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Introduction

We are interested in coalescence which is a widespread phenomenon: it arises in physics, chemistry, astrophysics, biology and mathematics.

We consider a possibly infinite system of particles, each particle being fully identified by its mass ranging in the set of positive real numbers. The only mechanism taken into account is the coalescence of two particles with masses x and y into a single one with mass x + y at some given rate (the "coagulation kernel") K(x, y) = K(y, x) ≥ 0.

-We can consider a system of microscopic particles and the following system of differential equations for the concentrations µ t (x) of particles of mass x = 1, 2, 3, ... at time t ∈ [0, +∞):

(1.1) ∂ t µ t (x) = 1 2

x-1 y=1 K(y, xy)µ t (y)µ t (xy)µ t (x) +∞ y=1 K(x, y)µ t (y).

The first sum in (1.1) on the right corresponds to coagulation of smaller particles to produce one of mass x, whereas the second sum corresponds to removal of particles of mass x as they in turn coagulate to produce larger particles.

Analogous integro-differential equations allow us to consider a continuum of masses x. In this case the system can also be described by the concentration µ t (x) of particles of mass x ∈ (0, +∞) at time t ∈ [0, +∞). Then µ t (x) solves a nonlinear equation:

(1.2) ∂ t µ t (x) = 1 2

x 0 K(y, xy)µ t (y)µ t (xy)dyµ t (x) +∞ 0 K(x, y)µ t (y)dy.

Equation (1.2) is known as the continuous Smoluchowski coagulation equation and (1.1) is its discrete version.

-When the particles are macroscopic and when the rate of coagulation is not infinitesimal, the frame of study of the dynamics of such a system is stochastic. When the initial state consists of a finite number of macroscopic particles, the stochastic coalescent obviously exists (see [START_REF] Aldous | Deterministic and Stochastic Models for Coalescence (Aggregation, Coagulation): A Review of the Mean-Field Theory of Probabilists[END_REF]) and it is known as the Marcus-Lushnikov process.

In preceding works several results have been obtained on the existence and uniqueness of weak solutions to Smoluchowski's coagulation equation. The general framework was formulated in [START_REF] Norris | Smoluchowski's coagulation equation: uniqueness, non-uniqueness and hydrodynamic limit for the stochastic coalescent[END_REF] who obtained some remarkable well-posedness results. In [START_REF] Fournier | Well-possedness of Smoluchowski's Coagulation Equation for a Class of Homogeneous Kernels[END_REF], homogeneous-like kernels are considered and it has been seen that the well-posedness holds in the class of measures having a finite moment of order the degree of homogeneity of the coagulation kernel.

Aldous [START_REF] Aldous | Deterministic and Stochastic Models for Coalescence (Aggregation, Coagulation): A Review of the Mean-Field Theory of Probabilists[END_REF] presents the Marcus-Lushnikov process as an approximation for the solution of Smoluchowski's equation (see [START_REF] Marcus | Stochastic Coalescence[END_REF][START_REF] Lushnikov | Some New Aspects of Coagulation Theory[END_REF] for further information). Since then some results on convergence have been obtained in [START_REF] Norris | Smoluchowski's coagulation equation: uniqueness, non-uniqueness and hydrodynamic limit for the stochastic coalescent[END_REF] and [START_REF] Jeon | Existence of Gelling Solutions for Coagulation-Fragmentation Equations[END_REF], see also [START_REF] Fournier | Convergence of the Marcus-Lushnikov process[END_REF]. A class of stochastic algorithms in which the number of particles remains constant in time was introduced in [START_REF] Eibeck | Stochastic Particle Approximations for Smoluchowski's Coagulation Equation[END_REF] and has been extended to the discrete coagulation-fragmentation case in [START_REF] Jourdain | Nonlinear Process Associated with the Discrete Smoluchowski Coagulation-Fragmentation Equation[END_REF].

We investigate the rate of convergence of the Marcus-Lushnikov process to the solution of the Smoluchowski coagulation equation as the number of particles tends to infinity. This problem is interesting because on the one hand it has a physical meaning: the Smoluchowski equation is often derived by passing to the limit in the Marcus-Lushnikov process, and on the other hand from a numerical point of view: this stochastic process can be simulated exactly. Thus it seems natural to use it in order to approximate the solution to Smoluchowski's coagulation equation.

Our study is based on the use of a specific Wasserstein-type distance d λ between the solution to Smoluchowski's equation and its stochastic approximation. This distance depends on the homogeneity parameter λ of the coagulation kernel. This specific distance has been introduced in [START_REF] Fournier | Well-possedness of Smoluchowski's Coagulation Equation for a Class of Homogeneous Kernels[END_REF] to prove some results on the well-posedness of the Smoluchowski coagulation equation and in [START_REF] Fournier | On some stochastic coalescents[END_REF][START_REF] Fournier | Stochastic coalescence with homogeneous-like interaction rates[END_REF] to study the stochastic coalescent. The result of the present work applies to a family of homogeneous-like coagulation kernels. These kernels are of particular importance in applications see Table 1 in [START_REF] Aldous | Deterministic and Stochastic Models for Coalescence (Aggregation, Coagulation): A Review of the Mean-Field Theory of Probabilists[END_REF] or the list provided in [START_REF] Fournier | Well-possedness of Smoluchowski's Coagulation Equation for a Class of Homogeneous Kernels[END_REF].

We point out that since we are using a finite particle system to approximate the evolution in time of the solution to the Smoluchowski equation which describes an infinite particle system, it is necessary to dispose of a mechanism to construct an initial condition for the Marcus-Lushnikov process from a general measure-valued initial condition of Smoluchowski's equation. This initial condition needs to satisfy, on the one hand, a convergence condition to assure the convergence of the stochastic process to the solution to Smoluchowski's equation for all time t as the number of particles grows (the usual condition of weak convergence is replaced by convergence in the sense of the distance we use), and on the other hand it must obey a rate of convergence in order to control the overall rate of convergence of such an approximation.

Very roughly, we consider a homogeneous-like coagulation kernel with degree of homogeneity λ ∈ (-∞, 1] \ {0} (including K(x, y) = (x + y) λ ). For (µ t ) t≥0 the solution to the corresponding 3. The only works giving an explicit result on the rate of convergence of the Marcus-Lushnikov process toward the solution to Smoluchowski's coagulation equation, known by us, are:

-Norris [START_REF] Norris | Smoluchowski's coagulation equation: uniqueness, non-uniqueness and hydrodynamic limit for the stochastic coalescent[END_REF], who gives an estimate using a "Large Deviations" approach for the discrete case (supp(µ 0 ) ⊂ N). -Deaconu, Fournier and Tanré [START_REF] Deaconu | Rate of Convergence of a Stochastic Particle System for the Smoluchowski Coagulation equation[END_REF], where a CLT-type result is shown for the discrete case and for a bounded coagulation kernel K, furthermore in this work a different particle system is used. -Kolokoltsov [START_REF] Kolokoltsov | The Central Limit Theorem for the Smoluchowski Coagulation Model[END_REF], who uses analytic methods of the theory of semigroups applied to the Markov infinitesimal generator. He also uses a different distance to ours, namely the author uses the topology of the dual to the weighted spaces of continuously differentiable functions or certain weighted Sobolev spaces. He then gives a CLT result for the discrete case with a coagulation kernel satisfying K(x, y) ≤ c(1 + √ x)(1 + √ y) and for the continuous case when K is two times differentiable with all its derivatives bounded. Unfortunately the case K(x, y) = (x + y) λ is excluded for any value of λ ∈ (-∞, 1] \ {0}. Our work thus gives the first result on the rate of convergence covering the continuous case for some homogeneous kernels.

For the case λ < 0 we follow the ideas found in [START_REF] Fournier | Well-possedness of Smoluchowski's Coagulation Equation for a Class of Homogeneous Kernels[END_REF], but for the case λ ∈ (0, 1] the proof is much more difficult and the calculations are faced in a completely different way. Namely we use the Itô formula for an approximation of the absolute value function and handle very delicately the resulting terms.

The paper is organized as follows: in Section 2 we give the notation and definitions we use in this document, in Section 3 we state our main result. The proof is developed in Sections 4, 5 and 6. We give also a method to construct an initial condition for the Marcus-Lushnikov process in Section 7 and we conclude the document giving some technical details which are useful all along the paper in Appendix A.

Notation, Assumptions and Definitions

In this section we present our assumptions, give the definition of weak solutions to Smoluchowski's coagulation equation and then we recall the dynamics of the Marcus-Lushnikov process.

Notation 2.1. -We denote by M + the space of non-negative Radon measures on (0, +∞). For a measure µ and a function φ, we set µ(dx) , φ(x) = +∞ 0 φ(x)µ(dx). We also define the operator A for all measurable functions φ : (0, +∞) → R, by

(2.1) (Aφ)(x, y) = φ(x + y) -φ(x) -φ(y) ∀ (x, y) ∈ (0, +∞) 2 .
Finally, we will use the notation x ∧ y = min{x, y} and x ∨ y = max{x, y} for (x, y) ∈ (0, +∞) 2 .

We consider a coagulation kernel K : (0, +∞) × (0, +∞) → [0, +∞), symmetric i.e. K(x, y) = K(y, x) for (x, y) ∈ (0, +∞) 2 . We further assume it belongs to W 1,∞ (ε, 1/ε) 2 for every ε ∈ (0, 1) and one of the following conditions ∀ (x, y) ∈ (0, +∞) 2 :

λ ∈ (-∞, 0), K(x, y) ≤ κ 0 (x + y) λ and x λ + y λ |∂ x K(x, y)| ≤ κ 1 x λ-1 y λ , (2.2) λ ∈ (0, 1], K(x, y) ≤ κ 0 (x + y) λ and x λ ∧ y λ |∂ x K(x, y)| ≤ κ 1 x λ-1 y λ , (2.3) λ ∈ (0, 1], K(x, y) ≤ κ 0 (x ∧ y) λ and x λ ∧ y λ |∂ x K(x, y)| ≤ κ 1 x λ-1 y λ , (2.4)
for some positive constants κ 0 and κ 1 . We refer to [START_REF] Fournier | Well-possedness of Smoluchowski's Coagulation Equation for a Class of Homogeneous Kernels[END_REF] for a list of physical kernels satisfying conditions (2.2) and (2.3). Remark that for any λ ∈

(-∞, 1] \ {0}, K(x, y) = (x + y) λ satisfies (2.2) or (2.3). Definition 2.2. -Consider λ ∈ (-∞, 1] \ {0}. For µ ∈ M + , we set: (2.5) M λ (µ) = +∞ 0 x λ µ(dx) and M + λ = {ν ∈ M + : M λ (ν) < +∞}.
For µ ∈ M + , we set, for x ∈ (0, +∞):

(2.6)

F µ (x) = +∞ 0 1 (x,+∞) (y) µ(dy) and G µ (x) = +∞ 0 1 (0,x] (y) µ(dy).
We define the distance on M + λ as

(2.7) d λ (µ, μ) = +∞ 0 x λ-1 |E(x)|dx, where E(x) = G µ (x) -G μ(x) if λ ∈ (-∞, 0) and E(x) = F µ (x) -F μ(x) if λ ∈ (0, 1].
We remark that d λ is well-defined on M + λ . Indeed we have [START_REF] Fournier | A distance for coagulation[END_REF] for a deeper study of this distance in the discrete and continuous cases.

d λ (µ, μ) ≤ 1 |λ| M λ (µ + μ) for λ ∈ (-∞, 1] \ {0}. See
We excluded the case λ = 0 for two reasons. First, d 0 is not well-defined on M + 0 . Next, when trying to extend our study to this case, we are not able to obtain a better result than those of Kolokoltsov [START_REF] Kolokoltsov | The Central Limit Theorem for the Smoluchowski Coagulation Model[END_REF].

Definition 2.3. -For λ ∈ (-∞, 1] \ {0}
we introduce the spaces of test functions needed to define weak solutions:

if λ ∈ (-∞, 0) : H λ = φ : (0, +∞) → R such that sup x>0 x -λ |φ(x)| < +∞ , if λ ∈ (0, 1] : H λ = φ : (0, +∞) → R such that sup x>0 (1 + x) -λ |φ(x)| < +∞ , if λ ∈ (0, 1] : H e λ = φ : (0, +∞) → R such that sup x>0 x -λ |φ(x)| < +∞ .

It is necessary to introduce the space H e

λ to study the case (2.4). We demand more finite moments of µ 0 than in [START_REF] Fournier | Well-possedness of Smoluchowski's Coagulation Equation for a Class of Homogeneous Kernels[END_REF] to assure the convergence of the Marcus-Lushnikov process. According to the hypothesis on the kernel (2.2), (2.3) or (2.4) together with (2.9) and Lemma A.1, the integrals in the weak formulation (2.8) are absolutely convergent and bounded with respect to t ∈ [0, T ] for every T . Under (2.2) or (2.4), the existence and uniqueness of such weak solutions have been established in [START_REF] Fournier | Well-possedness of Smoluchowski's Coagulation Equation for a Class of Homogeneous Kernels[END_REF] for any µ in ∈ M + λ . Under (2.3), the existence and uniqueness of weak solutions satisfying (2.9) with α = λ have also been checked in [START_REF] Fournier | Well-possedness of Smoluchowski's Coagulation Equation for a Class of Homogeneous Kernels[END_REF] for any µ in ∈ M + λ . Using furthermore Proposition A.4, we immediately deduce the existence and uniqueness of weak solutions under (2.3), in the sense of Definition 2.4, for any µ in ∈ M + 0 ∩ M + 2λ .

2.2. The Marcus-Lushnikov process. -The Marcus-Lushnikov process describes the stochastic Markov evolution of a finite particle system of coalescing particles. We consider a coagulation kernel K and a finite particle system initially consisting of N ≥ 2 particles of masses x 1 , • • • , x N ∈ (0, +∞). We assume that the system evolves according to the following dynamics: each pair of particles (of masses x and y) coalesce (i.e. disappears and forms a new particle of mass x + y) with a rate proportional to K(x, y).

Let n ∈ N and we assign to all particles the weight 1/n. We define now rigorously the Marcus-Lushnikov process to be used. Definition 2.5. -We consider a coagulation kernel K, n ∈ N and an initial state

µ n 0 = 1 n N i=1 δ xi , with x 1 , • • • , x N ∈ (0, +∞).
The Marcus-Lushnikov process (µ n t ) t≥0 associated with (n, K, µ n 0 ) is a Markov M + -valued càdlàg process satisfying:

(i) (µ n t ) t≥0 takes its values in 1 n k i=1 δ yi ; k ≤ N, y i > 0 .
(ii) Its infinitesimal generator is given, for all mesurable functions Ψ : M + → R and all states

µ = 1 n k i=1 δ yi by LΨ(µ) = 1≤i<j≤k Ψ µ + n -1 δ yi+yj -δ yi -δ yj -Ψ[µ] K(y i , y j ) n .
This process is known to be well-defined and unique, see [START_REF] Aldous | Deterministic and Stochastic Models for Coalescence (Aggregation, Coagulation): A Review of the Mean-Field Theory of Probabilists[END_REF][START_REF] Norris | Smoluchowski's coagulation equation: uniqueness, non-uniqueness and hydrodynamic limit for the stochastic coalescent[END_REF]. We will use the following classical representation of the Marcus-Lushnikov process (see e.g. [START_REF] Fournier | On some stochastic coalescents[END_REF][START_REF] Fournier | Stochastic coalescence with homogeneous-like interaction rates[END_REF]): there is a Poisson measure J(dt, d(i, j), dz) on [0, +∞) × {(i, j) ∈ N 2 , i < j} × [0, +∞) with intensity measure dt k<l δ (k,l) (d(i, j)) dz, such that for any measurable function φ : (0, +∞) → R

µ n t (dx), φ(x) = µ n 0 (dx), φ(x) + t 0 i<j +∞ 0 1 n φ X i s-+ X j s--φ X i s--φ X j s- 1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)} J(ds, d(i, j), dz), (2.10)
where

µ n t = 1 n N (t)
k=1 δ X k t , N (t) being the (non-increasing) number of particles at time t. This can be written using the compensated Poisson measure related to J:

µ n t (dx), φ(x) = µ n 0 (dx), φ(x) + 1 2 t 0 µ n s (dx)µ n s (dy), (Aφ) (x, y)K(x, y) ds - 1 2n t 0 µ n s (dx), (Aφ) (x, x)K(x, x) ds (2.11) + t 0 i<j +∞ 0 1 n (Aφ) X i s-, X j s-1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)} J(ds, d(i, j), dz),
where the operator A is defined in (2.1). The third term on the right-hand side is issued from the impossibility of coalescence of a particle with itself.

Results

We state in this section our main result. We also state as a proposition the construction of a sequence of initial conditions for the Marcus-Lushnikov processes and finally comment on our results.

Theorem 3.1. -We consider λ ∈ (-∞, 1] \ {0} and a coagulation kernel K satisfying either (2.2), (2.3) or (2.4). Let µ 0 ∈ M + and (µ t ) t≥0 the (µ 0 , K, λ)-weak solution to Smoluchowski's equation. Let µ n 0 be deterministic and of the form 1 n N i=1 δ xi and denote by (µ n t ) t≥0 the associated (2.4) and that µ 0 belongs to M + λ ∩ M + 2λ+ε , where ε = sgn(λ) × ε. Then for any T > 0,

(n, K, µ n 0 )-Marcus-Lushnikov process. Let ε > 0. • Assume (2.2) or
E sup t∈[0,T ] d λ (µ n t , µ t ) ≤ d λ (µ n 0 , µ 0 ) + (1 + T )C λ,ε √ n M λ (µ n 0 ) + M 2λ+ε (µ n 0 ) × exp [T C λ,ε M λ (µ n 0 + µ 0 )] ,
where C λ,ε is a positive constant depending only on λ, ε and κ 0 , and κ 1 . • Assume (2.3) and that µ 0 ∈ M + 0 ∩ M + γ+ε where γ = max{2λ, 4λ -1}. Then for any T > 0,

sup t∈[0,T ] E [d λ (µ n t , µ t )] ≤ d λ (µ n 0 , µ 0 ) + (1 + T )C λ,ε √ n 1 + [M 0 (µ n 0 + µ 0 )] 2 + [M γ+ε (µ n 0 + µ 0 )] 2 × exp [T C λ,ε M λ (µ n 0 + µ 0 )] ,
where C λ,ε is a positive constant depending only on λ, ε, κ 0 and κ 1 .

Now we present the proposition giving a d λ -approximation of the initial condition.

Proposition 3.2. -Let λ ∈ (-∞, 1] \ {0}, n ∈ N and µ 0 a non negative Radon measure on (0, +∞) such that µ 0 ∈ M + λ ∩ M + 2λ .
The measure µ 0 is supposed to be either atomless or discrete (supp(µ 0 ) ⊂ N). Then, there exists a positive measure µ n 0 of the form 1 n Nn i=1 δ xi such that:

d λ (µ n 0 , µ 0 ) ≤ C λ √ n ,
where the constant C λ depends only on λ and M 2λ (µ 0 ). We also have

M α (µ n 0 ) ≤ M α (µ 0 ), for all α ≤ 0 if λ ∈ (-∞, 0) and for all α ≥ 0 if λ ∈ (0, 1]. Furthermore, if M 0 (µ 0 ) < +∞, then N n ≤ n M 0 (µ 0 ).
The estimate of the parameter N n (initial number of particles) may be useful to study the numerical cost of the simulation.

Gathering Theorem 3.1 and Proposition 3.2, we deduce the following statement. (2.3) or (2.4). Let µ 0 ∈ M + be either atomless or discrete (supp(µ 0 ) ⊂ N), and (µ t ) t∈[0,+∞) the (µ 0 , K, λ)-weak solution to Smoluchowski's equation. Then it is possible to build a family of initial conditions

Corollary 3.3. -We consider λ ∈ (-∞, 1] \ {0}, ε > 0 and a coagulation kernel K satisfying either (2.2),
µ n 0 = 1 n Nn k=1 δ xi such that, for (µ n t ) t≥0 the corresponding (n, K, µ n 0 )- Marcus-Lushnikov process, • under (2.2) or (2.4), if µ 0 belongs to M + λ ∩ M + 2λ+ε , where ε = sgn(λ) × ε, then for any T > 0, E sup t∈[0,T ] d λ (µ n t , µ t ) ≤ C T √ n ,
where C T is a positive constant depending only on T , λ, ε, κ 0 , κ 1 and µ 0 ;

• under (2.3), if µ 0 ∈ M + 0 ∩ M + γ+ε where γ = max{2λ, 4λ -1}, then for any T > 0, sup t∈[0,T ] E [d λ (µ n t , µ t )] ≤ C T √ n ,
where C T is a positive constant depending only on T , λ, ε, κ 0 , κ 1 and µ 0 .

This last statement is quite satisfying since it provides a rate of convergence in 1 √ n and it applies to a large class of homogeneous kernels presenting singularities for small or large masses. We probably require more finite moments than really needed but this does not seem to be a real problem for applications.

We have followed the ideas found in [START_REF] Fournier | Well-possedness of Smoluchowski's Coagulation Equation for a Class of Homogeneous Kernels[END_REF] to prove the case (2.2) and the special case (2.4) of Theorem 3.1. The case (2.3) is much more subtle and difficult. For this case we have applied the Itô formula and manipulated very carefully each term. By the moment it is not possible to put the "sup" into the expectation since it is very important to use the sign of the terms and to take advantage of some cancelations. Proposition 3.2 presents the proof of the existence of a d λ -approximation of a general nonnegative measure µ 0 (we consider measures µ 0 which are interesting for the Smoluchowski's equation) by a discrete measure µ n 0 (a finite sum of Dirac's deltas) as a construction procedure. This construction is very useful from a numerical point of view since it gives a measure that will be set as the initial state for the Marcus-Lushnikov process.

Negative Case

In the whole section, we assume that K satisfies (2.2) for some fixed λ ∈ (-∞, 0). We fix ε > 0, and we assume that µ 0 ∈ M + λ ∩ M + 2λ-ε . We denote by (µ t ) t≥0 the unique (µ 0 , K, λ)-weak solution to the Smoluchowski equation. We also consider the (n, K, µ n 0 )-Marcus Lushnikov process, for some given initial condition

µ n 0 = 1 n N i=1 δ xi .
We introduce, for t ≥ 0, the quantity E n (t, x) = G µ n t (x) -G µt (x) as defined in (2.6). We take the test function φ

(v) = 1 (0,x] (v). Since sup v>0 v -λ |φ(v)| = x -λ < +∞, we deduce that φ ∈ H λ .
Computing the difference between equations (2.11) and (2.8), we get

E n (t, x) = E n (0, x) + 1 2 t 0 µ n s (dv)µ n s (dy) -µ s (dv)µ s (dy), A1 (0,x] (v, y)K(v, y) ds - 1 2n t 0 µ n s (dv), A1 (0,x] (v, v)K(v, v) ds (4.1) + t 0 i<j +∞ 0 1 n A1 (0,x] X i s-, X j s-1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)} J(ds, d(i, j), dz).
We take the absolute value and integrate against x λ-1 dx on (0, +∞):

d λ (µ n t , µ t ) ≤ d λ (µ n 0 , µ 0 ) + A 1 (t) + A 2 (t) + A 3 (t), (4.2)
where

A 1 (t) = 1 2 +∞ 0 x λ-1 t 0 µ n s (dv)µ n s (dy) -µ s (dv)µ s (dy), A1 (0,x] (v, y)K(v, y) ds dx, A 2 (t) = 1 2n +∞ 0 x λ-1 t 0 µ n s (dv), A1 (0,x] (v, v)K(v, v) ds dx, A 3 (t) = +∞ 0 x λ-1 1 n t 0 i<j +∞ 0 A1 (0,x] X i s-, X j s-1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)} J(ds, d(i, j), dz) dx.
Now we are going to search for a good upper bound for each term.

Term A 1 (t).

Similarly to [START_REF] Fournier | Well-possedness of Smoluchowski's Coagulation Equation for a Class of Homogeneous Kernels[END_REF]Lemma 3.5]. However, in this case we have to argue a little more, since t → G µ n t (x) is not (even weakly) differentiable due to the jumps of µ n t .

The term A 1 (t), according to the symmetry of the kernel, can be written as:

A 1 (t) = 1 2 +∞ 0 x λ-1 t 0 +∞ 0 +∞ 0 K(v, y) 1 (0,x] (v + y) -1 (0,x] (v) -1 (0,x] (y) (µ n s -µ s ) (dv) (µ n s + µ s ) (dy)ds dx. (4.3)
We use the Fubini theorem and Lemma A.2:

t 0 +∞ 0 +∞ 0 K(v, y) 1 (0,x] (v + y) -1 (0,x] (v) -1 (0,x] (y) (µ n s -µ s ) (dv) (µ n s + µ s ) (dy)ds = t 0 +∞ 0 +∞ 0 K(x -y, y)1 (0,x] (v + y) -K(x, y)1 (0,x] (v) - +∞ v ∂ x K(z, y) 1 (0,x] (z + y) -1 (0,x] (z) -1 (0,x] (y) dz (µ n s -µ s ) (dv) (µ n s + µ s ) (dy)ds = t 0 +∞ 0 K(x -y, y) 1 x>y +∞ 0 1 (0,x-y] (v) (µ n s -µ s ) (dv) (µ n s + µ s ) (dy)ds - t 0 +∞ 0 K(x, y) +∞ 0 1 (0,x] (v) (µ n s -µ s ) (dv) (µ n s + µ s ) (dy)ds - t 0 +∞ 0 +∞ 0 ∂ x K(z, y) 1 (0,x] (z + y) -1 (0,x] (z) -1 (0,x] (y) +∞ 0 1 (0,z] (v) (µ n s -µ s ) (dv) dz (µ n s + µ s ) (dy)ds = t 0 +∞ 0 K(x -y, y) [1 x>y E n (s, x -y)] (µ n s + µ s ) (dy)ds - t 0 +∞ 0 K(x, y) [E n (s, x)] (µ n s + µ s ) (dy)ds - t 0 +∞ 0 +∞ 0 ∂ x K(z, y) 1 (0,x] (z + y) -1 (0,x] (z) -1 (0,x] (y) [E n (s, z)] dz (µ n s + µ s ) (dy)ds. According to the bound (4.4) 1 (0,x] (z + y) -1 (0,x] (z) -1 (0,x] (y) ≤ 2 1 (0,x] (z ∧ y),
and using (2.2), we deduce:

A 1 (t) ≤ κ 0 2 t 0 +∞ 0 +∞ y x λ-1 x λ |E n (s, x -y)| dx (µ n s + µ s ) (dy) ds + κ 0 2 t 0 +∞ 0 +∞ 0 x λ-1 (x + y) λ |E n (s, x)| dx (µ n s + µ s ) (dy) ds + t 0 +∞ 0 +∞ 0 |∂ x K(z, y)||E n (s, z)| +∞ 0 x λ-1 1 (0,x] (z ∧ y)dx dz (µ n s + µ s ) (dy) ds.
For the first integral we use the change of variable x → w+y and (w+y) λ-1 (w+y) λ ≤ w λ-1 y λ . For the second integral (x+y) λ ≤ y λ . Finally for the third integral, we observe that +∞ 0

x λ-1 1 (0,x] (z ∧ y)dx = (z∧y) λ |λ| ≤ z λ +y λ |λ| . Using (2.
2) again, this implies

A 1 (t) ≤ κ 0 2 t 0 ds +∞ 0 w λ-1 |E n (s, w)| dw +∞ 0 y λ (µ n s + µ s ) (dy) + κ 0 2 t 0 ds +∞ 0 x λ-1 |E n (s, x)| dx +∞ 0 y λ (µ n s + µ s ) (dy) + κ 1 |λ| t 0 ds +∞ 0 z λ-1 |E n (s, z)| dz +∞ 0 y λ (µ n s + µ s ) (dy).
The resulting bound for A 1 (t) is:

(4.5) A 1 (t) ≤ κ 0 + κ 1 |λ| t 0 d λ (µ n s , µ s ) M λ (µ n s + µ s ) ds. Term A 2 (t).
We use

A1 (0,x] (v, v) = 1 (0,x] (2v) -2 1 (0,x] (v) = 1 {0<v≤ x 2 } + 2 1 { x 2 <v≤x} ≤ 2 1 {v≤x} . This gives A 2 (t) ≤ 1 n +∞ 0 x λ-1 t 0 +∞ 0 K(v, v)1 {v≤x} µ n s (dv) ds dx ≤ 1 n +∞ 0 t 0 κ 0 (2v) λ v λ |λ| µ n s (dv) ds ≤ 2 λ κ 0 n |λ| t 0 M 2λ (µ n s ) ds. (4.6)
We used (2.2).

Term A 3 (t).

We will bound the expectation of this term using its bracket, for this we consider:

E       1 n t 0 i<j +∞ 0 (A1 (0,x] ) X i s-, X j s-1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)} J(ds, d(i, j), dz)    2    = E   t 0 1 n 2 i<j≤N (s) K X i s , X j s n 1 (0,x] X i s + X j s -1 (0,x] X i s -1 (0,x] X j s 2 ds   ≤ 4 n E   t 0 i<j≤N (s) K X i s , X j s n 2 1 (0,x] X i s ∧ X j s ds   ≤ 2 n E t 0 µ n s (dv)µ n s (dy) , K(v, y) 1 (0,x] (v) + 1 (0,x] (y) ds ≤ 4 κ 0 n E t 0 µ n s (dv)µ n s (dy) , (v + y) λ 1 (0,x] (v) ds .
We have used (4.4), a symmetry argument then the bound 1 (0,x] (v ∨ y) ≤ 1 (0,x] (v) + 1 (0,x] (y) and finally (2.2). We consider now the submartingale (absolute value of a martingale):

S t (x) = 1 n t 0 i<j +∞ 0 A1 (0,x] X i s-, X j s-1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)} J(ds, d(i, j), dz) .
According to the Cauchy-Schwartz and Doob inequalities we have:

E sup r∈[0,t] S r (x) ≤ E sup r∈[0,t] (S r (x)) 2 1 2 ≤ 2 E (S t (x)) 2 1 2 .
Therefore, we obtain the following bound for the expectation of A 3 (t):

E sup s∈[0,t] A 3 (s) ≤ 4 √ κ 0 √ n +∞ 0 x λ-1 E t 0 µ n s (dv)µ n s (dy) , (v + y) λ 1 (0,x] (v) ds 1 2 dx. (4.7)
Following the value of x we use different bounds:

On the one hand, for x ≤ 1 we have 1 (0,x] (v) ≤ v x 2λ-ε and using the bound (v + y) λ v 2λ-ε ≤ v 2λ-ε y λ , we obtain:

1 0 x λ-1 E t 0 µ n s (dv)µ n s (dy) , (v + y) λ 1 (0,x] (v) ds 1 2 dx ≤ 1 0 x λ-1 E t 0 µ n s (dv)µ n s (dy) , v 2λ-ε y λ x 2λ-ε ds 1 2 dx = 1 0 x ε 2 -1 dx E t 0 µ n s (dv)µ n s (dy) , v 2λ-ε y λ ds 1 2 = 2 ε E t 0 M λ (µ n s ) M 2λ-ε (µ n s ) ds 1 2 . (4.8)
On the other hand, for x > 1 we have 1 (0,x] (v) ≤ v x λ and using the bound (v + y) λ v λ ≤ v λ y λ , we obtain:

+∞ 1 x λ-1 E t 0 µ n s (dv)µ n s (dy) , (v + y) λ 1 (0,x] (v) ds 1 2 dx ≤ +∞ 1 x λ-1 E t 0 µ n s (dv)µ n s (dy) , v λ y λ x λ ds 1 2 dx = +∞ 1 x λ 2 -1 dx E t 0 µ n s (dv)µ n s (dy) , v λ y λ ds 1 2 = 2 |λ| E t 0 [M λ (µ n s )] 2 ds 1 2 . (4.9)
Then, writing the right-hand side integral of (4.7) as the sum of the integrals on x ∈ (0, 1] and x ∈ (1, +∞), gathering (4.8) and (4.9), we get

E sup s∈[0,t] A 3 (s) ≤ 8 √ κ 0 √ n 1 ε E t 0 M λ (µ n s )M 2λ-ε (µ n s ) ds 1 2 + 1 |λ| E t 0 [M λ (µ n s )] 2 ds 1 2 . (4.10)

Conclusion.

Gathering (4.2), (4.5), (4.6) and (4.10), we have:

E sup s∈[0,t] d λ (µ n s , µ s ) ≤ E d λ (µ n 0 , µ 0 ) + sup s∈[0,t] A 1 (s) + sup s∈[0,t] A 2 (s) + sup s∈[0,t] A 3 (s) ≤ d λ (µ n 0 , µ 0 ) + κ 0 + κ 1 |λ| t 0 E [d λ (µ n s , µ s ) M λ (µ n s + µ s )] ds + 2 λ κ 0 n |λ| t 0 E [M 2λ (µ n s )] ds + 8 √ κ 0 √ n 1 ε E t 0 M λ (µ n s ) M 2λ-ε (µ n s ) ds 1 2 + 1 |λ| E t 0 [M λ (µ n s )] 2 ds 1 2 . According to Proposition A.4 -(a), M α (µ n t + µ t ) ≤ M α (µ n 0 + µ 0 ) a.s. for any α ∈ (-∞, 0). Since µ n
0 is deterministic, we get:

E sup s∈[0,t] d λ (µ n t , µ t ) ≤ d λ (µ n 0 , µ 0 ) + κ 0 + κ 1 |λ| M λ (µ n 0 + µ 0 ) t 0 E [d λ (µ n s , µ s ) ] ds + 2 λ κ 0 n |λ| M 2λ (µ n 0 ) t + 8 √ κ 0 √ n 1 ε M λ (µ n 0 ) M 2λ-ε (µ n 0 ) 1 2 + 1 |λ| M λ (µ n 0 ) t 1 2 . (4.11) Finally, since √ ab ≤ a + b and since M 2λ (µ n 0 ) ≤ M λ (µ n 0 ) + M 2λ-ε (µ n 0 )
, we use the Gronwall lemma to obtain

E sup t∈[0,T ] d λ (µ n t , µ t ) ≤ d λ (µ n 0 , µ 0 ) + C 1 √ n M λ (µ n 0 ) + C 2 √ n M 2λ-ε (µ n 0 ) × exp T κ 0 + κ 1 |λ| M λ (µ n 0 + µ 0 ) , (4.12)
where

C 1 = 2 λ T κ0 |λ| + 8(ε+|λ|) ε |λ| √ T κ 0 and C 2 = 2 λ T κ0 |λ| + 8 ε √ T κ 0 .
This concludes the proof of Theorem 3.1 under (2.2).

Positive Case

In the whole section, we assume that K satisfies (2.3) for some fixed λ ∈ (0, 1]. We fix ε > 0, and we assume that µ 0 ∈ M + 0 ∩ M + γ+ε where γ = max{2λ, 4λ -1}. We denote by (µ t ) t≥0 the unique (µ 0 , K, λ)-weak solution to the Smoluchowski equation. We also consider the (n, K, µ n 0 )-Marcus Lushnikov process, for some given initial condition µ n 0 = 1 n N i=1 δ xi . We assume without loss of generality, for λ ∈ (0, 1/2), that ε < 1 2λ. Indeed, if ε ≥ 1 2λ, it suffices to consider ε < 1 2 -λ, to apply Theorem 3.1 with ε, and to use the bound M 2λ+ε (µ n 0 +µ 0 ) ≤ M 0 (µ n 0 + µ 0 ) + M 2λ+ε (µ n 0 + µ 0 ) to conclude. We first present a lemma of which the proof is developed in the appendix.

Lemma 5.1. -We introduce, for x ∈ (0, +∞), the following function:

(5.1) θ n (x) = 1 √ n 1 (0,1] (x) + x -2λ-ε √ n 1 (1,+∞) (x).
Then,

(i) +∞ 0 x λ-1 θ n (x) dx ≤ 2 λ √ n , (ii) +∞ 0 x 2λ-1 θ n (x) dx ≤ λ+ε λε √ n , (iii) for (v, y) ∈ (0, +∞) 2 v λ +∞ 0 x λ-1 θ n (x) (1 x<v∧y + 1 v∨y<x<v+y ) dx ≤ 2 √ n λ v λ y λ + √ n 2 2λ+ε + 1 λ (v ∧ y) 2λ (v ∨ y) 2λ+ε 1 λ∈(0,1/2) + (v ∧ y)(v ∨ y) 4λ+ε-1 1 λ∈[1/2,1] .
We set E n (t, x) = F µ n t (x)-F µt (x) as defined in (2.6), for x ∈ (0, +∞). We take the test function

φ(v) = 1 (x,+∞) (v). Since sup v>0 |φ(v)| (1+v) λ = (1 + x) -λ
< +∞, we deduce that φ ∈ H λ . Again, computing the difference between equations (2.11) and (2.8) and using a symmetry argument for the first integral, we get

E n (t, x) = E n (0, x) + 1 2 t 0 (µ n s -µ s ) (dv) (µ n s + µ s ) (dy), A1 (x,+∞) (v, y)K(v, y) ds - 1 2n t 0 µ n s (dv), A1 (x,+∞) (v, v)K(v, v) ds (5.2) + t 0 i<j +∞ 0 1 n A1 (x,+∞) X i s-, X j s-1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)}
J (ds, d(i, j), dz).

According to Lemma A.2, we can write the first integral as:

t 0 +∞ 0 +∞ 0 K(v, y) A1 (x,+∞) (v, y) (µ n s -µ s ) (dv) (µ n s + µ s ) (dy)ds = t 0 +∞ 0 +∞ 0 1 x>y K(x -y, y)1 (x,+∞) (v + y) -K(x, y)1 (x,+∞) (v) + v 0 ∂ x K(z, y) A1 (x,+∞) (z, y) dz (µ n s -µ s ) (dv) (µ n s + µ s ) (dy)ds = t 0 +∞ 0 K(x -y, y) 1 x>y +∞ 0 1 (x-y,+∞) (v) (µ n s -µ s ) (dv) (µ n s + µ s ) (dy)ds - t 0 +∞ 0 K(x, y) +∞ 0 1 (x,+∞) (v) (µ n s -µ s ) (dv) (µ n s + µ s ) (dy)ds + t 0 +∞ 0 +∞ 0 ∂ x K(z, y) A1 (x,+∞) (z, y) +∞ 0 1 (z,+∞) (v) (µ n s -µ s ) (dv) dz (µ n s + µ s ) (dy)ds.
Recalling that E n (s, x) = +∞ 0

1 (x,+∞) (v) (µ n s -µ s ) (dv), we deduce that, E n (t, x) = E n (0, x) + 1 2 t 0 B 1 (s, x) + B 2 (s, x) + B 3 (s, x) ds + t 0 i<j +∞ 0 1 n A1 (x,+∞) X i s-, X j s-1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)} (5.3) J(ds, d(i, j), dz),
where:

B 1 (s, x) = +∞ 0 1 x>y K(x -y, y)E n (s, x -y) -E n (s, x)K(x, y) (µ n s + µ s ) (dy), B 2 (s, x) = +∞ 0 +∞ 0 ∂ x K(z, y) A1 (x,+∞) (z, y)E n (s, z)dz (µ n s + µ s ) (dy), B 3 (s, x) = - 1 n +∞ 0 K(v, v) 1 (x,+∞) (2v) -2 1 (x,+∞) (v) µ n s (dv).
Now, we apply the Itô formula to ϕ θ (E n (t, x)), where ϕ θ (•) ∈ C 2 (R) is an approximation of the absolute value function | • |. This function is chosen in such a way that:

(5.4)

         ϕ θ (u) = |u| if |u| > θ; |u| ≤ ϕ θ (u) ≤ |u| + θ ∀u ∈ R; |ϕ ′ θ (u)| ≤ 1 ∀u ∈ R; sgn(uϕ ′ θ (u)) = 1 ∀u ∈ R * ; |ϕ ′′ θ (u)| ≤ 2 θ 1 {|u|<θ} ∀u ∈ R.
Furthermore, we consider for θ the function defined by (5.1). We fix x ∈ (0, +∞) and apply the Itô formula to ϕ θ n (x) (E n (t, x)) (see for exemple [START_REF] Jacod | Limit theorems for stochastics processes[END_REF]),

ϕ θ n (x) (E n (t, x)) = ϕ θ n (x) (E n (0, x)) + 1 2 t 0 B 1 (s, x) + B 2 (s, x) + B 3 (s, x) ϕ ′ θ n (x) (E n (s, x))ds (5.5) +M (t, x) + B 4 (t, x),
where

M (t, x) = t 0 i<j +∞ 0 1 n A1 (x,+∞) X i s-, X j s-1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)} ϕ ′ θ n (x) (E n (s-, x)) J (ds, d(i, j), dz), B 4 (t, x) = t 0 i<j +∞ 0 ϕ θ n (x) E n (s-, x) + 1 n A1 (x,+∞) X i s-, X j s- -ϕ θ n (x) (E n (s-, x)) - 1 n A1 (x,+∞) X i s-, X j s-ϕ ′ θ n (x) (E n (s-, x)) 1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)} J(ds, d(i, j), dz).
Observe that, for all x ≥ 0, M (t, x) is a martingale whose expectation is equal to zero. Now, we study the θ n -approximation of d λ (µ n t , µ t ):

+∞ 0

x λ-1 ϕ θ n (x) (E n (t, x))dx. According to (5.4) and Lemma 5.1 -(i), we have:

(5.6) d λ (µ n s , µ s ) ≤ +∞ 0 x λ-1 ϕ θ n (x) (E n (s, x))dx ≤ d λ (µ n s , µ s ) + 2 λ √ n .
Consider (5.5), integrate each term against x λ-1 dx on (0 + ∞), take the expectation:

E [d λ (µ n t , µ t )] ≤ +∞ 0 x λ-1 E ϕ θ n (x) (E n (t, x)) dx = +∞ 0 x λ-1 ϕ θ n (x) (E n (0, x))dx + E [B 1 (t) + B 2 (t) + B 3 (t) + B 4 (t)] , (5.7) 
where

B 1 (t) = 1 2 +∞ 0 t 0 x λ-1 B 1 (s, x)ϕ ′ θ n (x) (E n (s, x)) ds dx, B 2 (t) = 1 2 +∞ 0 t 0 x λ-1 B 2 (s, x)ϕ ′ θ n (x) (E n (s, x)) ds dx, B 3 (t) = 1 2 +∞ 0 t 0 x λ-1 B 3 (s, x)ϕ ′ θ n (x) (E n (s, x)) ds dx, B 4 (t) = +∞ 0 x λ-1 B 4 (t, x) dx.
We now study each term separately.

Term B 1 (t).

We use the Fubini theorem to obtain:

B 1 (t) = 1 2 t 0 +∞ 0 +∞ 0 1 x>y x λ-1 ϕ ′ θ n (x) (E n (s, x)) E n (s, x -y)K(x -y, y)dx - +∞ 0 x λ-1 ϕ ′ θ n (x) (E n (s, x)) E n (s, x)K(x, y) dx (µ n s + µ s ) (dy) ds.
Recalling (5.4), we immediately deduce that ϕ ′

θ n (x) (E n (s, x)) E n (s, x -y) ≤ |E n (s, x -y)|, and 
ϕ ′ θ n (x) (E n (s, x)) E n (s, x) = ϕ ′ θ n (x) (E n (s, x)) |E n (s, x)|.
Therefore, using the change of variable x → u + y in the first integral, we get:

B 1 (t) ≤ 1 2 t 0 +∞ 0 +∞ 0 (u + y) λ-1 |E n (s, u)| K(u, y) du - +∞ 0 x λ-1 ϕ ′ θ n (x) (E n (s, x)) |E n (s, x)| K(x, y) dx (µ n s + µ s ) (dy) ds = 1 2 t 0 +∞ 0 +∞ 0 K(z, y) |E n (s, z)| (z + y) λ-1 -ϕ ′ θ n (z) (E n (s, z)) z λ-1 dz (µ n s + µ s ) (dy) ds.
Recall again (5.4).

Since |E n (s, z)| ≥ θ n (z) implies ϕ ′ θ n (z)
(E n (s, z)) = 1, and since (z + y) λ-1 -

z λ-1 ≤ 0, |E n (s, z)| (z + y) λ-1 -|ϕ ′ θ n (z) (E n (s, z)) | z λ-1 ≤ |E n (s, z)| (z + y) λ-1 1 |En(s,z)|<θ n (z) ≤ θ n (z) (z + y) λ-1 .
Therefore, using (2.3):

B 1 (t) ≤ κ 0 2 t 0 +∞ 0 +∞ 0 θ n (z) (z + y) 2λ-1 dz (µ n s + µ s ) (dy) ds ≤ κ 0 2 t 0 +∞ 0 +∞ 0 θ n (z) z 2λ-1 dz + y λ +∞ 0 θ n (z) z λ-1 dz (µ n s + µ s ) (dy) ds.
We used (z + y) 2λ-1 = (z + y) λ (z + y) λ-1 ≤ (z λ + y λ ) z λ-1 . Finally, according to Lemma 5.1-(i) and (ii), we get:

B 1 (t) ≤ κ 0 2 t 0 +∞ 0 2(λ + ε) λε √ n 1 + y λ (µ n s + µ s ) (dy) ds ≤ κ 0 (λ + ε) λε √ n t 0 [M 0 (µ n s + µ s ) + M λ (µ n s + µ s )] ds. (5.8) Term B 2 (t).
First, observe that A1 (x,+∞) (z, y) = 1 (x,+∞) (z + y) -1 (x,+∞) (z) -1 (x,+∞) (y) = 1 {x∈(0,z∧y)} + 1 {x∈(z∨y,z+y)} , (5.9) whence,

+∞ 0 x λ-1 A1 (x,+∞) (z, y) dx = z∧y 0 x λ-1 dx + z+y z∨y x λ-1 dx ≤ 2 λ (z ∧ y) λ . (5.10)
Thus, recalling (5.4), we get:

B 2 (t) ≤ 1 2 t 0 +∞ 0 +∞ 0 |E n (s, z)| |∂ x K(z, y)| 2 λ (z ∧ y) λ (µ n s + µ s ) (dy)dz ds ≤ κ 1 λ t 0 +∞ 0 +∞ 0 |E n (s, z)|z λ-1 y λ (µ n s + µ s ) (dy)dz ds ≤ κ 1 λ t 0 d λ (µ n s , µ s ) M λ (µ n s + µ s )ds. (5.11)
We used (2.3).

Term B 3 (t). Remark that A1 (x,+∞) (v, v) = |1 (x,+∞) (2v) -2 1 (x,+∞) (v)| ≤ 1 {v> x 2 } . Since +∞ 0 1 {v> x 2 }
x λ-1 dx = (2v) λ λ , we deduce:

B 3 (t) ≤ 1 2n +∞ 0 x λ-1 t 0 +∞ 0 K(v, v) A1 (x,+∞) (v, v) µ n s (dv) dsdx ≤ κ 0 2λ n t 0 ds +∞ 0 (2v) 2λ µ n s (dv) ≤ 2 2λ-1 κ 0 λ n t 0 M 2λ (µ n s ) ds. (5.12)
We used (5.4) and (2.3).

Term B 4 (t).

First, remark that from (5.4) we have ϕ ′′

θ n (x) (z) ≤ 2 θ n (x)
for all z, whence, due to the Taylor-Lagrange inequality,

ϕ θ n (x) E n (s, x) + 1 n A1 (x,+∞) X i s , X j s -ϕ θ n (x) (E n (s, x)) - 1 n A1 (x,+∞) X i s , X j s ϕ ′ θ n (x) (E n (s, x)) ≤ 2 θ n (x) 1 n A1 (x,+∞) (X i s , X j s ) 2 .
Then,

E [B 4 (t)] ≤ +∞ 0 x λ-1 E t 0 i<j +∞ 0 2 θ n (x) 1 n A1 (x,+∞) (X i s-, X j s-) 2 1 {j≤N (s-)} 1 z≤ K ( X i s- ,X j s-) n J(ds, d(i, j), dz) dx ≤ 2 n t 0 E   +∞ 0 x λ-1 i<j≤N (s) K(X i s , X j s ) n 2 θ n (x) A1 (x,+∞) (X i s , X j s ) 2 dx   ds ≤ 2κ 0 n t 0 E +∞ 0 x λ-1 n 2 θ n (x) i<j≤N (s) X i s + X j s λ 1 x<X i s ∧X j s + 1 X i s ∨X j s <x<X i s +X j s dx ds.
We used (2.3) and (5.9) (since the sets are disjoint, the product of indicators vanishes). Therefore, using that (v + y) λ < v λ + y λ and a symmetry argument, we get

E [B 4 (t)] ≤ 4κ 0 n t 0 E µ n s (dv)µ n s (dy), v λ +∞ 0 x λ-1 θ n (x)
(1 x<v∧y + 1 v∨y<x<v+y ) dx ds.

According to Lemma 5.1-(iii), and since (v ∧ y) α (v ∨ y) β ≤ v α y β + y α v β for α ≥ 0 and β ≥ 0, we have

µ n s (dv)µ n s (dy), v λ +∞ 0 x λ-1 θ n (x) (1 x<v∧y + 1 v∨y<x<v+y ) dx ≤ 2 √ n λ µ n s (dv)µ n s (dy), v λ y λ + √ n 2 2λ+ε + 1 λ µ n s (dv)µ n s (dy), v 2λ y 2λ+ε + y 2λ v 2λ+ε 1 λ∈(0,1/2) + √ n 2 2λ+ε + 1 λ µ n s (dv)µ n s (dy), vy 4λ+ε-1 + yv 4λ+ε-1 1 λ∈[1/2,1] .
Finally, we deduce the bound: (5.13) where C = λ2 2λ+ε + 1 .

E [B 4 (t)] ≤ 8κ 0 λ √ n t 0 E [M λ (µ n s )] 2 + C [M 2λ (µ n s )M 2λ+ε (µ n s )] 1 λ∈(0,1/2) +C [M 1 (µ n s )M 4λ+ε-1 (µ n s )] 1 λ∈[1/2,1] ds,

Conclusion.

Gathering (5.8), (5.11), (5.12) and (5.13), from (5.7), we get:

E [d λ (µ n t , µ t )] ≤ +∞ 0 x λ-1 ϕ θ n (x) (E n (0, x))dx + κ 0 (λ + ε) λε √ n t 0 E [M 0 (µ n s + µ s ) + M λ (µ n s + µ s )] ds + κ 1 λ t 0 E [d λ (µ n s , µ s ) M λ (µ n s + µ s )] ds + 2 2λ-1 κ 0 nλ t 0 E [M 2λ (µ n s )] ds + 8κ 0 λ √ n t 0 E [M λ (µ n s )] 2 ds + 8Cκ 0 λ √ n t 0 E [M 2λ (µ n s ) M 2λ+ε (µ n s )] 1 λ∈(0,1/2) + [M 1 (µ n s )M 4λ+ε-1 (µ n s )] 1 λ∈[1/2,1] ds.
We use (5.6) to bound the first term on the right-hand side. According to Proposition A.4 -(a),

M α (µ n s + µ s ) ≤ M α (µ n 0 + µ 0 ) a.s. for α ≤ 1. Since µ n 0 is deterministic, we get (recall that 2λ+ ε < 1 if λ ∈ (0, 1/2)): E [d λ (µ n t , µ t )] ≤ d λ (µ n 0 , µ 0 ) + 2 λ √ n + tκ 0 (λ + ε) λε √ n (M 0 (µ n 0 + µ 0 ) + M λ (µ n 0 + µ 0 )) + κ 1 λ M λ (µ n 0 + µ 0 ) t 0 E [d λ (µ n s , µ s )] ds + 2 2λ-1 κ 0 nλ t 0 E [M 2λ (µ n s )] ds + 8tκ 0 λ √ n [M λ (µ n 0 )] 2 + 8Ctκ 0 λ √ n [M 2λ (µ n 0 )M 2λ+ε (µ n 0 )] 1 λ∈(0,1/2) + 8Cκ 0 λ √ n M 1 (µ n 0 ) t 0 E [M 4λ+ε-1 (µ n s )] 1 λ∈[1/2,1] ds.

Again, according to Proposition

A.4 -(b), E [M α (µ n s )] ≤ M α (µ n 0 ) exp[s C λ,α M λ (µ n 0 )
] for α > 1, and where C λ,α is a positive constant depending on λ, α and κ 0 . Thus

E [d λ (µ n t , µ t )] ≤ d λ (µ n 0 , µ 0 ) + 2 λ √ n + tκ 0 (λ + ε) λε √ n (M 0 (µ n 0 + µ 0 ) + M λ (µ n 0 + µ 0 )) + κ 1 λ M λ (µ n 0 + µ 0 ) t 0 E [d λ (µ n s , µ s )] ds + 2 2λ-1 tκ 0 nλ M 2λ (µ n 0 ) exp[t C λ,ε M λ (µ n 0 )] + 8tκ 0 λ √ n [M λ (µ n 0 )] 2 + 8Ctκ 0 λ √ n [M 2λ (µ n 0 )M 2λ+ε (µ n 0 )] 1 λ∈(0,1/2) + 8Ctκ 0 λ √ n M 1 (µ n 0 )M 4λ+ε-1 (µ n 0 ) exp[t C λ,ε M λ (µ n 0 )]1 λ∈[1/2,1] .
Recall that γ = max{2λ, 4λ -1}. Observe that for µ ∈ M + , M α (µ) ≤ M 0 (µ) + M β (µ) for any 0 ≤ α ≤ β. Elementary computations allow us to get:

E [d λ (µ n t , µ t )] ≤ d λ (µ n 0 , µ 0 ) + (1 + t) C λ,ε √ n 1 + [M 0 (µ n 0 + µ 0 )] 2 + [M γ+ε (µ n 0 + µ 0 )] 2 × exp [t C λ,ε M λ (µ n 0 + µ 0 )] + C λ,ε M λ (µ n 0 + µ 0 ) t 0 E [d λ (µ n s , µ s )] ds,
for some positive constant C λ,ε depending on λ, ε, κ 0 and κ 1 . We conclude using the Gronwall lemma that Theorem 3.1 holds under (2.3).

Special Case

Now we are going to study the special case (2.4) for which λ ∈ (0, 1]. We have a better result and a simpler proof than (2.3).

In the whole section, we assume that K satisfies (2.4) for some fixed λ ∈ (0, 1]. We fix ε > 0, and we assume that µ 0 ∈ M + λ ∩ M + 2λ+ε . We denote by (µ t ) t≥0 the unique (µ 0 , K, λ)-weak solution to the Smoluchowski equation. We also consider the (n, K, µ n 0 )-Marcus Lushnikov process, for some given initial condition

µ n 0 = 1 n N i=1 δ xi .
As we did before we introduce E n (t, x) = F µ n t (x) -F µt (x) for x ∈ (0, +∞), as defined in (2.6). We observe that 1 (x,+∞) ∈ H e λ , since sup v>0 v -λ |1 (x,+∞) (v)| = x -λ < +∞. Exactly as in Section 5 (see (5.3), take the absolute value and integrate against x λ-1 dx), we obtain:

(6.1) d λ (µ n t , µ t ) ≤ d λ (µ n 0 , µ 0 ) + C 1 (t) + C 2 (t) + C 3 (t) + C 4 (t),
where

C 1 (t) = 1 2 t 0 +∞ 0 +∞ 0 x λ-1 1 x>y K(x -y, y)|E n (s, x -y)| + |E n (s, x)|K(x, y) dx (µ n s + µ s ) (dy) ds, C 2 (t) = 1 2 t 0 +∞ 0 +∞ 0 +∞ 0 x λ-1 |∂ x K(z, y)| A1 (x,+∞) (z, y) |E n (s, z)| dz dx (µ n s + µ s ) (dy) ds, C 3 (t) = 1 2n t 0 +∞ 0 +∞ 0 x λ-1 K(v, v) 1 (x,+∞) (2v) -2 1 (x,+∞) (v) dx µ n s (dv) ds, C 4 (t) = +∞ 0 x λ-1 1 n t 0 i<j +∞ 0 (A1 (x,+∞) ) X i s-, X j s-1 z≤ K ( X i s- ,X j s-) n 1 {j≤N (s-)}
J(ds, d(i, j), dz) dx.

We now study each term separately.

Term C 1 (t).

We have, using the change of variable x → w + y, (2.4) and using the fact that x λ-1 is a non-increasing function:

C 1 (t) ≤ κ 0 2 t 0 +∞ 0 +∞ 0 (w + y) λ-1 (w ∧ y) λ |E n (s, w)| dw (µ n s + µ s ) (dy) ds + κ 0 2 t 0 +∞ 0 +∞ 0 x λ-1 (x ∧ y) λ |E n (s, x)| dx (µ n s + µ s ) (dy) ds ≤ κ 0 2 t 0 +∞ 0 +∞ 0 w λ-1 y λ |E n (s, w)| dw (µ n s + µ s ) (dy) ds + κ 0 2 t 0 +∞ 0 +∞ 0 x λ-1 y λ |E n (s, x)| dx (µ n s + µ s ) (dy) ds ≤ κ 0 t 0 M λ (µ n s + µ s ) d λ (µ n s , µ s )ds. (6.2) Term C 2 (t).
Recall (5.10), use (2.4), we have immediately:

C 2 (t) ≤ 1 λ t 0 +∞ 0 +∞ 0 |∂ x K(z, y)| (z ∧ y) λ |E n (s, z)| (µ n s + µ s ) (dy) ds ≤ κ 1 λ t 0 +∞ 0 +∞ 0 |E n (s, z)|z λ-1 y λ (µ n s + µ s ) (dy)dz ds = κ 1 λ t 0 d λ (µ n s , µ s ) M λ (µ n s + µ s )ds. (6.3) Term C 3 (t):
As before, recalling (5.12), we write:

C 3 (t) ≤ 2 2λ-1 κ 0 λ n t 0 M 2λ (µ n s ) ds. (6.4) Term C 4 (t):
The submartingale term is going to be treated exactly as in the case λ < 0. Using similar arguments as for the term A 3 (t), we get

E sup s∈[0,t] C 4 (s) ≤ 4 √ n +∞ 0 x λ-1 E t 0 µ n s (dv)µ n s (dy) , K(v, y) A1 (x,+∞) (v, y) 2 ds 1 2
dx.

Using now (5.9) and (2.4), we deduce that

E sup s∈[0,t] C 4 (s) ≤ 4 √ κ 0 √ n +∞ 0 x λ-1 E t 0 µ n s (dv)µ n s (dy) , (v ∧ y) λ 1 {x∈(0,v∧y)} + 1 {x∈(v∨y,v+y)} ds 1 2 dx. (6.5) First assume that x ≤ 1. Since 1 {x∈(0,v∧y)} ≤ (v ∧ y) λ x λ , since 1 {x∈(v∨y,v+y)} ≤ (v + y) λ x λ ≤ 2 λ (v ∨ y) λ
x λ , and since (v ∧ y) λ (v ∧ y) λ ≤ v λ y λ and (v ∧ y) λ (v ∨ y) λ = v λ y λ , we deduce that

µ n s (dv)µ n s (dy) , (v ∧ y) λ 1 {x∈(0,v∧y)} + 1 {x∈(v∨y,v+y)} ≤ 1 + 2 λ x λ [M λ (µ n s )] 2 .
Thus,

1 0 x λ-1 E t 0 µ n s (dv)µ n s (dy) , (v ∧ y) λ 1 {x∈(0,v∧y)} + 1 {x∈(v∨y,v+y)} ds 1 2 dx ≤ 1 + 2 λ 1 0 x λ 2 -1 dx × E t 0 [M λ (µ n s )] 2 ds 1 2 (6.6) 
= 2 √ 1 + 2 λ λ E t 0 [M λ (µ n s )] 2 ds 1 2 . Next consider x > 1. Since 1 {x∈(0,v∧y)} ≤ (v ∧ y) 2λ+ε
x 2λ+ε , and 1 {x∈(v∨y,v+y)} ≤

(v + y) 2λ+ε x 2λ+ε ≤ 2 2λ+ε (v ∨ y) 2λ+ε
x 2λ+ε , and since (v ∧ y) λ (v ∧ y) 2λ+ε ≤ v λ y 2λ+ε and (v ∧ y) λ (v ∨ y) 2λ+ε ≤ v λ y 2λ+ε + v 2λ+ε y λ , and using the symmetry, we deduce that

µ n s (dv)µ n s (dy) , (v ∧ y) λ 1 {x∈(0,v∧y)} + 1 {x∈(v∨y,v+y)} ≤ 1 + 2 2λ+ε+1 x 2λ+ε M λ (µ n s )M 2λ+ε (µ n s ). Thus, +∞ 1 x λ-1 E t 0 µ n s (dv)µ n s (dy) , (v ∧ y) λ 1 {x∈(0,v∧y)} + 1 {x∈(v∨y,v+y)} ds 1 2 dx ≤ 1 + 2 2λ+ε+1 +∞ 1 x -ε 2 -1 dx × E t 0 M λ (µ n s )M 2λ+ε (µ n s ) ds 1 2 (6.7) = 2 √ 1 + 2 2λ+ε+1 ε E t 0 M λ (µ n s )M 2λ+ε (µ n s ) ds 1 2 
.

Gathering (6.5), (6.6) and (6.7), we obtain:

E sup s∈[0,t] C 4 (s) ≤ 8 √ κ 0 √ n √ 1 + 2 λ λ E t 0 [M λ (µ n s )] 2 ds 1 2 + √ 1 + 2 2λ+ε+1 ε E t 0 M λ (µ n s )M 2λ+ε (µ n s ) ds 1 2 
. (6.8)

Conclusion.

Therefore, gathering (6.2), (6.3), (6.4) and (6.8), we obtain:

E sup s∈[0,t] d λ (µ n s , µ s ) ≤ d λ (µ n 0 , µ 0 ) + κ 0 + κ 1 λ t 0 E [d λ (µ n s , µ s ) M λ (µ n s + µ s )] ds + 2 2λ κ 0 n λ t 0 E [M 2λ (µ n s )] ds + 8 √ κ 0 √ n √ 1 + 2 λ λ E t 0 [M λ (µ n s )] 2 ds 1 2 + √ 1 + 2 2λ+ε+1 ε E t 0 M λ (µ n s )M 2λ+ε (µ n s ) ds 1 2 
.

Observe that M α (µ n 0 ) ≤ M 0 (µ n 0 ) + M 2λ+ε (µ n 0 ) for α = λ, 2λ. Proposition A.4 implies that for α ∈ (0, 1], M α (µ n t + µ t ) ≤ M α (µ n 0 + µ 0 ) a.s. and for α = 2λ, 2λ + ε, E [M α (µ n s )] ≤ M α (µ n 0 ) exp[s C λ,α M λ (µ n 0 )
] where C λ,α is a positive constant depending on λ, α, κ 0 and κ 1 . Since µ n 0 is deterministic, we deduce that

E sup s∈[0,t] d λ (µ n s , µ s ) ≤ d λ (µ n 0 , µ 0 ) + (1 + t) C λ,ε √ n (M 0 (µ n 0 ) + M 2λ+ε (µ n 0 )) exp[t C λ,ε M λ (µ n 0 )] +C λ,ε M λ (µ n 0 + µ 0 ) t 0 E [d λ (µ n s , µ s ) ] ds,
for some positive constant C λ,ε depending on λ, ε, κ 0 and κ 1 . We conclude using the Gronwall lemma.

Choice of the initial condition

The aim of this section is to prove Proposition 3.2. We thus fix λ ∈ (-∞, 1] \ {0} and µ 0 ∈ M + λ ∩ M + 2λ . We first treat the case where µ 0 is atomless, next the case where µ 0 is discrete.

7.1. Continuum System. -We assume that µ 0 is atomless. For 0 < a < A < +∞, we consider

µ 0 | K , the restriction of µ 0 to K = [a, A]. We consider also N points a = x 0 < x 1 < • • • < x N ≤ A such that: (7.1) µ 0 ([x i-1 , x i )) = 1 n , ∀ i = 1, • • • , N and µ 0 ([x N , A]) < 1 n .
We will use the points {x i } i=1,••• , N to construct the discrete measure µ n 0 choosing a and A following the value of λ as a function of n.

7.1.1. Case λ ∈ (-∞, 0):-First, we choose a n < A n as follows:

(7.2) a n = 1 √ n 1 |λ| and +∞ An x λ µ 0 (dx) ≤ 1 √ n .
Next, we assign the weight µ 0 ([x i-1 , x i )) = 1 n to the point x i and we set

(7.3) µ n 0 = 1 n Nn i=1 δ xi .
If α ≤ 0, we get:

M α (µ n 0 ) = 1 n Nn i=1 x α i = Nn i=1 x α i µ 0 ([x i-1 , x i )) = Nn i=1 +∞ 0 x α i 1 [xi-1, xi) (x)µ 0 (dx) ≤ Nn i=1 +∞ 0 x α 1 [xi-1, xi) (x)µ 0 (dx) = xN n an x α µ 0 (dx) ≤ M α (µ 0 ). (7.4)
For the distance, we have, with K n = [a n , A n ]:

d λ (µ 0 | Kn , µ 0 ) = +∞ 0 x λ-1 +∞ 0 1 (0,x) (y) (µ 0 | Kn -µ 0 ) (dy) dx = +∞ 0 x λ-1 [µ 0 ((0, x)) 1 x<an + µ 0 ((A n , x)) 1 x>An + µ 0 ((0, a n )) 1 x>an ] dx = an 0 an y x λ-1 dx µ 0 (dy) + +∞ An +∞ y x λ-1 dx µ 0 (dy) + an 0 +∞ an x λ-1 dx µ 0 (dy) ≤ 2 an 0 +∞ y x λ-1 dx µ 0 (dy) + +∞ An +∞ y x λ-1 dx µ 0 (dy) ≤ 2a |λ| n |λ| +∞ 0 y 2λ µ 0 (dy) + 1 |λ| +∞ An y λ µ 0 (dy) ≤ 1 |λ| √ n (2M 2λ (µ 0 ) + 1) , (7.5) 
we used (7.2) for the last inequality. Next, we introduce the notation i x = max{i :

x i ≤ x; i = 0, • • • , N n } for x > a n . We remark that µ n 0 ((0, x]) = 0 if x ≤ a n and µ n 0 ((0, x]) = µ 0 ((a n , x ix ]) if
x > a n . Hence,

d λ (µ n 0 , µ 0 | Kn ) = +∞ 0 x λ-1 +∞ 0 1 (0,x) (y) (µ n 0 -µ 0 | Kn ) (dy) dx = An an x λ-1 |µ 0 ([a n , x ix )) -µ 0 ([a n , x))| dx + +∞ An x λ-1 |µ 0 ([a n , x ix )) -µ 0 ([a n , A n ))| dx ≤ An an x λ-1 µ 0 ((x ix , x)) dx + +∞ An x λ-1 µ 0 ([x Nn , A n )) dx ≤ 2 n +∞ an x λ-1 dx = 2 |λ|n a λ n ≤ 2 |λ| √ n . (7.6) We used |µ 0 ([a n , x ix )) -µ 0 ([a n , x))| = µ 0 ((x ix , x)) ≤ µ 0 ([x j-1 , x j )) ≤ 1
n for some j = 1, • • • , N , and (7.2). Finally, from (7.5) and (7.6), we obtain:

d λ (µ n 0 , µ 0 ) ≤ d λ (µ n 0 , µ 0 | Kn ) + d λ (µ 0 | Kn , µ 0 ) ≤ 1 |λ| √ n (2M 2λ (µ 0 ) + 3) .
7.1.2. Case λ ∈ (0, 1]:-First, we choose a n < A n as follows:

(7.7)

an 0 x λ µ 0 (dx) ≤ 1 √ n and A n = √ n 1 λ .
Next, we assign the weight µ 0 ([x i-1 , x i )) = 1 n to the point x i-1 , recall that x 0 = a n . We set (7.8)

µ n 0 (dx) = 1 n Nn-1 i=0 δ xi .
If α ≥ 0, we get:

M α (µ n 0 ) = 1 n Nn-1 i=0 x α i = Nn i=1 x α i-1 µ 0 ([x i-1 , x i )) = Nn i=1 +∞ 0 x α i-1 1 [xi-1, xi) (x)µ 0 (dx) ≤ Nn i=1 +∞ 0 x α 1 [xi-1, xi) (x)µ 0 (dx) = xN n an x α µ 0 (dx) ≤ M α (µ 0 ). (7.9)
For the distance, we have, with K n = [a n , A n ]: we used (7.7) for the last inequality. Next, using the notation i x = min{i :

d λ (µ 0 | Kn , µ 0 ) = +∞ 0 x λ-1 +∞ 0 1 [x,+∞) (y) (µ 0 | Kn -µ 0 ) (dy) dx = +∞ 0 x λ-1 [µ 0 ([x, a n )) 1 x<an + µ 0 ([x, +∞)) 1 x>An + µ 0 ([A n , +∞)) 1 x<An ] dx
x i ≥ x; i = 0, • • • , N -1} for x > a n , we remark that µ n 0 ([x, +∞)) = 0 if x ≥ A n and µ n 0 ([x, +∞)) = µ 0 ([x ix , A n )) if x < A n . Hence, d λ (µ n 0 , µ 0 | Kn ) = +∞ 0 x λ-1 +∞ 0 1 (x,+∞) (y) (µ n 0 -µ 0 | Kn ) (dy) dx = An an x λ-1 |µ 0 ((x ix , A n )) -µ 0 ((x, A n ))| dx + an 0 x λ-1 |µ 0 ([x ix , A n )) -µ 0 ((a n , A n ))| dx = An an x λ-1 µ 0 ((x, x ix ))dx ≤ 1 n An 0 x λ-1 dx = 1 λ n A λ n ≤ 1 λ √ n , (7.11) 
we used |µ 0 ((x ix , A n ))µ 0 ((x, A n ))| = µ 0 ((x, x ix )) ≤ µ 0 ([x j-1 , x j )) for some j = 1, • • • , N , and (7.7). Finally, from (7.10) and (7.11), we deduce:

d λ (µ n 0 , µ 0 ) ≤ 2 λ √ n (M 2λ (µ 0 ) + 1) .
7.2. Discrete System. -Let us thus, consider µ 0 ∈ M + with support in N, i.e.

(7.12)

µ 0 = k≥1 α k δ k , with α k ∈ R + .
We set for A ∈ N:

(7.13) µ A 0 = A k=1 α k δ k .
7.2.1. Case λ ∈ (-∞, 0):-We choose A n such that:

(7.14) k>An α k k λ ≤ 1 √ n ,
and we set, (7.15)

µ n 0 = 1 n An k=1 α n k δ k , with (7.16) α n 1 = ⌊nα 1 ⌋, α n k = ⌊n(α 1 + • • • + α k )⌋ -⌊n(α 1 + • • • + α k-1 )⌋ for k = 2, • • • , A n ,
where ⌊•⌋ is the floor function. Remark that chosen in this way, the α n k are non-negative integers and µ n 0 can be written as

1 n Nn i=1 δ xi , hence µ n 0 is the measure we search. Observe that for k = 1, • • • , A n , we have k i=1 1 n α n i -α i = 1 n (α n 1 + • • • + α n k ) -(α 1 + • • • + α k ) = 1 n ⌊n (α 1 + • • • + α k )⌋ -(α 1 + • • • + α k ) ≤ 1 n . (7.17)
If α ≤ 0, we have:

M α (µ n 0 ) = 1 n An k=1 α n k k α = 1 n ⌊nα 1 ⌋ + 1 n An k=2 ⌊n(α 1 + • • • + α k )⌋k α - 1 n An k=2 ⌊n(α 1 + • • • + α k-1 )⌋k α = 1 n ⌊nα 1 ⌋ + 1 n An k=2 ⌊n(α 1 + • • • + α k )⌋k α - 1 n An-1 k=1 ⌊n(α 1 + • • • + α k )⌋(k + 1) α = 1 n (⌊nα 1 ⌋ + A α n ⌊n(α 1 + • • • + α An )⌋ -2 α ⌊nα 1 ⌋) + 1 n An-1 k=2 ⌊n(α 1 + • • • + α k )⌋ (k α -(k + 1) α ) ≤ α 1 (1 -2 α ) + A α n (α 1 + • • • + α An ) + An-1 k=2 (α 1 + • • • + α k ) (k α -(k + 1) α ) = An-1 k=1 α k   A α n + An-1 j=k (j α -(j + 1) α )   + A α n α An = An k=1 α k k α ≤ M α (µ 0 ). (7.18)
Next, for the distance, we have:

d λ µ An 0 , µ 0 ≤ +∞ 0 x λ-1 +∞ 0 1 (0,x) (y) µ An 0 -µ 0 (dy) dx = +∞ 0 x λ-1 x 0 k>An α k δ k (dy)dx = k>An α k +∞ k x λ-1 dx = 1 |λ| k>An α k k λ ≤ 1 |λ| √ n , (7.19)
we used (7.14). Next,

d λ µ n 0 , µ An 0 = +∞ 0 x λ-1 +∞ 0 1 (0,x) (y) µ n 0 -µ An 0 (dy) dx = An-1 k=1 k+1 k x λ-1 k i=1 1 n α n i -α i dx + +∞ An x λ-1 An i=1 1 n α n i -α i dx ≤ 2 n +∞ 1 x λ-1 dx ≤ 2 |λ|n , (7.20)
we used (7.17) for the last inequality. Finally, from (7.19) and (7.20), we have:

d λ (µ n 0 , µ 0 ) ≤ d λ µ n 0 , µ An 0 + d λ µ An 0 , µ 0 ≤ 1 |λ| √ n 1 + 2 √ n .
7.2.2. Case λ ∈ (0, 1]:-We set (7.21)

A n = √ n 1 λ + 1,
Note that chosen in this way, we have

A -λ n ≤ 1 √ n , implying (7.22) 
k≥An α k k λ ≤ A -λ n k≥An α k k 2λ ≤ 1 √ n M 2λ (µ 0 ).
We set the measure µ n 0 as defined in (7.15), with (7.23)

α n k =     n i≥k α i     -     n i≥k+1 α i     , for k = 1, • • • , A n .
Observe that, since k≥1 α k = M 0 (µ 0 ) ≤ M λ (µ 0 ) = k≥1 α k k λ < +∞, the weights {α n k } k≥1 are well-defined. Remark that chosen in this way, the α n k are non-negative integers and µ n 0 can be written as 1 n Nn i=1 δ xi , hence µ n 0 is the measure we search.

For 1 ≤ j ≤ A n , we have:

An k=j 1 n α n k -α k = 1 n     n i≥j α i     - 1 n     n i≥An+1 α i     - An k=j α k ≤ 1 n     n An i=j α i     + 1 n - An k=j α k ≤ 1 n + 1 n     n An i=j α i     - An k=j α k ≤ 2 n . (7.24)
If α ≥ 0, we have:

M α (µ n 0 ) = 1 n An k=1 α n k k α = 1 n An k=1     n i≥k α i     k α - 1 n An k=1     n i≥k+1 α i     k α = 1 n An k=2     n i≥k α i     [k α -(k -1) α ] + 1 n     n i≥1 α i     - A α n n     n i≥An+1 α i     ≤ k≥1   i≥k α i   [k α -(k -1) α ] = i≥1 α i i k=1 [k α -(k -1) α ] = M α (µ 0 ), (7.25)
For the distance, we have :

d λ µ An 0 , µ 0 = +∞ 0 x λ-1 +∞ 0 1 [x,+∞) (y) µ An 0 -µ 0 (dy) dx = +∞ 0 x λ-1 +∞ x k>An α k δ k (dy)dx = k>An α k k 0 x λ-1 dx = 1 λ k>An α k k λ ≤ 1 λ √ n M 2λ (µ 0 ), (7.26) 
we used (7.22). Next,

d λ µ n 0 , µ An 0 = +∞ 0 x λ-1 +∞ 0 1 [x,+∞) (y) µ n 0 -µ An 0 (dy) dx = An j=1 j j-1 x λ-1 An k=j 1 n α n k -α k dx ≤ 2 n An 0 x λ-1 dx ≤ 2A λ n λ n ≤ 4 λ √ n , (7.27)
we used (7.24) and (7.21). Finally, from (7.26) and (7.27), we obtain: Hence, according to (7.4), (7.9), (7.18) and (7.25), we deduce, (7.28)

d λ (µ n 0 , µ 0 ) ≤ d λ (µ n 0 , µ An 0 ) + d λ (µ An 0 , µ 0 ) ≤ 1 λ √ n (M 2λ (µ 0 ) + 4) .
N n = nM 0 (µ n 0 ) ≤ nM 0 (µ 0 ). This concludes the proof of Proposition 3.2.

Appendix A

This section is devoted to some technical issues.

Lemma A.1. -Consider λ ∈ (-∞, 1] \ {0}. Then, there exists a positive constant C φ depending on φ and λ such that

(A.1)    if λ ∈ (-∞, 0), (x + y) λ |(Aφ)(x, y)| ≤ C φ (xy) λ ∀φ ∈ H λ , if λ ∈ (0, 1], (x + y) λ |(Aφ)(x, y)| ≤ C φ 1 + x 2λ + y 2λ ∀φ ∈ H λ , if λ ∈ (0, 1], (x ∧ y) λ |(Aφ)(x, y)| ≤ C φ (xy) λ ∀φ ∈ H e λ .
Proof. -Assume first that λ ∈ (-∞, 0) and φ ∈ H λ . Since |φ(x)| ≤ Cx λ for some constant C > 0, we have

(x + y) λ |(Aφ)(x, y)| ≤ C(x λ ∧ y λ ) (x + y) λ + x λ + y λ ≤ C(xy) λ .
Next, for λ ∈ (0, 1] and φ ∈ H λ , since |φ(x)| ≤ C(1 + x λ ) for some constant C > 0, we have

(x + y) λ |(Aφ)(x, y)| ≤ C(x + y) λ 3 + (x + y) λ + x λ + y λ ≤ C 1 + x 2λ + y 2λ .
Finally, for λ ∈ (0, 1] and φ(x) ∈ H e λ , there exists C > 0 such that |φ(x)| ≤ Cx λ and we have (

x ∧ y) λ |(Aφ)(x, y)| ≤ C(x ∧ y) λ (x + y) λ + x λ + y λ ≤ C(xy) λ . Lemma A.2. -Let λ ∈ (-∞, 1] \ {0} and K ∈ W 1,∞ (ε, 1/ε) 2 for every ε ∈ (0, 1). If K satisfies (2.2), then for all (x, v, y) ∈ (0, +∞) 3 : K(v, y) 1 (0,x] (v + y) -1 (0,x] (v) -1 (0,x] (y) = K(x -y, y)1 (0,x] (v + y) -K(x, y)1 (0,x] (v) (A.2) - +∞ v ∂ x K(z, y) 1 (0,x] (z + y) -1 (0,x] (z) -1 (0,x] (y) dz.
If K satisfies (2.3) or (2.4), then for all (x, v, y) ∈ (0, +∞) 3 :

K(v, y) 1 (x,+∞) (v + y) -1 (x,+∞) (v) -1 (x,+∞) (y) = K(x -y, y)1 x>y 1 (x,+∞) (v + y) -K(x, y)1 (x,+∞) (v) (A.3) + v 0 ∂ x K(z, y) 1 (x,+∞) (z + y) -1 (x,+∞) (z) -1 (x,+∞) (y) dz.
Proof. -For λ ∈ (-∞, 1] \ {0} we have that K(•, •) and its weak partial derivatives belong to L ∞ (ε, 1/ε) 2 , whence, for all 0 < a ≤ b < +∞ and for all y > 0 (see for exemple [START_REF] Ziemer | Weakly differentiable functions[END_REF]):

(A.4) b a ∂ x K(z, y)dz = K(b, y) -K(a, y).
First assume (2.2), and fix λ ∈ (-∞, 0). Remark that:

+∞ a ∂ x K(z, y)dz = lim b→+∞ b a ∂ x K(z, y)dz = lim b→+∞ K(b, y) -K(a, y) = -K(a, y). Hence, +∞ v ∂ x K(z, y)1 (0,x] (z + y)dz = 1 x>y 1 v≤x-y +∞ 0 ∂ x K(z, y)1 v≤z≤x-y dz = 1 (0,x] (v + y) [K(x -y, y) -K(v, y)] . Next, - +∞ v ∂ x K(z, y)1 (0,x] (z)dz = -1 v≤x +∞ 0 ∂ x K(z, y)1 v≤z≤x dz = 1 (0,x] (v) [K(v, y) -K(x, y)] , - +∞ v ∂ x K(z, y)1 (0,x] (y)dz = -1 y≤x +∞ 0 ∂ x K(z, y)1 v≤z dz = 1 (0,x] (y)K(v, y).
Adding these three terms to the terms on the right-hand of (A.2) the result follows.

Next, assume (2.3) or (2.4). Observe that for (x, y, z) ∈ (0, +∞) 3 , we have

(A.5) 1 z>x-y -1 y>x = 1 y≤x 1 z>x-y . Thus, v 0 ∂ x K(z, y) [1 z+y>x -1 z>x -1 y>x ] dz = v 0 ∂ x K(z, y) [1 y≤x 1 z>x-y -1 z>x ] dz = 1 y≤x 1 v>x-y v x-y ∂ x K(z, y)dz -1 v>x v x ∂ x K(z, y)dz = 1 y≤x 1 v>x-y [K(v, y) -K(x -y, y)] -1 v>x [K(v, y) -K(x, y)] = [1 v>x-y -1 y>x ] K(v, y) -1 y<x 1 v>x-y K(x -y, y) -1 v>x [K(v, y) -K(x, y)] .
Adding these terms to the remaining terms on the right-hand of (A.3), the result follows. Now we will show a lemma which is useful to show Proposition A.4 stating that the α-moments of µ 0 and µ n 0 remain bounded in time.

Lemma A.3. -Consider α ∈ R, λ ∈ (-∞, 1] and a kernel K satisfying either (2.2), (2.3) or (2.4). We set ϑ(x) = x α . Then, (i) if α ∈ (-∞, 1], (Aϑ)(x, y) ≤ 0, for (x, y) ∈ (0, +∞) 2 , (ii) if α ∈ (1, +∞), K(x, y) |(Aϑ)(x, y)| ≤ C λ,α x α y λ + x λ y α , for (x, y) ∈ (0, +∞) 2 , where C λ,α is a positive constant depending on λ, α and κ 0 .

Proof. -Point (i) is obvious, since for α ≤ 1, (x + y) αx αy α ≤ (x α + y α )x αy α = 0.

Next, if α > 1, using (2.2), (2.3) or (2.4), there holds K(x, y) ≤ κ 0 (x λ + y λ ). We get

K(x, y)|(Aϑ)(x, y)| ≤ κ 0 x λ [|(x + y) α -x α | + y α ] + κ 0 y λ [|(x + y) α -y α | + x α ]
≤ ακ 0 x λ y α + x α y λ + (x + y) α-1 x λ y + xy λ ≤ C x λ y α + x α y λ + x α-1 + y α-1 x λ y + xy λ ≤ C x λ y α + x α y λ + x λ+α-1 y + xy λ+α-1 .

Note that x λ+α-1 y = x α y λ y x 1-λ = x λ y α x y α-1 ≤ x α y λ 1 x>y + x λ y α 1 x≤y . We have an equivalent bound for the fourth term and the result follows.

Proposition A.4. -Consider λ ∈ (-∞, 1] \ {0} and a coagulation kernel K satisfying either (2.2), (2.3) or (2.4). Let µ 0 ∈ M + λ , and denote by (µ t ) t∈[0,T ) the (µ 0 , K, λ)-weak solution to Smoluchowski's equation. Let µ n 0 be a deterministic discrete measure and (µ n t ) t≥0 the associated (n, K, µ Next, consider (2.10) and remark that φ X i s-+ X j s-φ X i s-φ X j s-= (Aφ) X i s-, X j s-. From Lemma A.3.-(i) and since J is a positive measure, we deduce that the jumps of M α (µ n t ) = µ n t (dx), φ(x) are negative and the conclusion follows.

For point (b), consider (2.8). According to Lemma A.3.-(ii), we deduce:

d dt M α (µ t ) = 1 2
µ t (dx)µ t (dy), (Aφ)(x, y)K(x, y) ≤ C λ,α 2 µ t (dx)µ t (dy),

x α y λ + x λ y α ≤ C λ,α M λ (µ t ) M α (µ t ) ≤ C λ,α M λ (µ 0 ) M α (µ t ) ,
we used the point (a). We conclude using the Gronwall lemma.

Next, we take the expectation in (2.11). Remarking that (Aφ) (x, x) ≥ 0, using Lemma A.3.-(ii), since µ n 0 is deterministic, and since M α (µ n t ) = µ n t (dx), φ(x) , we deduce: where we used the point (a). We conclude using the Gronwall lemma.

Finally, we present the Proof of Lemma 5.1. -Assume that λ ∈ (0, 1] and recall (5.1). First, for (i) and (ii), by direct integration, we have

+∞ 0 x λ-1 θ n (x) dx = 1 √ n 1 0 x λ-1 dx + 1 √ n +∞ 1 x -λ-ε-1 dx = 1 λ √ n + 1 (λ + ε) √ n ≤ 2 λ √ n ,
and

+∞ 0 x 2λ-1 θ n (x) dx = 1 √ n 1 0 x 2λ-1 dx + 1 √ n +∞ 1 x -ε-1 dx = 1 2λ √ n + 1 ε √ n ≤ (λ + ε) λε √ n .
Next, for (iii) we have: We have the following bounds: if v ∧ y ≤ 1, then

A n (v, y) = v λ +∞ 0 x λ-1 θ n (x) 
I n (v, y) = v λ v∧y 0 √ n x λ-1 dx = √ n λ v λ (v ∧ y) λ ≤ √ n λ v λ y λ .
Next, if v ∧ y > 1, Thus, in any case

I n (v, y) = v λ 1 0 √ n x λ-1 dx + v λ v∧y 1 √ n x 3λ+ε-1 dx ≤ √ n v λ 1 λ + (v ∧ y) 3λ+ε 3λ + ε ≤ √ n λ v λ + (v ∧ y) 3λ+ε v λ
I n (v, y) = √ n λ v λ y λ + (v ∧ y) 2λ (v ∨ y) 2λ+ε 1 λ∈(0,1/2) + (v ∧ y)(v ∨ y) 4λ+ε-1 1 λ∈[1/2,1] .
Next, since x λ-1 and θ n (x) are non-increasing functions, according to the mean value theorem, we deduce that J n (v, y) ≤ v λ (v∨y) λ-1 θ n (v+y) (v ∧ y).

First, assume that v + y < 1, then we get

J n (v, y) ≤ √ n v λ (v ∨ y) λ-1 (v ∧ y) ≤ √ n v λ y λ .
Next, assume that v + y ≥ 1, then

J n (v, y) ≤ √ n v λ (v ∨ y) λ-1 (v + y) 2λ+ε (v ∧ y) ≤ 2 2λ+ε √ n v λ (v ∧ y)(v ∨ y) 3λ+ε-1 ≤ 2 2λ+ε √ n (v ∧ y) 2λ (v ∨ y) 2λ+ε 1 λ∈(0,1/2) + (v ∧ y)(v ∨ y) 4λ+ε-1 1 λ∈[1/2,1] .
When λ ∈ (0, 1/2), we used (v ∧ y) ≤ (v ∧ y) 2λ (v ∨ y) 1-2λ to deduce the bound v λ (v ∧ y)(v ∨ y) 3λ+ε-1 ≤ v λ (v ∧ y) 2λ (v ∨ y) 1-2λ (v ∨ y) 3λ+ε-1 ≤ (v ∧ y) 2λ (v ∨ y) 2λ+ε .

Thus, in any case

J n (v, y) ≤ √ nv λ y λ + 2 2λ+ε √ n (v ∧ y) 2λ (v ∨ y) 2λ+ε 1 λ∈(0,1/2) + (v ∧ y)(v ∨ y) 4λ+ε-1 1 λ∈[1/2,1] .
Finally, we deduce the bound:

A n (v, y) ≤ 2 √ n λ v λ y λ + √ n 2 2λ+ε + 1 λ (v ∧ y) 2λ (v ∨ y) 2λ+ε 1 λ∈(0,1/2) + (v ∧ y)(v ∨ y) 4λ+ε-1 1 λ∈[1/2,1] .
This concludes the proof of Lemma 5.1.

y

  2λ µ 0 (dy) ≤ 1 λ √ n (1 + 2M 2λ (µ 0 )) , (7.10)

7. 3 . 1 n

 31 Conclusion. -In any case, (λ ∈ (-∞, 1] \ {0} and µ 0 either atomless or with support in N), we have built a measure of the form µ n 0 = Nn i=1 δ xi satisfying the desired conditions on the moments and distance. It is straightforward to show that N n = n µ n 0 (dx), 1 .

E 0 E 1 2n t 0 E 0 E) t 0 E

 01000 [M α (µ n t )] = M α (µ n [ µ n s (dx)µ n s (dy), (Aφ) (x, y)K(x, y) ] ds -[ µ n s (dx), (Aφ) (x, x)K(x, x) ] ds, ≤ M α (µ n 0 ) + C λ,α 2 t 0 E µ n s (dx)µ n s (dy), x α y λ + x λ y α ds ≤ M α (µ n 0 ) + C λ,α t [M λ (µ n s ) M α (µ n s )] ds ≤ M α (µ n 0 ) + C λ,α M λ (µ n 0 [M α (µ n s )] ds,

( 1

 1 x<v∧y + 1 v∨y<x<v+y ) dx = v n (v, y) + J n (v, y).

  λ + (v ∧ y) 2λ (v ∨ y) 2λ+ε 1 λ∈(0,1/2) + (v ∧ y)(v ∨ y) 4λ+ε-1 1 λ∈[1/2,1] .

  This is a general formulation and it embraces the two previous equations : if µ 0 is discrete (i.e. supp(µ 0 ) ⊂ N), then this corresponds to the "discrete coagulation equation" (1.1), while when µ 0 is continuous (i.e. µ 0 (dx) = µ 0 (x)dx), this corresponds to the "continuous coagulation equation" (1.2). Formulation (2.8) is standard, see[START_REF] Norris | Smoluchowski's coagulation equation: uniqueness, non-uniqueness and hydrodynamic limit for the stochastic coalescent[END_REF].
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