∣
∣
∣
∣

1

J

J∑

j=1

(ei2π(θ̂
λ

j −[θ∗

Θ0
]j) − 1)

∣
∣
∣
∣
,

where θ∗
Θ0

= (θ∗
1 − θ̄

∗
, . . . ,θ∗

J − θ̄
∗
), the right hand side of the preceding inequality being positive

since Assumption 3.2 ensures that c∗1 6= 0 for all j = 1, . . . , J . Let uj = 2π(θ̂
λ
j − [θ∗

Θ0
]j), j = 1, . . . , J
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. Since
∑J

j=1 uj = 0 and |uj | ≤ 4πρ < 3, j = 1, . . . , J (by our assumption on ρ), Lemma A.3 implies
that

‖f̃ − f∗Θ0
‖L2 ≥ C(f∗, ρ)

1

J
‖θ̂λ − θ∗

Θ0
‖2. (A.4)

Now, remark that E
[
1
J ‖θ̂

λ − θ∗
Θ0

‖2
]
≥ E

[
1
J ‖θ̂

λ − θ∗‖2
]
−C with C = 2E

[ ∣
∣θ̄

∗∣∣ 1
J

∑J
j=1 |θ̂

λ
j − θ∗

j |
]
. By

applying Theorem 3.2 we get that

E
[
1
J ‖θ̂

λ−θ∗‖2
]
≥ C(f∗, g, n, σ2, γ), with C(f∗, g, n, σ2, γ) =

n−1(σ2 + γ)

‖∂tf∗‖2∞ + n−1(σ2 + γ)
∫

Θ (∂θ log (g(θ)))
2 .

Then, remark that C ≤ 4ρ

√

E
∣
∣θ̄

∗∣∣2 ≤ C(ρ, g)J−1/2. Hence C tends to 0 as J goes to infinity.

Therefore, using equation (A.4), it follows that there exists C0(f
∗, g, n, σ2, γ, ρ) > 0 and J1 ∈ N such

that J ≥ J1 implies that

A = E
[
‖f̃λ − f̃∗‖L2

]
≥ C0(f

∗, g, n, σ2, γ, ρ). (A.5)

Upper bound on B. By assumption, f∗ is continuously differentiable on [0, 1] implying that

‖f∗
Θ0

− f∗‖L2 = ‖f∗(· + θ̄
∗
) − f∗‖L2 ≤ ‖∂tf‖∞ |θ̄∗|. Therefore, E‖f∗

Θ0
− f∗‖L2 ≤ ‖∂tf‖∞

√

E
∣
∣θ̄

∗∣∣2 ≤
C(f∗, g)J−1/2. Hence, there exists a J2 ∈ N such that J ≥ J2 implies

B = E[‖f̃∗Θ0
− f̃∗‖L2 ] ≤ 1

2
C0(f

∗, g, n, σ2, γ, ρ). (A.6)

To conclude the proof, equations (A.3), (A.5) and (A.6) imply that there exists a J0 ∈ N such that
J ≥ J0 implies E‖f̂λ − f̃∗‖L2 ≥ |A−B| ≥ 1

2C0(f
∗, g, n, σ2, γ, ρ). �

Lemma A.3. Let u = (u1, . . . , uJ ) such that
J∑

j=1
uj = 0 with |uj | ≤ δ for some 0 ≤ δ < 3 for all

j = 1, . . . , J . Then, there exists a constant C(δ) > 0 such that

∣
∣
∣
∣
1
J

∑J
j=1(e

iuj − 1)

∣
∣
∣
∣
≥ C(δ)

J ‖u‖2 where

‖u‖2 = u21 + . . .+ u2J .

Proof. Let F (u1, . . . , uJ) = 1
J

∑J
j=1 e

iuj . A Taylor expansion implies that there exits tj ∈ [−δ, δ],
j = 1, . . . , J such that

F (u1, . . . , uJ) = 1 +
i

J

J∑

j=1

uj −
1

2J

J∑

j=1

u2j −
i

6J

J∑

j=1

u3je
itj ,

holds for all |uj | ≤ δ. Now, since
∑J

j=1 uj = 0 it follows that

∣
∣
∣
∣

1

J

J∑

j=1

eiuj − 1

∣
∣
∣
∣
=

∣
∣
∣
∣
− 1

2J

J∑

j=1

u2j −
i

6J

J∑

j=1

u3je
itj

∣
∣
∣
∣
≥ 1

2J

∣
∣
∣
∣

J∑

j=1

u2j −
∣
∣
∣
∣

i

3

J∑

j=1

u3je
itj

∣
∣
∣
∣

∣
∣
∣
∣
.

Since |uj | ≤ δ, we have that
∣
∣
∣
i
3

∑J
j=1 u

3
je

itj
∣
∣
∣ ≤ δ

3

∑J
j=1 |uj|2 which finally implies that

∣
∣
∣
1
J

∑J
j=1 e

iuj − 1
∣
∣
∣ ≥

3−δ
6

1
J

∑J
j=1 u

2
j , which proves the result by letting C(δ) = 3−δ

6 > 0 since δ < 3.
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B Proof of the consistency in general case

B.1 Proof of Theorem 5.1

We explain here the main arguments of the proof of Theorem 5.1. Technical Lemmas are given in the
second part of the Appendix. Let θ = (θ1, . . . ,θJ) = (θ11, . . . , θ

p
1, . . . , θ

1
J , . . . , θ

p
J) ∈ R

pJ and decompose
the criterion (5.1) as follows,

Mλ(θ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
〈Sλn

(t),Yj〉 −
1

J

J∑

j′=1

T̃θj′

〈
Sλn

(t),Yj′
〉
)2

dt

= D(θ) +
[

Rλ(θ) +Qλ(θ)
]

+
[

QZ
λ (θ) +RZ

λ (θ) +RZ,ε
λ (θ) +Qε

λ(θ) +Rε
λ(θ)

]

,

where D(θ) = 1
J

∑J
j=1

∫

Ω

(

T̃θj
Tθ∗

j
f∗(t)− 1

J

∑J
j′=1 T̃θj′

Tθ∗

j′
f∗(t)

)2

dt, the terms Rλ and Qλ are due to

the smoothing, namely,

Qλ(θ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
Bλ(Tθ∗

j
f∗, t)− 1

J

J∑

j′=1

T̃θj′
Bλ(Tθ∗

j′
f∗, t)

)2

dt

Rλ(θ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
Tθ∗

j
f∗(t)− 1

J

J∑

j′=1

T̃θj′
Tθ∗

j′
f∗(t)

)

×
(

T̃θj
Bλ(Tθ∗

j
f∗, t)− 1

J

J∑

j′=1

T̃θj′
Bλ(Tθ∗

j′
f∗, t)

)

dt,

and the others terms contain the Zj ’s and εj’s error terms. Let Tθ
∗

j
Zj =

(
Tθ∗

j
Zj(tℓ)

)n

ℓ=1
and Tθ

∗

j
f∗ =

(
Tθ∗

j
f∗(tℓ)

)n

ℓ=1
, then

QZ
λ (θ) =

1

J

J∑

j=1

∫

Ω

(

T̃θj

〈

Sλ(t),Tθ
∗

j
Zj

〉

− 1

J

J∑

j′=1

T̃θj′

〈

Sλ(t),Tθ
∗

j′
Zj′

〉)2

dt

RZ
λ (θ) =

2

J

J∑

j=1

∫

Ω

(

T̃θj

〈

Sλ(t),Tθ
∗

j
f∗
〉

− 1

J

J∑

j′=1

T̃θj′

〈

Sλ(t),Tθ
∗

j′
f∗
〉)

×
(

T̃θj

〈

Sλ(t),Tθ
∗

j
Zj

〉

− 1

J

J∑

j′=1

T̃θj′

〈

Sλ(t),Tθ
∗

j′
Zj′

〉)

dt,

RZ,ε
λ (θ) =

2σ

J

J∑

j=1

∫

Ω

(

T̃θj

〈

Sλ(t),Tθ
∗

j
Zj

〉

− 1

J

J∑

j′=1

T̃θj′

〈

Sλ(t),Tθ
∗

j′
Zj′

〉)

×
(

T̃θj
〈Sλ(t), εj〉 −

1

J

J∑

j′=1

T̃θj′

〈
Sλ(t), εj′

〉
)

dt

Qε
λ(θ) =

σ2

J

J∑

j=1

∫

Ω

(

T̃θj
〈Sλ(t), εj〉 −

1

J

J∑

j′=1

T̃θj′

〈
Sλ(t), εj′

〉
)2

dt

Rε
λ(θ) =

2σ

J

J∑

j=1

∫

Ω

(

T̃θj

〈

Sλ(t),Tθ
∗

j
f∗
〉

− 1

J

J∑

j′=1

T̃θj′

〈

Sλ(t),Tθ
∗

j′
f∗
〉)

×
(

T̃θj
〈Sλ(t), εj〉 −

1

J

J∑

j′=1

T̃θj′

〈
Sλ(t), εj′

〉
)

dt.
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At this stage, recall that θ∗
Θ = argminθ∈ΘD(θ) and θ̂

λ
= argminθ∈ΘMλ(θ). The proof follows a

classical guideline in M-estimation: we show that the uniform (over Θ) convergence in probability of

the criterion Mλ to D, yielding the convergence in probability of their argmins θ∗
Θ

and θ̂
λ
respectively.

Lemma C.2 ensures that there is a constant C(Θ,F , f∗) > 0 such that,

1

J
‖θ̂λ − θ∗

Θ‖2 ≤ C(Θ,F , f∗)
∣
∣
∣D(θ̂

λ
)−D(θ∗

Θ)
∣
∣
∣ (B.1)

Then, a classical inequality in M-estimation and the decomposition of Mλ(θ) given above yield
∣
∣
∣D(θ̂

λ
)−D(θ∗

Θ)
∣
∣
∣ ≤ 2 sup

θ∈Θ
|D(θ)−Mλ(θ)| (B.2)

= 2 sup
θ∈Θ

{

Rλ(θ) +Qλ(θ)
}

︸ ︷︷ ︸

B

+2 sup
θ∈Θ

{

QZ
λ (θ) +RZ

λ (θ) +RZ,ε
λ (θ) +Qε

λ(θ) +Rε
λ(θ)

}

︸ ︷︷ ︸

V

The rest of the proof is devoted to control the B and V terms.

Control of B. Using Assumption 4.5 and 4.2, we have that Qλ(θ) ≤ C(Θ)
J

∑J
j=1

∥
∥
∥Bλ(Tθ∗

j
f, t)

∥
∥
∥

2

L2
≤

C(Θ,F)B(λ). Now by applying the Cauchy-Schwarz inequality, |Rλ(θ)| ≤ sup
θ∈Θ

{
√

D(θ)}
√

Qλ(θ). By

Assumption 4.2, there exists a constant such sup
θ∈Θ

{D(θ)} ≤ C(Θ,F , f∗) and thus

B ≤ C(Θ,F , f∗)
(
B(λ) +

√

B(λ)
)
. (B.3)

Control of V. We give a control in probability of the stochastic quadratic term QZ
λ and Qε

λ. As
previously, one can show that there is a constant C(Θ,F , f∗) > 0 such that,

∣
∣
∣QZ

λ (θ) +RZ
λ (θ) +RZ,ε

λ (θ) +Qε
λ(θ) +Rε

λ(θ)
∣
∣
∣ ≤ C(Θ,F , f∗)

(√

QZ
λ (θ) +QZ

λ (θ) +Qε
λ(θ) +

√

Qε
λ(θ)

)

,

where we have used the inequality 2ab ≤ a2 + b2, valid for any a, b > 0 to control the term RZ,ε
λ .

The quadratic terms QZ
λ and Qε

λ are controlled by Corollaries C.1 and C.2 respectively. It yields
immediately to

P

(

V ≥ C(Θ,F , f∗)(γmax(n) + σ2)
(
υ(x, J, λ) +

√

υ(x, J, λ)
))

≤ 2e−x, (B.4)

where υ(x, J, λ) = V (λ)
(
1 + 4x

J +
√

4x
J

)
.

Putting together equations (B.1), (B.2), (B.3) and (B.4), we have

P

(
1

J
‖θ∗

Θ − θ̂
λ‖2 ≥ C(Θ,F , f∗)

[

(γmax(n) + σ2)
(√

υ(x, J, λ) + υ(x, J, λ)
)

+
(

B(λ) +
√

B(λ)
)])

≤ 2e−x,

which completes the proof of Theorem 5.1. �

B.2 Proof of Theorem 5.2

The proof is very similar to the proof of Theorem 3.2. The random variable θ∗
j = (θ∗,1j , . . . , θ∗,pj )’s

are i.i.d. with values in Θ ⊂ R
p and with density g : Θ −→ R. Consider the model (1.5) and let

Y = (Y1, . . . ,YJ) ∈ R
n×J . Under Assumption 5.1 the log-likelihood of Y conditionally to θ∗ is equal

to

log(p(Y|θ∗)) = −Jn
2

log(2π) +
J

2
log(det(Λ))− 1

2

J∑

j=1

(Yj −Tθ
∗

j
f∗)′Λ(Yj −Tθ

∗

j
f∗),
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where Λ = (σ2Idn+Σ)−1 with Σ = Σ(Θ). Therefore, Eθ
∗ [∂

θ
∗,p1
j1

log(p(Y|θ∗))] = 0 for all j1 = 1, . . . , J

and p1 = 1, . . . , p and

Eθ
∗

[
∂
θ
∗,p1
j1

log(p(Y|θ∗))∂
θ
∗,p2
j2

log(p(Y|θ∗))
]
=

{

0 if j1 6= j2,
[
(∂θ∗,p1j1

Tθ
∗

j1
f∗)′ Λ (∂θ∗,p2j1

Tθ
∗

j1
f∗)
]p

p1,p2=1
if j1 = j2,

where ∂θ∗,p1j1

Tθ
∗

j1
f∗ =

[
∂θ∗,p1j1

Tθ∗

j1
f∗(tℓ)

]n

ℓ=1
. Then, remark that for each j1 = 1, . . . , J and p1, p2 =

1, . . . , p we have that

(∂θ∗,p1j1

Tθ
∗

j1
f∗)′ Λ (∂θ∗,p2j1

Tθ
∗

j1
f∗) ≤ (σ2 + γn(Θ))−1

∥
∥
∥∂θ∗,p1j1

Tθ
∗

j1
f∗
∥
∥
∥

2
≤ nC(Θ,F , f∗)(σ2 + γn(Θ))−1,

where the last inequality is a consequence of Assumption 4.3. Under the assumptions of Theorem
5.2 on the density g, the result follows from the multivariate Van Tree’s inequality (see Theorem 1 in
[GL95]). �

B.3 Proof of Theorem 5.3

In this part, we use the notations introduced in the proof of Theorem 5.1. We have,

∥
∥
∥f∗Θ − f̂λ

∥
∥
∥

2

L2
≤ 2

J

J∑

j=1

∥
∥
∥T̃[θ∗

Θ
]jTθ∗

j
f∗ − T̃[θ∗

Θ
]j

〈

Sλ(·),Tθ
∗

j
f∗
〉∥
∥
∥

2

L2

︸ ︷︷ ︸

B′

+
2

J

J∑

j=1

∥
∥
∥
∥
T̃[θ∗

Θ
]j

〈

Sλ(·),Tθ
∗

j
f∗
〉

− T̃
θ̂
λ

j

〈Sλ(·),Yj〉
∥
∥
∥
∥

2

L2

︸ ︷︷ ︸

V′

.

Again, the first term above depends on the bias, and the second term (stochastic) can be controlled
in probability. Under Assumptions 4.2 and 4.5 we have that

B′ ≤ C(Θ)

J

J∑

j=1

∥
∥
∥

〈

Sλ(·),Tθ
∗

j
f∗
〉

− Tθ∗

j
f∗
∥
∥
∥

2

L2
≤ C(Θ,F)B(λ),

and

V′ =
2

J

J∑

j=1

∥
∥
∥
∥
T̃[θ∗

Θ
]j

〈

Sλ(·),Tθ
∗

j
f∗
〉

− T̃
θ̂
λ

j

〈

Sλ(·),Tθ
∗

j
f∗
〉

+ T̃
θ̂
λ

j

〈

Sλ(·),Tθ
∗

j
f∗
〉

− T̃
θ̂
λ

j

〈Sλ(·),Yj〉
∥
∥
∥
∥

2

L2

≤ C(Θ,F)

J

J∑

j=1

(

‖θ̂λ

j − [θ∗
Θ]j‖2 +

∥
∥
∥

〈

Sλ(·),Yj −Tθ
∗

j
f∗
〉∥
∥
∥

2

L2

)

,

≤ C(Θ,F)

(
1

J
‖θ̂λ − θ∗

Θ‖2 + 1

J

J∑

j=1

∥
∥
∥

〈

Sλ(·),Tθ
∗

j
Zj + εj

〉∥
∥
∥

2

L2

)

The stochastic term 1
J

∑J
j=1

∥
∥
∥

〈

Sλ(·),Tθ
∗

j
Zj + εj

〉∥
∥
∥

2

L2
in the above inequality can be been controlled

using Lemma C.3 and the arguments in the proof of Corollaries C.1 and C.2 to obtain that for any
x > 0

P

(
1

J

J∑

j=1

∥
∥
∥

〈

Sλ(·),Tθ
∗

j
Zj + εj

〉∥
∥
∥

2

L2
≥ C(Θ,F , f∗)(γmax(n) + σ2)

(√

υ(x, J, λ) + υ(x, J, λ)
))

≤ e−x.

Then, from Theorem 5.1 it follows that

P

(

B′ +V′ ≥ C(Θ,F , f∗)
[

(γmax(n) + σ2)
(√

υ(x, J, λ) + υ(x, J, λ)
)

+
(

B(λ) +
√

B(λ)
)])

≤ 2e−x,

which completes the proof. �

32



C Technical Lemmas

Assumption 4.1 and 4.3 allow us to derive an expression of the gradient and the Hessian of the criterion.
Let f∗

θj
(t) = T̃θj

Tθ∗

j
f∗(t) for all t ∈ Ω, and remark that for all j1 = 1, . . . , J and p1 = 1, . . . , p,

∂θp1j1
D(θ) =

2

J

〈

∂θp1j1
f∗θj1

, f∗θj1

〉

L2

− 2

J2

〈

∂θp1j1
f∗θj1

,

J∑

j′=1

f∗θj′

〉

L2

. (C.1)

The second derivatives are

∂θp2j2
∂θp1j1

D(θ) = − 2

J2

〈

∂θp1j1
f∗θj1

, ∂θp2j2
f∗θj2

〉

L2

if j1 6= j2, (C.2)

∂θp2j1
∂θp1j1

D(θ) =
2

J

〈

∂θp2j1
∂θp1j1

f∗θj1
,

(

f∗θj1
− 1

J

J∑

j′=1

f∗θj′

)〉

L2

+

(
2

J
− 2

J2

)〈

∂θp1j1
f∗θj1

, ∂θp2j1
f∗θj1

〉

L2

(C.3)

For α = (α1, . . . , αpJ) ∈ N
pJ , denote by |α| = α1 + . . .+ αpJ and

(∂θ)
α = (∂θ11)

α1 . . . (∂θp1 )
αp . . . (∂θ1

J
)αp(J−1)+1 . . . (∂θp

J
)αpJ .

Then, the differential of order 3 of D at c ∈ Θ applied at θ ∈ R
pJ writes as

[
∇3D(c)

]
(θ) =

∑

|α|=3(∂θ)
αD(c)θα where θα = (θ11)

α1 . . . (θp1)
αp . . . (θ1J)

αp(J−1)+1 . . . (θpJ)
αpJ .

Lemma C.1. There is a constant C(Θ,F , f∗) independent of J and n such that for all c ∈ ΘJ

and θ ∈ ΘJ , δ > 0 satisfying
∣
∣
∣θ

p1
j

∣
∣
∣ ≤ δ for each j = 1, . . . , J and p1 = 1, . . . , p,

∣
∣
[
∇3D(c)

]
(θ)
∣
∣ ≤

C(Θ,F , f∗) δJ ‖θ‖2 .

Proof. Recall that f∗
θj
(t) = T̃θj

Tθ∗

j
f∗(t) for all t ∈ Ω. Then, from equations (C.2) and (C.3), it follows

that for all j1, j2, j3 = 1, . . . , J and p1, p2, p3 = 1, . . . , p,

∂θp3j3
∂θp2j2

∂θp1j1
D(θ) = 0, if j1 6= j2 and j2 6= j3 and j1 6= j3,

∂θp3j2
∂θp2j1

∂θp1j1
D(θ) = − 2

J2

〈

∂θp2j1
∂θp1j1

f∗θj1
, ∂θp3j2

f∗θj2

〉

L2

, if j1 6= j2,

∂θp3j1
∂θp2j1

∂θp1j1
D(θ) =

2

J

〈

∂θp3j1
∂θp2j1

∂θp1j1
f∗θj1

,

(

f∗θj1
− 1

J

J∑

j′=1

f∗θj′

)〉

L2

+

(
2

J
− 2

J2

)(〈

∂θp2j1
∂θp1j1

f∗θj1
, ∂θp3j1

f∗θj1

〉

L2

+

〈

∂θp3j1
∂θp1j1

f∗θj1
, ∂θp2j1

f∗θj1

〉

L2

+

〈

∂θp3j1
∂θp2j1

f∗θj1
, ∂θp1j1

f∗θj1

〉

L2

)

By Cauchy-Schwarz inequality

∣
∣
∣
∣

〈

∂θp2j1
∂θp1j1

f∗θj1
, ∂θp3j2

f∗θj2

〉

L2

∣
∣
∣
∣
≤ ‖∂θp2j1 ∂θ

p1
j1

f∗θj1
‖L2‖∂θp3j2 f

∗
θj2

‖L2 ≤ C(Θ,F , f∗),

where the last inequality is a consequence of Assumption 4.3. Next

∣
∣
∣
∣

〈

∂θp3j1
∂θp2j1

∂θp1j1
f∗θj1

,

(

f∗θj1
− 1

J

J∑

j′=1

f∗θj′

)〉

L2

∣
∣
∣
∣
≤
∥
∥
∥∂θp3j1

∂θp2j1
∂θp1j1

f∗θj1

∥
∥
∥
L2

∥
∥
∥f∗θj1

− 1

J

J∑

j′=1

f∗θj′

∥
∥
∥
L2

≤ 2C(Θ,F , f∗) ‖f∗‖L2 ≤ C(Θ,F , f∗)
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where we also use Assumption 4.3 and then Assumption 4.2 to derive the last bound. Using the above
bounds it follows that

∣
∣
[
∇3D(c)

]
(θ)
∣
∣ =

∣
∣
∣
∣
∣
∣

p
∑

p1,p2,p3=1

J∑

j1=1

∂θp3j1
∂θp2j1

∂θp1j1
D(c)θp1

j1
θ
p2
j1
θ
p3
j1

+ 3

J∑

j1 6=j2=1

∂θp3j2
∂θp2j1

∂θp1j1
D(c)θp1

j1
θ
p2
j1
θ
p3
j2

∣
∣
∣
∣
∣
∣

≤ δC(Θ,F , f∗)p
p
∑

p1,p2=1

(
4

J

J∑

j1=1

∣
∣
∣θ

p1
j1
θ
p2
j1

∣
∣
∣+

6(J − 1)

J2

J∑

j1=1

∣
∣
∣θ

p1
j1
θ
p2
j1

∣
∣
∣

)

≤ δC(Θ,F , f∗) 1
J

J∑

j=1

p
∑

p1,p2=1

∣
∣
∣θ

p1
j θ

p2
j

∣
∣
∣ = δC(Θ,F , f∗) 1

J

J∑

j=1

( p
∑

p1=1

∣
∣
∣θ

p1
j

∣
∣
∣

)2

≤ δC(Θ,F , f∗)p 1
J

J∑

j=1

p
∑

p1=1

∣
∣
∣θ

p1
j

∣
∣
∣

2
≤ δC(Θ,F , f∗) 1

J
‖θ‖2 .

Lemma C.2. Under Assumptions 4.2 to 4.8, there exists a constant C(Θ,F , f∗) > 0 such that

1

J

∥
∥
∥θ̂

λ − θ∗
Θ

∥
∥
∥

2
≤ C(Θ,F , f∗)

∣
∣
∣D(θ̂

λ
)−D(θ∗

Θ)
∣
∣
∣ .

Proof. Let us split the compact set Θ is in two parts : a ball of radius δ > 0 centered at θ∗
Θ, namely,

Nθ
∗

Θ
(δ) = {θ ∈ Θ,

∣
∣
∣θ

p1
j − [θ∗

Θ]p1j

∣
∣
∣ ≤ δ, j = 1, . . . , J, p1 = 1, . . . , p} and his complementary. The radius

δ will be chosen so that D can be approximated in Nθ
∗

Θ
(δ) by a quadratic function.

First, using the fact that θ∗
Θ is a minimum of D(θ), a second order Taylor expansion and Lemma

C.1 imply that for any θ ∈ Nθ
∗

Θ
(δ), there exists a c = c(θ) ∈ Nθ

∗

Θ
(δ) such that

D(θ)−D(θ∗
Θ) =

1

2
(τ − τ ∗

Θ)′
[

φ′ ∇2D(θ∗
Θ) φ

]

(τ − τ ∗
Θ) +

1

6
[∇3D(c)](θ − θ∗

Θ)

≥ 1

2
(τ − τ ∗

Θ)′
[

φ′ ∇2D(θ∗
Θ) φ

]

(τ − τ ∗
Θ)− δC(Θ,F , f∗) 1

J
‖θ − θ∗

Θ‖2

≥ 1

2
Jγmin(J)

1

J
‖θ − θ∗

Θ‖2
(

1− δC(Θ,F , f∗)
Jγmin(J)

)

,

where τ ∗
Θ

and τ are the vectors such that φτ ∗
Θ

= θ∗
Θ, φτ = θ, and using the fact that ‖τ − τ ∗

Θ
‖ =

‖θ − θ∗
Θ‖ (since φ′φ = IdpI). Assumption 4.8 implies that one can choose δ = δ(Θ, f∗, δ) > 0 suf-

ficiently small such that for all J and n the constant C2(Θ,F , f∗) = 1
2Jγmin(J)

(

1− δC(Θ,F ,f∗)
Jγmin(J)

)

is strictly positive. Then, using such a δ it follows that for all θ ∈ Nθ
∗

Θ
(δ), |D(θ)−D(θ∗

Θ
)| ≥

C2(Θ,F , f∗) 1J ‖τ − τ ∗
Θ
‖2 . Using Assumption 4.7 there exists a constant C2(Θ, f

∗, δ) > 0 (not depend-
ing on J) such that for any θ ∈ Θ \ Nθ

∗

Θ
(δ) D(θ)−D(θ∗

Θ
) ≥ C2(Θ, f

∗, δ).Moreover, there is C4(Θ) > 0

such that for all τ j , j = 1, . . . , J , we have ‖θj − [θ∗
Θ
]j‖2 ≤ C4(Θ). Then 1

J ‖θ − θ∗
Θ
‖2 ≤ C4(Θ) which

implies that for θ ∈ Θ \ Nθ
∗

Θ
, |D(θ)−D(θ∗

Θ)| ≥ C2(Θ,f∗,δ)
C4(Θ)

1
J ‖θ − θ∗

Θ‖2 . Finally, let C(Θ,F , f∗) =

min
{

C2(Θ,F , f∗), C4(Θ)
C2(Θ,f∗,δ)

}

and thus for θ = θ̂
λ
, 1

J ‖θλ − θ∗
Θ‖2 ≤ C(Θ,F , f∗)|D(θ̂

λ
) − D(θ∗

Θ)|,
which completes the proof.

Lemma C.3. Let ξλ,J(A1, . . . , AJ ) =
1
J

J∑

j=1
‖〈Sλ(·), Ajεj〉‖2L2, where εj ∼ N (0, In) and the Aj ’s are

nonrandom non-negative n× n symmetric matrices. Then, for all x > 0 and all n ≥ 1,

P

(

ξλ,J(A1, . . . , AJ ) ≥ ‖A‖
(

1 + 4
x

J
+

√

4
x

J

))

≤ e−x.

where ‖A‖ =
J∑

j=1

n∑

ℓ=1

rj,ℓ with rj,ℓ being the ℓ-th eigenvalue of the matrix Aj = Aj

[

〈Sℓ
λ, S

ℓ′

λ 〉L2

]n

ℓ,ℓ′=1
Aj.
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Proof. Some parts of the proof follows the arguments in [BM98] (Lemma 8, part 7.6). We have

ξλ,J =
1

J

J∑

j=1

∥
∥
∥
∥

n∑

ℓ=1

Sℓ
λ(·)[Aεj]ℓ

∥
∥
∥
∥

2

L2

=
1

J

J∑

j=1

n∑

ℓ,ℓ′=1

〈Sℓ
λ, S

ℓ′

λ 〉L2 [Ajεj]
ℓ[Ajεj]

ℓ′ =
1

J

J∑

j=1

ε′jAjεj,

where Aj = AjSλAj with Sλ =
[

〈Sℓ
λ, S

ℓ′

λ 〉L2

]n

ℓ,ℓ′=1
. Now, denote by rj,1 ≥ . . . ≥ rj,n the eigenval-

ues of Aj with rj,1 ≥ . . . ≥ rj,n ≥ 0 and r1 = maxj,ℓ{rj,ℓ}. We can write Aj = (Sλ
1
2Aj)

′(Sλ
1
2Aj)

and is positive semi-definite. Then, let ξ̃λ,J = Jξλ,J − JEξλ,J =
J∑

j=1
(ε′jAjεj − trAj). Let α > 0,

by Markov’s inequality it follows that for all u ∈
(

0, 1
2r1

)

, P

(

ξ̃λ,J ≥ α
)

= P

(

euξ̃λ,J ≥ euα
)

≤
e−uα

∏J
j=1 E

[

euεj
′Ajεj−u trAj

]

, since the εj’s are independent. The log-Laplace transform of ϕ̃λ,j =

εj
′Ajεj − trAj is log

(
E
[
euϕ̃λ,j

])
=
∑n

ℓ=1 −urj,ℓ − 1
2 log (1− 2urj,ℓ) . We now use the inequality

−x − 1
2 log(1 − 2x) ≤ x2

1−2x for all 0 < x < 1
2 which holds since u ∈

(

0, 1
2r1

)

. This implies that

log
(
E
[
euϕ̃λ,j

])
≤ −∑n

ℓ=1
u2rj,ℓ

2

1−2urj,ℓ
≤ u2‖rj‖

2

1−2ur1
. where ‖rj‖2 = r2j,1 + . . .+ r2n,j. Finally, we have

P (ϕ̃λ,J ≥ α) ≤ exp

(

−
(

uα−
J∑

j=1

‖rj‖2 u2
1− 2r1u

))

= exp

(

−
(

uα− ‖r‖2 u2
1− 2r1u

))

, (C.4)

where ‖r‖2 =
∑J

j=1

∑n
ℓ=1 rj,ℓ

2. The right hand side of the above inequality achieves its minimum at

u = 1
2r1

(

1− ‖r‖√
2αr1+‖r‖2

)

. Evaluating (C.4) at this point and using the inequality (1+x)1/2 ≤ 1+ x
2 ,

valid for all x ≥ −1, one has that

P

(

ξ̃λ,J ≥ α
)

≤ exp

(

− α2

2r1α+ 2 ‖r‖2 + 2 ‖r‖2 (1 + 4αr1/(2 ‖r‖2))1/2
)

≤ exp

(

− α2

4r1α+ 4 ‖r‖2
)

,

by setting x = α2

4r1α+4‖r‖2
. We derive the following concentration inequality for ξλ,J = 1

J ξ̃λ,J +

1
J

∑J
j=1 tr(Aj), P

(

ξλ,J ≥ 1
J

∑J
j=1

∑n
ℓ=1 rj,ℓ+4 r1

J x+4‖r‖
J

√
x

)

≤ e−x. To finish the proof, the Cauchy-

Schwarz inequality gives ‖r‖2 =
∑J

j=1

∑

ℓ=1 r
2
j,ℓ ≤

(
∑J

j=1

∑n
ℓ=1 rj,ℓ

)2
since all the rj,ℓ’s are positive.

Corollary C.1. Under Assumptions 4.2 to 4.8, there exists a constant C(Θ,F) > 0 such that for all
x > 0,

P

(

sup
θ∈Θ

Qε
λ(θ) ≥ C(Θ,F)σ2V (λ)

(

1 + 4
x

J
+

√

4
x

J

))

≤ e−x.

Proof. Assumption 4.2 gives the uniform bound

Qε
λ(θ) ≤

1

J

J∑

j=1

∫

Ω

(

T̃θj
〈Sλ(t), σεj〉

)2
dt ≤ C(Θ,F)

J

J∑

j=1

‖〈Sλ(t), σεj〉‖2L2 = C(Θ,F)ξλ,J(σIdn, . . . , σIdn),

where ξλ,J(σIdn, . . . , σIdn) is defined in Lemma C.3 and does not depend on θ. Thus, the result
immediately follows from Lemma C.3.

Corollary C.2. Under Assumptions 4.2 to 4.9, there exists a constant C(Θ,F) > 0 such that for all
x ≥ 0,

P

(

sup
θ∈Θ

QZ
λ (θ) ≥ C(Θ,F)γn(Θ)V (λ)

(

1 + 4
x

J
+

√

4
x

J

))

≤ e−x.
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Proof. Assumption 4.2 gives the uniform bound

QZ
λ (θ) ≤

1

J

J∑

j=1

∫

Ω

(

T̃θj

〈

Sλ(t),Tθ
∗

j
Zj

〉)2
dt ≤ C(Θ,F)

J

J∑

j=1

∥
∥
∥

〈

Sλ,Tθ
∗

j
Zj

〉∥
∥
∥

2

L2
.

Hence, conditionally on θ∗ we have that supθ∈ΘJ QZ
λ (θ) ≤ C(Θ,F)ξλ,J

(
A1, . . . , AJ

)
, where ξλ,J

(
A1, . . . , AJ

)

is defined in Lemma C.3 with Aj = Eθ
∗

[
Tθ

∗

j
Zj(Tθ

∗

j
Zj)

′
] 1
2 . Let us now give an upper bound on the

largest eigenvalues of the matrices Aj = AjSλAj with Sλ =
[
〈Sℓ

λ, S
ℓ′

λ 〉L2

]n

ℓ,ℓ′=1
. Under Assumption

4.9 we have that tr(Aj) ≤ γmax(Aj) trSλ ≤ γn(Θ)V (λ), for all j = 1, . . . , J and any θ∗ ∈ ΘJ . Thus,
the result follows by arguing as in the proof of Lemma C.3 and by taking expectation with respect to
θ∗.
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