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Abstract

This paper introduces our ongoing work consisting
of evolving bio-inspired plastic neural controllers
for autonomous robots submitted to various in-
ternal and external perturbations: transmission
breaking, slippage, leg loss, etc. We propose a
classical neuronal model using adaptive synapses
and extended with two bio-inspired homeostatic
mechanisms. We perform a comparative study of
the impact of the two homeostatic mechanisms on
the evolvability of a neural network controlling a
single-legged robot that slides on a rail and that is
confronted to an external perturbation. The robot
has to achieve a required speed goal given by an
operator. Evolved neural controllers are tested on
long-term simulations to statistically analyse their
stability and adaptivity to the perturbation. Fi-
nally, we perform behavioral tests to verify our
results on the robot controlled with a sinusoidal
input while a perturbation occurs. Results show
that homeostatic mechanisms increase evolvability,
stability and adaptivity of those controllers.

Introduction

Evolving neural controllers to control autonomous
robots has been successfully applied to various
problems (16; 14; 18; 9). However, the majority
of the proposed methods produces solutions that
are efficient in constant environmental conditions.
Recently, evolutionary robotics raise the issue of
attempting to build fault-tolerant controllers adap-
tive to internal and environmental perturbations (8;
5). The IRON! project, is intended to increase
the autonomy and the robustness of robots by con-
fronting evolutionary adjusted neural controllers
with different kinds of perturbations: transmission

Implémentation RObotique de Neuro-contrdleurs
adaptatifs  (http://www.liris.uvsq.fr/iron/Iron.
html). This project, initiated by J.-A. Meyer from the
AnimatLab, is supported by the ROBEA program of
the CNRS (http://www.laas.fr/robea).

breaking, adherence losses, leg loss, material wear,
etc. A promising way to do this is to incorporate
into neural controllers some plasticity mechanisms
inspired by biology (8). Nevertheless, this plasticity
might not be sufficient because it tends to destabi-
lize those controllers.

In this paper, we will perform a comparative
study of effects of two bio-inspired homeostatic
mechanisms on the evolvability of plastic neural
controllers embedded in a single-legged robot. Sub-
sequently, we will analyse control stability and its
adaptivity to an external perturbation.

The paper is organized as follows: the first sec-
tion briefly presents two homeostatic mechanisms
from a biological point of view, the second is de-
voted to the formalization of these mechanisms in
our neural model and its application to make a con-
troller for a simulated robot in an evolutionary way.
The third section shows statistical and behavioral
results, after which results and mechanism mod-
elling are discussed. In the final section, we con-
clude by giving further developments within our
project.

Homeostatic mechanisms in
biological neurons

Historically, research in neurophysiology initially
centered on synaptic plasticity (12). The mecha-
nisms controlling this plasticity are commonly con-
sidered as the main vector of information storage in
neural networks and synaptic connection refinement
during cerebral development. Thus, by establishing
correlation between simultaneous active neurons,
Hebbian rules allow neural circuits to adapt to re-
ceived information. Nevertheless, these flexibility
mechanisms are sources of instability (17). Recent
studies (20), show that they are associated with
homeostatic rules which regulate intrinsic proper-
ties of each neuron. In this paper, we are interested



in two kinds of these: one regulating neuronal ex-
citability and the other stabilizing total synaptic
input strength of each neuron.

Regulation of excitability

Excitability of a neuron, i.e. its propensity to
transmit action potentials according to informa-
tion it gets, depends on concentrations of various
molecules which are present in its cell body and in
its close vicinity. Ion channels inserted in its mem-
brane actively regulate these concentrations. Ac-
cording to Desai et al. (3), this regulation seems to
be driven by the average activity of the cell. Thus,
when activity of a neuron is high, its excitability
decreases to return to a functional firing rate. Con-
versely, if the cell tends to be silent, its excitability
increases until its firing rate gets back to a func-
tional range (top of figure 1).

Low activity High activity
Presynaptic
cells
Hebb
—_— rule —_ Scaling
Postsynaptic
cell

Target activity High activity Target activity

Figure 1: Two homeostatic mechanisms regulating in-
trinsic properties of neurons. Circles represents nerve
cells. (These figures are directly inspired from the work
of Turrigiano (20)) Top: Regulation of excitability. The
cell’s activation threshold is regulated according to its
own activity. Bottom: Multiplicative scaling of all
synaptic inputs strengths. After an hebbian potentia-
tion of a synapse, the scaling mechanism induces synap-
tic competition on postsynaptic cell’s inputs. Bold cir-
cles symbolize activated neurons. Line widths indicates
the strength of the corresponding connection.
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Stabilization of total synaptic strength

During development and learning, the number of
synapses and their properties are submitted to
marked changes. These modifications can severely
alter activity patterns of neurons. According to
Turrigiano et al. (21), to preserve their function-
alities, neurons regulate their total synaptic input
strength. Thus, the excitation amplitude remains
in a relevant domain (bottom of figure 1). Experi-
mental observations tend to indicate that this reg-
ulation is applied multiplicatively and globally to

all synaptic inputs of a related cell. By its mul-
tiplicative nature, this mechanism ensures relative
weights of the different connections. Furthermore,
far from neutralizing individual synaptic plasticity,
this process induces competition: if some connec-
tions are potentiated, the strengths of the others
must decrease.

Methods
Neuron and synapse model

In the following, we propose extensions to a classical
neural model that implement the two homeostatic
mechanisms presented above. The extensions can
be turned on or off, independently of each other, so
it allows comparative study of these mechanisms.
It should be noted that these mechanisms, natu-
rally dynamic and activity-dependent, are formal-
ized here in a static way. Since the time constant of
these mechanisms is much higher than those of the
activation and learning processes, we assume this is
an acceptable simplification.

Classical model (CM) Nerve cells composing
our neural controller are based on a leaky integrator
model (2):
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where y; represents the mean membrane potential
of the neuron ¢ and o; its activity. w;; is the synap-
tic strength of the connection from neuron j to neu-
ron 4, IN; is the number of synaptic inputs of the
neuron ¢ and 7/ denotes the time constant of the
membrane potential. I; corresponds, in the case
where the cell 7 is a sensory neuron, to an external
excitation coming from a sensor. Finally, a; is a
gain determining the slope of the sigmoidal activa-
tion function and 6; is the threshold of the neuron’s
activity.

As we want to study neural controllers with
intrinsic plasticity, we use the adaptive synapses
model of Floreano et al. (7) in which one local adap-
tation rule among four is assigned to each connec-
tion, as suggested by biological observations. The
synaptic weights are updated at each sensory-motor
cycle according to the following expression:

At
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where w;; means |w;], Tg is the time constant
of the adaptation rule (comparable to the learning
rate, 77, in the Floreano’s model) and Aw;; is one

of the four adaptation rules:

Plain Hebb rule
Aty = (1 — Wy5)0;0; (4)
Pre-synaptic rule
Aw;; = (1 — w;j)o50; + Wij05(0; — 1) (5)
Post-synaptic rule
Ay = (1 — Wij)0j0; + Wij(0; — 1)o; (6)
Covariance rule

if 6(0j,0;) >0
otherwise

A, = {(1 — @;)3(0;,01) -

wij(S(Oj, Oi)

where §(0;,0;) = tanh(4(1 — |o; — 0;]) —2) is a mea-
sure of the difference between o; and o;. Note that,
in this model, values of synaptic weights are con-
strained in the interval [-1,1].

Center-crossing mechanism (CC) In order to
model the mechanism that regulates neuronal ex-
citability, we use the model of center-crossing neu-
ral networks proposed by Mathayomchan et al.
(15). This paradigm consists of determining the
ideal activation threshold of a neuron according to
its synaptic input weights.

1
0i = §sz‘j (8)
j=1

In this way, the operating range of each neuron is
centered about the most sensitive region of its acti-
vation function. Indeed, due to the sigmoid asym-
metry (about the x-axis), the excitation range of a
neuron can be shifted according to the weight val-
ues of its synaptic inputs. Formally, this concept
can be reduced to the use of a symmetric activation
function like the hyperbolic tangent. In our model,
we don’t use eq. (8) to replace 0; in eq. (2) but we
adapt it according to the following expression:
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Thus, we preserve the same parameterization be-
tween the CM and the CC models. Also, the differ-
ence of the CC model is that the activation thresh-
old of a neuron becomes totally independent of its
synaptic input strengths.

Normalization of synapses mechanism (NS)
On the other hand, the mechanism that regu-
lates total synaptic input strengths is modeled
by a multiplicative normalization of ||w;|| =

Z;V:H w;;2 (10). To implement this mechanism,
eq. (1) and eq. (3) are altered as follows:
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Finally, the above extensions allows the instanti-
ation of four models:

e center-crossing model with normalized synapses

(CCNS),
e center-crossing model (CC),
e normalized synapses model (NS),
e classical model (CM).

Application problem

The aim of the IRON project is to provide a multi-
legged robot with a neuro-controller, synthesized by
evolution, that can adapt its behavior to perturba-
tions. These perturbations can be external (envi-
ronmental changes) or internal (mechanical or elec-
trical faults). However, a main issue of evolution-
ary robotics, called the scalability problem, is the
application of its methods to systems that show a
high degree of complexity. Also, to compare the
four neural models described before, we apply our
approach to a single-legged robot simulation?.

The robot (figure 2) is composed of a body and
a leg endowed with three degrees of freedom: two
for the hip and one for the knee (see table 1 for
mass and geometrical parameters). A binary con-
tact sensor is fixed on the leg tip and on each joint,
a servo-motor ordering its angular position is sim-
ulated.

2Based on a simulator called Open Dynamic Engine
(http://ql2.0rg/ode/).



Figure 2: Morphology of the single-legged robot. Left:
Kinematic model. Right: Simulation view.

| Part | Shape | Mass [kg| | Dimension [cm] |
body | box 3 20x20x10
hip sphere 0.5 8
thigh | capped
shank | cylinder 0-5 154

Table 1: Mechanical parameters of the robot

A prismatic link connecting the robot body to
the ground, constrains its movements by guiding it

on X axis. A viscous friction force is applied to the
robot. This force Fy, is equal to —kz.Veyy where
Ve is the effective speed of the robot body’s centre
of mass and k¢, is the viscous coefficient.

The task of the robot is to respect a desired walk-
ing speed Ve and to simultaneously offset a poten-
tial perturbation consisting of varying the coeffi-
cent ky,. This perturbation, external from the leg’s
point of view, could simulate, from a multi-legged
robot’s point of view, an internal perturbation as a
mass growth or a disruption of another leg.

The performance p, of a controller is evaluated at
the end of a simulation of 7" = 10 sec. according to
the following expression:

1 [T _
= — | \Vies = Virgldt
p T/O|d £

where ‘ch/f is the global walking speed of the robot>.

During evolution, each controller is evaluated
through three successive simulations with different
scenarios. As we can see on table 2, a scenario is
defined by temporal variations of V4. and k¢, pa-
rameters. The scenario A corresponds to a simple
control behavior, the scenario B rewards the ca-
pacity of inhibiting robot gait and the scenario C
favours adaptation to the perturbation. The global
fitness of an individual is the quadratic combination

3Temporal average calculed by application of a sec-
ond order low-pass filter on V.ss. This value is preferred
to Vesy, subject to high amplitude variations at the time
of each stride.

Scenario A | Scenario B | Scenario C
0.4 0.4

Vies | o= >0 | o ] 0.3

T2 Ti4 3T/4
20 l—
kfr 10 10 10,

Table 2: Three evaluation scenarios

of the three elementary scores obtained from these
evaluations (the lower the fitness is, the better the
controller behaves).

fitness = \/pa® + pp® + po?

This kind of combination restricts the compensa-
tion effect produced by a classical average and sup-
ports behaviors that include the three qualities de-
scribed by the scenarios.

Neural controller structure and genetic
encoding scheme

Figure 3 represents an example of an evolved con-
troller. We arbitrarily fix the network size to eight
neurons. Two neurons receive sensorial informa-
tion from the environment, the first one is excited
with the consign error Vje, — Vesy, the second one
is connected to the contact sensor. Three motoneu-
rons drive angular positions of servomotors. The
three remaining neurons form the hidden layer of
the network.

control contact
error sensor

Sensory neuron  Interneuron Motoneuron

AR
R p Excitatory synapse
' - ry synaps
\‘ H - [nhibitory synapse
N
(AU
oo Plain Hebb rule
g — _ Presynapticrule

—--—-. Post-synaptic rule
.......... Covariance rule

vertical horizontal
hip angle hip angle

knee angle

Figure 3: Example of the phenotype structure of an
evolved controller.

Controllers are genetically encoded with numeri-
cal and symbolic alleles strings divided in eight neu-
ronal blocks. Figure 4 shows structure of the neuron
genotype. A neuronal block is composed of a list of
intrinsic neuronal parameters (7*, « et 0) and a list
of eight synaptic blocks defining properties of cell’s
output connections with others neurons (including



itself). The first synaptic block gene condition the
network structure by activating or not the related
connection. The next gene indicates its excitatory
or inhibitory mode. The two remaining genes dic-
tate the connection dynamic by associating to it
one of the four learning rules showed above and the
related time constant, 7©. The value of each nu-
merical gene is taken from a five length allele set.
Table 3 shows these allele sets.

] Neuron block o

Time constant Synapse block 1
0.31

Gain | Bias
3.53 | -0.1

Synapse block 8 I

Active Mode Plastic rule
yes | inhibitory | covariance

Time constant
55

Figure 4: Structure of the neuron genotype.

[ Gene | Alleles set
T* 0.02, 0.165, 0.31, 0.455, 0.6
a 246, 353, 534, 943, 31.26
9 02, 01, 0, 01, 02
79 102, 265 51, 755 10

Table 3: Alleles sets of numerical genes

From a complexity point of view, each geno-
type is provided with 8 x (3+8x4) = 280
genes and the size of the genotype search space is

(5x5x5x(2x2x4x 5)8)8 — 3.74 X 10138 pos-
sibilities.

Controllers are evolved by a generational and eli-
tist genetic algorithm. Genetic operators are the
allelic mutation (P,,; = 0.001) and the uniform
crossover (P .oss = 0.6). Individuals are selected
by the stochastic universal sampling algorithm (1)
according linearly to their rank in the population
(11) (with the best individual producing an aver-
age 1.1 offspring).

Results

For each neuronal models, we performed 10 evo-
lution runs with different random initializations of
populations of 200 individuals. Populations are
evolved during 2000 generations. Figure 5 shows
statistical results of this experiment in term of best
fitness. From these data, four main results can be
observed:

e Both homeostatic mechanisms (CC and NS)
clearly improve evolvability of the controllers, ei-
ther in final solution or in evolution speed.

e With the CC controller model, results of evolu-
tionary process strongly depends on the initial
random population.

e The NS model is, on average, less effective than
the CC model but the standard deviation of the
results in the NS case is smaller than in the CC
case.

e The CCNS model has the best performance and
always results in efficient controllers.

Best fitness

0 500 1000 1500 2000
Generations

Figure 5: Best fitness for each neural model averaged
over 10 runs with different random initializations of the
population.

To verify relevance of these results, we evalu-
ated, for each neuronal model and scenario, aver-
age fitness of the 10 best controllers taken from
the above 10 evolution runs. To test long-term sta-
bility of these controllers, each is evaluated during
a T = 100 sec. simulation. Resulting data are
presented on Figure 6. These results corroborate
our previous observations except for relative per-
formances of the CC and NS models. This point
will be discussed in the next section.

CM

Scenario A Scenario B Scenario C

Figure 6: Average fitness of the best controllers (one
from each evolution run), according to a scenario and a
neural model. Fitness are evaluated during a simulation
of 100 sec.



As afinal step, we did a behavioral analysis of the
best controllers. During this experiment, a sinu-
soidal desired speed is indicated to the robot while
a perturbation occurs. Figure 7 shows an example
of time-plots obtained for a simulation of a CCNS
controller. Friction coefficient and joint commands
given by the neural network ouputs are also plot-
ted. From these plots, we can see that the control

Desired speed [m/s] Friction coefficient [N.s/m] 20
I — Effective speed [m/s]

| Vertical hip angle [rad]

0 & o -

1

[

1 1
1 Horizontal hip angle [rad] 4
0

1 q
i 4
0

L Knee angle [rad]

Figure 7: Time-plots of Vyes, Vesy, kfr and joint com-
mands for a CCSN controller. The robot is perturbated
from ¢ = 32 sec during about 22 sec. Robot strides cause

light oscillations of ‘Zg\}/f (attenuated by the low-pass fil-
ter).

task is satisfied even when the perturbation occurs.
Indeed, in the case of a non-adaptive controller, an
increase of 100% of the viscous friction coefficient
should cause decrease of 50% of its speed. Yet, fig-
ure 7 shows that the perturbation does not signif-
icantly alter the robot gait, the control task error
remaining relatively small. Moreover, perturbation
adaptation is confirmed by time-plots of joint com-
mands. Increasing of the friction force causes am-
plification of signals send to servo-motors (particu-
larly obvious on the knee joint). Note that walking
frequency is not altered by the perturbation.

Discussion

As the above results show, when simulation time
is increased, NS controllers are more efficient than
CC controllers. By analysing long-term behavior
of both models, it can be seen that normalized
synapses contribute to stabilizing neural network
function. Indeed, CC and CM controllers produce
less robust oscillatory patterns. Preliminary ober-
vations indicate that these neural networks cannot
reconfigure their synaptic strengths after an inhibi-
tion or a perturbation of the robot gait. We suppose

that the synaptic normalization constraint favours
dynamical stability of neuronal systems. Also, this
could explain the low standard deviation of NS and
CCNS evolution results (figure 5).

Either during evolution (figure 5) or during post-
evolutionary evaluations (figure 6), statistical re-
sults show that the CCNS model is clearly more
efficient than the CC and NS models. Since their
associated use is more salient than their individual
application, we may conclude that there is a synergy
between the two mechanisms.

In our model, the synaptic normalization is ex-
pressed in a static way. This assumption is made
due to the fact that, from a biological point of
view, this mechanism is relatively slow. However,
it should be interesting to study its dynamic mod-
elling as in Oja’s learning rule (19). Moreover, by
its local nature, this rule is more biologically plau-
sible. In the same way, a dynamical regulation of
neuron excitability could allows a wider range of
dynamics.

Conclusion and further work

In this paper, we show that evolvabilty, in terms
of both speed and final result, of plastic neural
controllers is improved by couping them with bio-
inspired homeostatic mechanisms that regulate neu-
ronal excitability. Evolved controllers show in-
creased stability and robustness. These results sup-
port the hypothesis that constraining neuronal ar-
chitectures with homeostatic mechanisms at the
micro-level induces robust behaviours at the macro-
level (4).

On the other hand, since our neuronal model
is not specific to the task we test it on, our re-
sults suggest that these mechanisms could be bene-
ficial to other applications or methodologies (back-
propagation, reinforcement learning, etc). Indeed,
in the case of back-propagation, the gradient de-
scent on an error could include a multiplicative
normalization mechanism of synaptic weights as in
eq. (3). Moreover, the center-crossing mechanism
should not need any adaptations to fit classical con-
nexionism methods.

Within the scope of the IRON project, the aim
of our current work is to extend our approach to
robots of several morphologies undergoing various
kind of perturbations. To this end, the addition of
a dynamic system, driving intrinsic neuronal prop-
erties and synaptic plasticity, could improve neural
controllers’ adaptivity by allowing them to recon-
figure themselves. A potential issue is to integrate



to our neural model some bio-inspired paradigms
based on chemical messengers (6; 13).

(1]

(2]

[3]

[4]

[5]

(6]

[7]

18]

[9]

[10]

[11]

[12]

References

J. E. Baker. Reducing bias and ineffiency in the
selection algorithm. In Lawrence Erlbaum Asso-
ciates, editor, Proc. of the second Int. Conf. on
Genetic Algorithms and their Applications, Hills-
dale, 1987.

R.D. Beer. On the dynamics of small continuous-
time recurrent neural networks. Adaptive Behavior,
3(4):469-509, 1995.

N.S. Desai, L.C. Rutherford, and G.G. Turrigiano.
Plasticity in the intrinsic excitability of neocor-
tical pyramidal neurons. Nature Neuroscience,
2(6):515-520, 1999.

E. A. Di Paolo. Fast homeostatic oscillators in-
duce radical robustness in robot performance. In
SAB’2002. MIT Press, 2002.

P. Dittrich, A. Buergel, and W. Banzhaf. Learn-
ing to move a robot with random morphology. In
Phil Husbands and Jean-Arcady Meyer, editors,
Evolutionary Robotics, First European Workshop,
EvoRob98, pages 165—178. Springer, Berlin, 1998.

P. Eggenberger, A. Ishiguro, S. Tokura, T. Kondo,
and Y. Uchikawa.  Toward seamless transfer
from simulated to real worlds: A dynamically-
rearranging neural network approach. In J. Wyatt
and J. Demiris, editors, Proc. of the Fighth Eur.
Workshop on Learning Robots, pages 4-13, EPFL,
Lausanne, Switzerland, 1999.

D. Floreano and J. Urzelai. Evolution of neural
controllers with adaptive synapses and compact ge-
netic encoding. In 5th European Conf. on Artificial
Life, 1999.

D. Floreano and J. Urzelai. Evolutionary robotics:
The next generation. In T. Gomi, editor, Evolu-
tionary Robotics III, Ontario (Canada), 2000. AAI
Books.

J.C. Gallagher, R.D Beer, K.S. Espenschied, and
R.D. Quinn. Application of evolved locomotion
controllers to a hexapod robot. Robotics and Au-
tonomous Systems, 19:95-103, 1996.

W. Gerstner and W.M. Kistler. Spiking Neuron
Models, chapter 11. Cambridge Univ. Press, 2002.
(http://diwww.epfl.ch/~gerstner/BUCH.html).

D. E. Goldberg. Genetic algorithms in search, op-
timization, and machine learning. Addison-Wesley,
Reading, MA, 1989.

D.O. Hebb. The Organization of Behavior: A Neu-
rophystological Theory. John Wiley and Sons, 1949.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

P. Husbands, T.M.C. Smith, N. Jakobi, and
M. O’Shea. Better living through chemistry:
Evolving gasnets for robot control. Connection Sci-
ence, 10(3-4):185-210, 1998.

A. J. Ijspeert, J. C. T. Hallam, and D. J. Willshaw.
From lampreys to salamanders: Evolving neural
controllers for swimming and walking. In From
Animals to Animats: Proc. of the Fifth Int. Conf.
of the The SAB. MIT Press, 1998.

B. Mathayomchan and R.D. Beer. Center-crossing
recurrent neural networks for the evolution of
rhythmic behavior. Neural Computation, 14:2043—
2051, 2002.

J.-A. Meyer, S. Doncieux, D. Filliat, and A. Guil-
lot. Biologically inspired robot behavior engineer-
ing. In R.J. Duro, J. Santos, and M. Graiia, edi-
tors, Evolutionary Approaches to Neural Control of
Rolling, Walking, Swimming and Flying Animats
or Robots. Springer-Verlag, 2002.

K.D. Miller and D.J.C. MacKay. The role of con-
straints in hebbian learning. Neural Computation,
6:100-126, 1994.

S. Nolfi. Evolving non-trivial behaviors on real
robots: a garbage collecting robot. Robotics and
Autonomous System, 22:187-198, 1997.

E. Oja. A simplified neuron model as a princi-
pal component analyzer. Math. Biol., 15:267-273,
1982.

G.G. Turrigiano. Homeostatic plasticity in neu-
ronal networks: the more things change, the more
they stay the same. Trends in Neuroscience,
22(5):221-228, 1999.

G.G. Turrigiano, K.R Leslie, N.S Desai, L.C.
Rutherford, and S.B. Nelson. Activity-dependent
scaling of quantal amplitude in neocortical pyami-
dal neurons. Nature, 391:892-895, 1998.



