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SMOLUCHOWSKI’'S EQUATION: RATE OF CONVERGENCE OF THE
MARCUS-LUSHNIKOV PROCESS

by

Eduardo Cepeda and Nicolas Fournier

Abstract. — We derive a satisfying rate of convergence of the Marcus-Lushnikov process toward the
solution to Smoluchowski’s coagulation equation. Our result applies to a class of homogeneous-like
coagulation kernels with homogeneity degree ranging in (—oo, 1]. It relies on the use of a Wasserstein-
type distance, which has shown to be particularly well-adapted to coalescence phenomena. It was
introduced and used in preceeding works Fournier and Laurengot (2006) and Fournier and Lécherbach
(2009).

Mathematics Subject Classification (2000): 60H30, 45K05.
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To appear in “Stochastic Procceses and their Applications” (accepted on march 2011).

1. Introduction

We are interested in coalescence which is a widespread phenomenon: it arises in physics, chem-
istry, astrophysics, biology and mathematics.

We consider a possibly infinite system of particles, each particle being fully identified by its
mass ranging in the set of positive real numbers. The only mechanism taken into account is the
coalescence of two particles with masses x and y into a single one with mass x + y at some given
rate (the “coagulation kernel”) K (x,y) = K(y,z) > 0.

— We can consider a system of microscopic particles and the following system of differential
equations for the concentrations p;(x) of particles of mass x = 1,2, 3, ... at time ¢ € [0, +00):

x—1 +00
(1.1) Orpue(x) = % S Ky x =y —y) — () Y K(w,y)ue(y).

The first sum in (1.1) on the right corresponds to coagulation of smaller particles to produce
one of mass x, whereas the second sum corresponds to removal of particles of mass x as they
in turn coagulate to produce larger particles.

Analogous integro-differential equations allow us to consider a continuum of masses . In
this case the system can also be described by the concentration p:(x) of particles of mass
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x € (0,400) at time ¢ € [0, +00). Then p(x) solves a nonlinear equation:

+oo

12 o) =5 [ K=ot -y~ o) [ Ky
0 0

Equation (1.2) is known as the continuous Smoluchowski coagulation equation and (1.1) is
its discrete version.

— When the particles are macroscopic and when the rate of coagulation is not infinitesimal,
the frame of study of the dynamics of such a system is stochastic. When the initial state
consists of a finite number of macroscopic particles, the stochastic coalescent obviously exists
(see [1]) and it is known as the Marcus-Lushnikov process.

In preceding works several results have been obtained on the existence and uniqueness of weak
solutions to Smoluchowski’s coagulation equation. The general framework was formulated in [15]
who obtained some remarkable well-posedness results. In [7], homogeneous-like kernels are con-
sidered and it has been seen that the well-posedness holds in the class of measures having a finite
moment of order the degree of homogeneity of the coagulation kernel.

Aldous [1] presents the Marcus-Lushnikov process as an approximation for the solution of Smolu-
chowski’s equation (see [14, 13] for further information). Since then some results on convergence
have been obtained in [15] and [10], see also [6]. A class of stochastic algorithms in which the
number of particles remains constant in time was introduced in [3] and has been extended to the
discrete coagulation-fragmentation case in [11].

We investigate the rate of convergence of the Marcus-Lushnikov process to the solution of the
Smoluchowski coagulation equation as the number of particles tends to infinity. This problem is
interesting because on the one hand it has a physical meaning: the Smoluchowski equation is often
derived by passing to the limit in the Marcus-Lushnikov process, and on the other hand from a
numerical point of view: this stochastic process can be simulated exactly. Thus it seems natural
to use it in order to approximate the solution to Smoluchowski’s coagulation equation.

Our study is based on the use of a specific Wasserstein-type distance dy between the solution
to Smoluchowski’s equation and its stochastic approximation. This distance depends on the ho-
mogeneity parameter \ of the coagulation kernel. This specific distance has been introduced in
[7] to prove some results on the well-posedness of the Smoluchowski coagulation equation and in
[5, 8] to study the stochastic coalescent. The result of the present work applies to a family of
homogeneous-like coagulation kernels. These kernels are of particular importance in applications
see Table 1 in [1] or the list provided in [7].

We point out that since we are using a finite particle system to approximate the evolution in
time of the solution to the Smoluchowski equation which describes an infinite particle system, it
is necessary to dispose of a mechanism to construct an initial condition for the Marcus-Lushnikov
process from a general measure-valued initial condition of Smoluchowski’s equation. This initial
condition needs to satisfy, on the one hand, a convergence condition to assure the convergence of
the stochastic process to the solution to Smoluchowski’s equation for all time ¢ as the number of
particles grows (the usual condition of weak convergence is replaced by convergence in the sense of
the distance we use), and on the other hand it must obey a rate of convergence in order to control
the overall rate of convergence of such an approximation.

Very roughly, we consider a homogeneous-like coagulation kernel with degree of homogeneity
A € (—o0,1]\ {0} (including K (z,y) = (z +y)*). For (u;)i>0 the solution to the corresponding
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Smoluchowski’s equation and for (u}):>¢ the corresponding Marcus-Lushnikov process, we prove
that
Cr
sup E[d(uf's pe)] < —=,
1€l0,7) t Vi

as soon as fo satisfies some technical conditions and for a good choice of the initial state of the
Marcus-Lushnikov process pi of the form % Zgﬂ 0z,- We can make the following remarks.

1. Recalling the Central Limit Theorem (CLT), this rate of convergence seems to be optimal,
since the convergence of pj to p; is a generalized Law of Large Numbers.

2. In [7] it has been seen that only one moment is demanded to show the well-posedness for the
Smoluchowski equation. In the present work, we need to demand more moments, but we believe
that it is very difficult to avoid such conditions.

3. The only works giving an explicit result on the rate of convergence of the Marcus-Lushnikov
process toward the solution to Smoluchowski’s coagulation equation, known by us, are:

- Norris [15], who gives an estimate using a “Large Deviations” approach for the discrete case
(supp(uo) C N).

- Deaconu, Fournier and Tanré [2], where a CLT-type result is shown for the discrete case and
for a bounded coagulation kernel K, furthermore in this work a different particle system is
used.

- Kolokoltsov [12], who uses analytic methods of the theory of semigroups applied to the
Markov infinitesimal generator. He also uses a different distance to ours, namely the author
uses the topology of the dual to the weighted spaces of continuously differentiable functions
or certain weighted Sobolev spaces. He then gives a CLT result for the discrete case with
a coagulation kernel satisfying K(z,y) < ¢(1 + /z)(1 + \/y) and for the continuous case
when K is two times differentiable with all its derivatives bounded. Unfortunately the case
K(z,y) = (z +y)* is excluded for any value of A € (—o0, 1]\ {0}.

Our work thus gives the first result on the rate of convergence covering the continuous case for
some homogeneous kernels.

For the case A < 0 we follow the ideas found in [7], but for the case A € (0,1] the proof is
much more difficult and the calculations are faced in a completely different way. Namely we use
the It6 formula for an approximation of the absolute value function and handle very delicately the
resulting terms.

The paper is organized as follows: in Section 2 we give the notation and definitions we use in
this document, in Section 3 we state our main result. The proof is developed in Sections 4, 5 and
6. We give also a method to construct an initial condition for the Marcus-Lushnikov process in
Section 7 and we conclude the document giving some technical details which are useful all along
the paper in Appendix A.

2. Notation, Assumptions and Definitions

In this section we present our assumptions, give the definition of weak solutions to Smolu-
chowski’s coagulation equation and then we recall the dynamics of the Marcus-Lushnikov process.

Notation 2.1. — We denote by M™ the space of non-negative Radon measures on (0,+00). For

a measure [ and a function ¢, we set (p(dx), ¢(x)) = O+°o o(z)u(dx). We also define the operator
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A for all measurable functions ¢ : (0,+00) = R, by

(2.1) (A9)(x,y) = ¢z +y) — d(z) — d(y) ¥ (2,y) € (0, +00)*.
Finally, we will use the notation x Ay = min{z,y} and z V y = max{x,y} for (x,y) € (0, +00)2.

We consider a coagulation kernel K : (0, 4+00) x (0,400) — [0,400), symmetric i.e. K(z,y) =
K(y,z) for (z,y) € (0,+00)%. We further assume it belongs to W1 ((e,1/¢)?) for every ¢ € (0,1)
and one of the following conditions V (z,y) € (0, +00):

(22)  Ae(-00,0), K(r,y) <ro(e+y)? and (@ +) [0,K(2,)] < ma 1y,

(2:3) Ae (0,1,  K(z,y) <ro(z+y)*and (22 Ayt) [0.K (2, y)| < mia? 'y

(
(

)

(2.4) A€ (0,1], K(z,y) < ko (z Ay)* and (22 Ay?) [0, K (2,y)] < iz~ ly?,

for some positive constants kg and k1. We refer to [7] for a list of physical kernels sat1sfy1ng
conditions (2.2) and (2.3). Remark that for any A € (—oo,1] \ {0}, K(z,y) = (z + y)* satisfies
(2.2) or (2.3).

Definition 2.2. — Consider \ € (—oo,1]\ {0}. For u € M™*, we set:
+oo
(2.5) My(pn) = / o p(dx) and MY ={veM": M\(v) < +o0}.
0

For p € M™, we set, for x € (0,400):

“+oo

+oo
(2.6) Fi(z) = / Lo pooy () u(dy) and  GH(z) = / 10,01 (4) 1(dy).

We define the distance on M;\" as

+oo
(2.7 i) = [ o E@)ds,
0
where E(x) = G*(x) — G*(x) if X € (—0,0) and E(x) = F*(x) — FA(x) if X € (0,1].
We remark that dy is well-defined on M. Indeed we have dy(u, i) < MIMX (u+p) for X €
(—o00,1]\ {0}. See [4] for a deeper study of this distance in the discrete and continuous cases.

We excluded the case A = 0 for two reasons. First, dy is not well-defined on ./\/lar . Next, when
trying to extend our study to this case, we are not able to obtain a better result than those of
Kolokoltsov [12].

Definition 2.3. — For A € (—o0,1] \ {0} we introduce the spaces of test functions needed to
define weak solutions:

if AN€(—00,0): Hy={d:(0,+00) = R such that sup,-,z *¢(z)| < 400},
if A€ (0,1]: Hx = {¢: (0, +00) = R such that sup,o(1+z) *|$(z)| < +oo},
if Ae(0,1]: $ ={0:(0,+00) = R such that sup,qz~*|p(x)| < +oo} .

It is necessary to introduce the space HS to study the case (2.4).
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2.1. The Smoluchowki coagulation equation. — The weak formulation of the Smoluchowski
coagulation equation is given by

d 1
(2:8) a e(d2), 9(@)) = 5 (ue(drue(dy), (A) (@, y) Kz, ),

see Notation 2.1. This is a general formulation and it embraces the two previous equations : if
1o is discrete (i.e. supp(up) C N), then this corresponds to the “discrete coagulation equation”
(1.1), while when pg is continuous (i.e. po(dr) = po(x)dx), this corresponds to the “continuous
coagulation equation” (1.2). Formulation (2.8) is standard, see [15].

Definition 2.4. — Let A € (—o0, 1]\ {0}, a coagulation kernel K satisfying either (2.2), (2.3)
or (2.4), and p'" € M. We will then say that (u)e>0 C M™T is a (0", K, \)-weak solution to
Smoluchowski’s equation if the following conditions are verified:
(Z) po = p'",
(i) the application t — (u(dx), p(z)) is differentiable on [0,+00) and satisfies (2.8) for each
¢ € Hy (cases (2.2) and (2.3)) or for each ¢ € HS (case (2.4)),
(111) for all T € [0, +00)

(2.9) sup My (ps) < +o00,
s€[0,T]

for a =X\ (cases (2.2) and (2.4)) or for a =0, 2\ (case (2.3)).

We demand more finite moments of po than in [7] to assure the convergence of the Marcus-
Lushnikov process. According to the hypothesis on the kernel (2.2), (2.3) or (2.4) together with
(2.9) and Lemma A.1, the integrals in the weak formulation (2.8) are absolutely convergent and
bounded with respect to ¢ € [0, 7] for every T.

Under (2.2) or (2.4), the existence and uniqueness of such weak solutions have been established
in [7] for any p* € /\/l;r Under (2.3), the existence and uniqueness of weak solutions satisfying
(2.9) with o = A have also been checked in [7] for any u" € M. Using furthermore Proposition
A4, we immediately deduce the existence and uniqueness of weak solutions under (2.3), in the
sense of Definition 2.4, for any u™ € M§ N M3,.

2.2. The Marcus-Lushnikov process. — The Marcus-Lushnikov process describes the stochas-
tic Markov evolution of a finite particle system of coalescing particles. We consider a coagu-
lation kernel K and a finite particle system initially consisting of N > 2 particles of masses
21, -,y € (0,400). We assume that the system evolves according to the following dynamics:
each pair of particles (of masses x and y) coalesce (i.e. disappears and forms a new particle of
mass x + y) with a rate proportional to K (x,y).

Let n € N and we assign to all particles the weight 1/n. We define now rigorously the Marcus-
Lushnikov process to be used.

Definition 2.5. — We consider a coagulation kernel K, n € N and an initial state pgj =

1
EZfil 5Ii’ with Ty, , N € (0,+OO)

The Marcus-Lushnikov process (u)¢>o associated with (n, K, u) is a Markov M* -valued cadlag
process satisfying:

1
(i) (u})e>o takes its values in {E Ele Oy k <N, y; > 0}.
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(ii) Its infinitesimal generator is given, for all mesurable functions ¥ : MT — R and all states

1
H= " > i1 Oy, by

L¥(p) = Z {‘IJ [,U +n7t (5yi+yj — 0y, — 5741‘)] - \Ij[ﬂ]} K(y;’ yj)'
1<i<j<k

This process is known to be well-defined and unique, see [1, 15]. We will use the follow-
ing classical representation of the Marcus-Lushnikov process (see e.g. [5, 8]): there is a Pois-
son measure J(dt,d(i,j),dz) on [0,+00) x {(i,5) € N?,i < j} x [0,+00) with intensity measure
dt [> 11 0k (d(4,§))] dz, such that for any measurable function ¢ : (0, +00) — R

a0 = Gl o) + [ |/ T le(x v xd)—e(xi)—o(x2))]
1

(2.10) { _r(xix) } Li<ns—y(ds,d(i, §), dz),

n

where pJt = 1 ;V:(tl) dxr, N (t) being the (non-increasing) number of particles at time ¢.

T n

This can be written using the compensated Poisson measure related to J:

(ui' (dz), o())

(). 0(0) + 5 [ 2 (@) ). (A0) (2. )K (2. 9) s

(2.11) - 5 [ (02(d0).(40) (2. K (o) s

t —+oo 1 ) )
— ? J ) ] .
YN TR T —

n

J(ds, d(i, j), dz),

where the operator A is defined in (2.1). The third term on the right-hand side is issued from the
impossibility of coalescence of a particle with itself.

3. Results

We state in this section our main result. We also state as a proposition the construction of
a sequence of initial conditions for the Marcus-Lushnikov processes and finally comment on our
results.

Theorem 3.1. — We consider X € (—oo,1] \ {0} and a coagulation kernel K satisfying either
(2.2), (2.3) or (2.4). Let up € M™ and (ut)i>0 the (po, K, \)-weak solution to Smoluchowski’s

equation. Let pf be deterministic and of the form %Zil 0z, and denote by (u}')¢>o the associated
(n, K, u3)-Marcus-Lushnikov process. Let € > 0.

o Assume (2.2) or (2.4) and that juo belongs to M NM3, s, where € = sgn(\) x e. Then for

any T > 0,
E| sup dy(upp)| < {dA(umMo) TRV ¥ (Mmo) +M2A+g<uo>>}
t€[0,T] N

x exp [T'Cy e Mx(pg + o),
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where C ¢ is a positive constant depending only on X\, € and Ko, and k1.
e Assume (2.3) and that g € Mg N ./\/l,JYrJrE where v = max{2\, 4\ — 1}. Then for any T > 0,

sup BEAGa ] <[l o) + I (1 [0+ )

te[0,T)

0 + 0] ) | 0xp [TCo M + o),

where Cy ¢ is a positive constant depending only on X, €, ko and K.
Now we present the proposition giving a dy-approximation of the initial condition.

Proposition 3.2. — Let A € (—o0,1]\ {0}, n € N and uo a non negative Radon measure on
(0, +00) such that po € /\/l;\F N M;A. The measure o s supposed to be either atomless or discrete

supp(po) C N). Then, there exists a positive measure puf of the form + No Oy, such that:
M Ho n Lui=1 i

n Cx
dx (g o) < ﬁ,

where the constant Cy depends only on A and May(uo). We also have

Mo (pg) < Ma(po),
for all a <0 if A € (—00,0) and for all « >0 if X € (0,1]. Furthermore, if Mo(p0) < +00, then
Ny < nMo(po)-

The estimate of the parameter N,, (initial number of particles) may be useful to study the
numerical cost of the simulation.

Gathering Theorem 3.1 and Proposition 3.2, we deduce the following statement.

Corollary 3.3. — We consider A € (—oo, 1]\ {0}, € > 0 and a coagulation kernel K satisfying
either (2.2), (2.3) or (2.4). Let up € M™ be either atomless or discrete (supp(po) C N), and

(14t)te0,+00) the (po, K, X)-weak solution to Smoluchowski’s equation. Then it is possible to build

a family of initial conditions pff = Zg;l 0z, such that, for (u})i>o the corresponding (n, K, ug)-

—n
Marcus-Lushnikov process,

o under (2.2) or (2.4), if uo belongs to M N M;Mré, where € = sgn(\) X g, then for any
T>0,

Cr
E | sup dx(p'p < —
LE[O,T] (' o) NG

where Cr is a positive constant depending only on T, \, €, ko, K1 and o;
o under (2.3), if po € Mg N M, . where v = max{2\, 4\ — 1}, then for any T > 0,

v+e
C
sup E[da(ul, )] < —%

te[0,T] ﬁ7

where Cr is a positive constant depending only on T, \, €, ko, k1 and pg.
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This last statement is quite satisfying since it provides a rate of convergence in ﬁ and it

applies to a large class of homogeneous kernels presenting singularities for small or large masses.
We probably require more finite moments than really needed but this does not seem to be a real
problem for applications.

We have followed the ideas found in [7] to prove the case (2.2) and the special case (2.4) of
Theorem 3.1. The case (2.3) is much more subtle and difficult. For this case we have applied the
1t6 formula and manipulated very carefully each term. By the moment it is not possible to put
the “sup” into the expectation since it is very important to use the sign of the terms and to take
advantage of some cancelations.

Proposition 3.2 presents the proof of the existence of a dy-approximation of a general non-
negative measure o (we consider measures iy which are interesting for the Smoluchowski’s equa-
tion) by a discrete measure pf (a finite sum of Dirac’s deltas) as a construction procedure. This
construction is very useful from a numerical point of view since it gives a measure that will be set
as the initial state for the Marcus-Lushnikov process.

4. Negative Case

In the whole section, we assume that K satisfies (2.2) for some fixed A € (—o00,0). We fix e > 0,
and we assume that o € MY NM3, _. We denote by (u¢):>0 the unique (o, K, A)-weak solution
to the Smoluchowski equation. We also consider the (n, K, uf)-Marcus Lushnikov process, for
some given initial condition p? = 1 Zf\il O, -

T n

We introduce, for t > 0, the quantity F,(t,z) = G* (z) — G*(x) as defined in (2.6). We take
the test function ¢(v) = L(g 4 (v). Since sup,~ov~*|¢(v)] = 27 < +o0, we deduce that ¢ € H.
Computing the difference between equations (2.11) and (2.8), we get

En(t,x) = En(0,2)+ %/0 (s (dv)ug (dy) — ps(dv)ps (dy), (Al o w) (v,9)K (v,y)) ds
(4.1) — i ; (u2 (dv), (All(ow]) (v,v)K(v,v))ds

n

2n
t +oo 1 ' ;
+ /0 /1<J/O g (A]I(O,CE]) (XsfaXsf) 1{Z<IM}H{]<N(S)}

J(ds,d(i,j),dz).
We take the absolute value and integrate against 2*~1dx on (0, 4+00):

(4.2) dr(p ) < da(pi, o) + As(t) + As(t) + Ag(t),
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n

where
“+o0 t
a) = g [ [ ) - (@), (A1) (0K )| de
“+o0 t
at) = g [ | [ o). (AL.0) (0.0) K (v, 0) ds| da
B +oo$)\_1 l t “+o0 ; ; . .
i [T

ﬂ{jSN(s_)}j(dS, d(l,]), dZ) dx.

Now we are going to search for a good upper bound for each term.
Term A ().

Similarly to [7, Lemma 3.5]. However, in this case we have to argue a little more, since ¢
G*' (x) is not (even weakly) differentiable due to the jumps of uf.

The term A;(t), according to the symmetry of the kernel, can be written as:

1 oo A—1

(4.3) (12 — ) (dv) (2 + o) (dy)ds| da

t 400 “+o00
/ / K(0,) [Low (0 +3) — L021(0) — Lo ()]
0 0 0

We use the Fubini theorem and Lemma A.2:

t —+o0 —+o0
L 0w o+ = L) = L] (22 =) (o) (2 + 1) (@)

— /Ot /OJFOO /OJFOO {K(ac — 4,910,210 +y) = K(z,y) 10,4 ()

+oo
[ K ) Lo+ )~ 1021() L0 0) dz} (W — ) (dv)
(s + ps) (dy)ds
t “+o0o +00
[ [ G [t [ B 002 ) @0)] 0+ ) s
0 0 0
t “+o0 “+o00
- [ [ &y [ | tea® s - ) <dv>] (W + ) (dy)ds
0 0 0
t “+o0 —+o0
- / / / 0K (2,9) [Lo.1( +9) — D0.01(2) — 110,01 ()]
0 0 0

[ /O+°° 0,4 (0) (2 = 1) (dv)} dz (u + ) (dy)ds
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+oo
= /0 ; K(z =y, y) Loy En(s,z — y)] (13 + ps) (dy)ds

t —+o0
- / [ K (B 2+ ) ()

t —+o0 —+o0
- / / / 0K (2,9) L1001 (2 +¥) — L10.01(2) — L(0.1(y)]
0 0 0

[En (s, 2)] dz (ng + ps) (dy)ds.
According to the bound

and using (2.2), we deduce

A(t) < / /+oo/+<>o AL B (5,0 — y)] da (4 + is) (dy) ds
/ /Jroo /Jroo N+ y)MNEa(s a) da (1] + ps) (dy) ds
+/0 /0+oo /O+OO 10K (2,y)|| En(s, 2)] {/OJ“’O z’\—l]l(o,m](z/\y)dx} dz (" + ) (dy) ds.

For the first integral we use the change of variable z + w+y and (w+y) ! (w+y)* < w*~y*. For
the second integral (ac—l—y)A < y*. Finally for the third integral, we observe that fOJrOO A1 (0,2 (2A

y)dx = (Z‘Ayl) <z I+\y Using (2.2) again, this implies

K t —+o0 —+o0
A < P [as [ Bl [y ) @)
0 0 0

K t “+o0 B “+o00
al / s / A (s, )| de / o (2 + 1s) (dy)
0

|A|/ / 2B Sz)|dz/0+ooyk(u?+us)(dy)-

The resulting bound for A;(t) is

(15) mw< () [ (s 1) M+ ) ds.

Term As(t).

We use |(Algq) (v,0)] = |10, (2v) = 200,47 (v)] = Docv<zy + 211z cvca) < 2D gyeyy. This
gives

1 +oo +oo
As(t) < —/ 71/ K(v,0)1fy<aypy (dv) ds dx
+oo
< / /no (20)* |)\|,ué(dv)
2A
(4.6) < &T ax(uf) ds.

We used (2.2).
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Term Ajs(t).

We will bound the expectation of this term using its bracket, for this we consider:

1 t +o0 . . ~ -
) _// / (A8o) (X1 X 1 e ot ) ) Mavion T(ds, diis ), d2)
n Jo Ji<jJo {zg%}
t 1 K (X! X . _ i |
- / > %)[1(0*””] (X2 4 X2) ~ Lo (X1) — L0 (X7)]" s
0 i<j<N(s)
4 t K (Xi, X7) . )
n /0 >, o low (XX ds
i<j<N(s)

IN

IN

%E [/O (u(dv)ps (dy) , K (v,y) [L0,2)(0) + Lo,2)(%)]) dS}

< Arop [/ (2 (do)z (dy) , (0 +y)* Lo,0(0) ds] |

n

We have used (4.4), a symmetry argument then the bound 1 4j(vV y) < 1(g,2)(v) + L (0,4 (y) and
finally (2.2). We consider now the submartingale (absolute value of a martingale):

n

1 t +oo i . ~ L
Silx) = 5/0 /</0 (ALq1) (Xs—’Xg-)]l{ <K(xz,x:z)}]l{f'<N<S>} J(ds, d(i, ), dz))
1<J A

According to the Cauchy-Schwartz and Doob inequalities we have:

=

sup (ST(:C))2]>E <2 (]E [(St(w)f])

re(0,t]

E| sup Sy(z)| <(E
ref0,t]

Therefore, we obtain the following bound for the expectation of As(¢):

S 4\//’10 /Jroox)\_l
v Jo

E | sup As(s)
s€[0,t]

1
2

(@7) {a[[ Gttt 0+ 10w as] ) a

Following the value of z we use different bounds:
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On the one hand, for z < 1 we have 10,4 (v) < (%)2)\_8 and using the bound (v + y))‘UQ’\_E <

v ~ey*, we obtain:

1
2

/01 2! {]E Uot (2 (dv)ul(dy) s (v + y)* Lio.)(v)) ds} } d
< [ e[ (. S5 o] }% "

-/ il {E [ / e (dy) , o) ds] }%

(4.8) = g {E [/Ot M (pg) Max—c(py) ds] }E :

On the other hand, for > 1 we have 1 ,)(v) < (%)/\ and using the bound (v +y)*v* < vy,
we obtain:

1
2

/1+OO 2! {E [/Ot (2 (dv)u? (dy) , (v+y)* Lo.0(v)) ds] } da

< [T fe] [ (. S5 o }é da

- /1+00x3‘1d:6 {E [/ot (s (dv) g (dy) ”Aywds] }2

(19) -+ {E|[ G s }é .

Then, writing the right-hand side integral of (4.7) as the sum of the integrals on 2 € (0, 1] and
x € (1,400), gathering (4.8) and (4.9), we get

< 8\/’{_0{2 (E [/Ot M/\(M?)MZAE(,UZ)dS]>%

(4.10) (e[ () as) )

Conclusion.

N
.
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Gathering (4.2), (4.5), (4.6) and (4.10), we have:

E | sup dk(ug,us)l < E [d,\(,ug,uo)—i— sup Ai(s)+ sup As(s)+ sup As(s)
s€[0,t] s€[0,t] s€[0,t] s€[0,t]
t
< o) + (w0t ) [ BE G ) M2 + )]s
2)‘I€0 t
=~ | E[M ™) d
T [Max(p3)] ds

8&—_{ < [/ M (i) Max— s(lﬁs)dDé

o (5 [ o o)}

According to Proposition A.4 —(a), Moy (7 + ) < Mo (uf + p10) a.s. for any o € (—00,0). Since
(g is deterministic, we get:

t
E l Sl[lp]dx(u?,ut)] < da(pug, po) + (fio + |)\|> M (g +M0)/ E[da(uy, ps)] ds
se[0,t 0

A 1
(4.11) e T = O Mo (u) 8\\%_[ (Mx(ug) Max—c(pg))? +

1 T
WMA%)} 3

Finally, since vVab < a+ b and since Max(uf) < Mx(uf) + Max—:(ug), we use the Gronwall lemma
to obtain

o Oy
E dy (" < ldy(ur LML) + =2 Moy (u
tes[%%] A(Ntaﬂt)] < [A(Moaﬂo)‘f‘\/ﬁ /\(MO)"'\/E 22 (No))}
(4.12) X exp [T (Ho + |>\|) Mi(pg + Mo)]

where C; = 2A|§f° 8(8T/\‘I\|)\/Tﬁ0 and Cop = 27?"“} + gx/TIio.

This concludes the proof of Theorem 3.1 under (2.2).

5. Positive Case

In the whole section, we assume that K satisfies (2.3) for some fixed A € (0,1]. We fix £ > 0, and
we assume that o € M N M,JYZFE where v = max{2\, 4\ — 1}. We denote by (u)¢>0 the unique
(10, K, N)-weak solution to the Smoluchowski equation. We also consider the (n, K, uf)-Marcus

Lushnikov process, for some given initial condition pf = £ 370 0,

We assume without loss of generality, for A € (0,1/2), that e < % — A. Indeed, if ¢ > % — A\, it
suffices to consider & < %— A, to apply Theorem 3.1 with &, and to use the bound Maxyz(uf + po) <
Mo(pd + p0) + Maxye (1 + o) to conclude.

We first present a lemma of which the proof is developed in the appendix.
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Lemma 5.1. — We introduce, for x € (0,+00), the following function:
1 x—2)x—8

(5.1) (o) = ﬁﬂ(o,u (z) + BV L1 400) (7)-
Then,
+oo n

(i) er O do < 2=,

(ii) fo = a0pde < T

(iii) for (v,y) € (0,+00)?

+oo k—l 2./n
’U)‘/ 9n (]11<U/\y + 1ny<z<v+y) dx S T\/_U/\y)\
0

()

1 _
+\/ﬁ <22/\+€ + X) [(’U A\ ’y)Q}\(’U V y)2/\+€]l)\6(0,1/2) + (’U A y)(v \Y y)4/\+€ 1]1)\6[1/2,1]} .

We set E,(t,2) = FH (x)—F" () as defined in (2.6), for z € (0, +00). We take the test function
#(v) = L(z 400)(v). Since sup, (‘ﬂsz = (1 +2)"* < +oo, we deduce that ¢ € Hy. Again,
computing the difference between equations (2.11) and (2.8) and using a symmetry argument for
the first integral, we get

Bu(tea) = Ba0.)+ 3 [ (0 =m0 (@) (24 ) (d0), (AL ) (0. 9) K 0, ) s

(5.2) o Gz (a0). (Ao ) (00) K 0, 0)

+oo 1 ) )
2 J .
/ /<;/ (Al o0)) (XS_’XS)]I{Z<K(X§’ i

xi )}1{j<zv<s>}

J(ds,d(i, j),dz).

According to Lemma A.2, we can write the first integral as:

t “+oo “+o0
L[ ) (Aha) 000) (0 = ) @) (2 + 1) s

t “+o00 400
/ / / {nwK(z ) ey (04 4) — K (@51 0y (0)
0 0 0

b [ 0K ) (AL ey) () 2 ) (00) 0+ ) )
0

/Ot O+OO K(z—1y,y) {npy /Om Loy to0) (V) (1 — pis) (dv)} (1 + ps) (dy)ds
-/ t O+°° K| oy (0) (2 — ) (@0)] o+ ) )

+/Ot /OH>o /Om 0uK (2,y) (Al(z,+00)) (2,9)

{/OJFOO Lz, o0y (V) (13 — 1s) (dv)} dz (1™ + ps) (dy)ds.
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Recalling that E,(s,z) = fOJrOO L (g 400) (V) (17 — ps) (dv), we deduce that,

I — —
E.(t,x) = FE,0,z)+ 5/ Bl(s,x) + Ba(s,x) + Bg(S,(E)] ds
0
t “+o0 1 ) )
(5:3) + / / / = (Al 1e) (Xi X2 ]1{ w(xi x1 ) }]1{jszv<s—>}
0 Ji<jJo n pg o= e/
J(ds,d(i, ), dz),
where:
Bl(S,SC) = / [11>yK(z7y7y)E’ﬂ(Sv'rfy) 7En(8,1')K(1',y)} (:LL?+MS) (dy)5
0
. —+o0 —+o0
Basa) = [ [ 0K () (ALs) () Euls,2)d (5 + 1) (d)
0 0
— 1 [t
Bs(s,x) = ) K(0,0) [1(,100)(20) = 21 (5 400y (v)] pZ (dv).
Now, we apply the Ito formula to g (E,(t,2)), where ¢g(-) € C*(R) is an approximation of the
absolute value function |- |. This function is chosen in such a way that:
wo(u) = |u| if |u] > 6; lu| < @o(u) < |ul +0 Yu € R;
(5.4) lpp(u)| <1 Vu € R; sgn(upy(u)) =1 Yu € Ry;

2
g (u)| < E]l{‘"Ke} Yu € R.

Furthermore, we consider for 6 the function defined by (5.1). We fix z € (0,+00) and apply the
It6 formula to @y (En(t,x)) (see for exemple [9]),

eop (Ealt.2)) = oy (En(0,2))

(5.5) +1 /Ot (B (s,) + Bals,a) +

9 BS(S"T” (p/HZ‘m)(En(Sax))dS

+M (t, ) + By(t, z),

where

¢ oo q . 4
— _ 7 J . ) .
M(t,x) = /0 /i<j/0 o (A]l(x,+oo)) (Xs—aXs—) ]I{Z<K(X;,Xg) }1{J<N(S)}

n

90/9&) (En(sfv SC))J(dS, d(lv.])v dZ),

By(t,x) = /Ot /Kj /0+°<> {@eg;) (En(s—,x) + % (AL(44+00)) (Xian)) — o, (En(s—, 1))

1 i ;
—— (AL o)) (X2 X2 ) (En(s,gc))}]l{zS

n

K(xixI ) }]1{j§N(s—>}

J(ds,d(i,j),dz).

Observe that, for all > 0, M (¢, z) is a martingale whose expectation is equal to zero.
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Now, we study the §"-approximation of dy(uy, pt): erOO

0 xkflcpg&) (E,(t,r))dz. According to
(5.4) and Lemma 5.1 — (%), we have:

+oo 2
n A—1 n
(5.6) da(py, ps) < /o " op (En(s,@))de < dx(ug, ps) + SV

Consider (5.5), integrate each term against 2*~!dz on (0 + 00), take the expectation:

“+o0
E[dy(uf's )] < / P UE [ (Bu(t,2))] do

+oo
(57) = [ @ e (Bu(0,0))do + BB (6) + Ba(t) + Ba(®) + Ba(t).
0
where
1 —+oo t o
Bi(t) = 5/ 2 B (s, 2) s (En(s,x))dsdz,
0 0
1 “+o0 t
By(t) = 5/ 2 By(s,2)0hn (Fn(s,x))ds dz,
0 0
1 —+oo t o
Bt = 5 [ [ P Balsaleny (Bl o) dsda,
0 0
+oo
By(t) = / 2 1By (t, ) dx
0

We now study each term separately.
Term B (t).

We use the Fubini theorem to obtain:

1 t —+o0 —+o0 3
B = g [ [ i ey (Bl a0 - e
+oo
- [P (B, Buls. ) (o 9) da] (2 ) () s,

Recalling (5.4), we immediately deduce that @'9?) (En(s,2)) En(s,2 —y) < |En(s,z —y)|, and

@Ie?m) (En(s,z)) En(s,2) =
x +— u~+y in the first integral, we get:

g < g [ [T w0t sl k) do

“+o0
[
0

— %/Ot /0+oo O+OO K(z,y) |En(s,2)] [(Zer)Afl _ ‘90/9&) (En(s,2)) Z/\71:| dz

(13 + ps) (dy) ds.

@’9&) (En(s,x))‘ |E, (s,z)|. Therefore, using the change of variable

P (En(s,2)| 1Bu(s, 2)| K () dz] (H2 + o) (dy) ds
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Recall again (5.4). Since [En(s,2)| = 607, implies ‘ga},?) (En(s,z))‘ = 1, and since (z +y)* ! —
Zk—l < 0,

[Ba(s 2 [+ )" Loy, (Balss )17 < 1B 2 G0l g g
< 0z + )Mt
Therefore, using (2.3):
Ko t +oo +oo o1
Bt < 9 [ [ [ o G e ) () s
0 Jo 0
Ko i oo n 2A—1 A e n A—1 n
< 3/ ; 002" dz+y ; 002"~ dz| (ng + ps) (dy) ds.

We used (z +3)* "t = (2 + )Mz +y) ! < (2 +y*) 2L, Finally, according to Lemma 5.1-(3)
and (i), we get:

Bi(t) < //m[ /\ij—g (1+yk)] (s + ps) (dy) ds

L(A‘LE)/ [Mo (i + ps) + Ma(p? + ps)] ds.

(5.8) vl

Term Bs(t).

First, observe that

(AL 100) (0] = [Lto0)(Z + ) = Lz o0) (2) = Lz 100) (%)
(5.9) = Lge©ny) + Lzezvy,z41)}
whence,

oo zZAy 2ty
/ x)\—l }(A]I(I;FOO)) (Z’y)’ d.’L' — / :L-A_ldx +/ :L_k—ldx
0 0 zVy
2 A

(5.10) < X(Z/\y) .

Thus, recalling (5.4), we get:
+oo +oo
Bolt) < / / / (5,2)] 10:K (2,9)] < (= Ay) ) (W + ) (dy)d= ds

—+o0 —+o0
< 3 / / / |En(s, 2)|22 71y ( + os) (dy)dz ds
0 J0O 0

t
K
(5.11) < / Ay (0 1) My (2 + s ).
0
We used (2.3).
Term Bs(t).

Remark that |(A11(1,+OO)) (’U,’U)‘ = |]l(z7+oo)(21)) -2 ]l(z,+oo)(v)| < ]l{v>%}.
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Since f0+oo Tjpszya* e = (21)’\)A, we deduce:
1 +oo t ptoo
Bs(t) < ), x/\_l/ K(v,0) |(AL(; 4o0)) (v, 0)| 2 (dv) dsda
+oo
= 2/\n/ / (20) 5 (dv)
(5.12) < 221;“0/0 Mo () ds.

We used (5.4) and (2.3).

Term By(t).

2
< g
= 0%

First, remark that from (5.4) we have for all z, whence, due to the Taylor-

/!
r (2)

Lagrange inequality,

1 .
por, (En(saw) +— (Al o0) (Xé,Xﬁ)) — oy, (En(s,z))

1 ) )
i (A ) (X5, X2) g, ()|

2 1 R
< o {— (AL (2 4o0)) (XiaXi)] :

- 9&) n
Then,
e A1 oo 2 i N
E[B4(t)] < / E / / / [ (AL (s 4o0)) (XQ,XZ)] Lj<n(s—)
i<j (z)
11{ K(ng,ng)} J(ds, d(i, j), dZ)] dax
RE— -
2 [t Hoo A—1 I((‘XZ X1 ) i yiy]?
0 0 i<j<N(s) (@)
2[10 t /+oo x/\fl . o
< 22 E > (XI+X])
= 2 gn s S
o Jo o NG, i<j<N(s)

(]1:5<X;/\X§ + 1X;VX§<1<X§+X§) d.’L"| ds.

We used (2.3) and (5.9) (since the sets are disjoint, the product of indicators vanishes). Therefore,
using that (v + y)* < v* +y* and a symmetry argument, we get

4/<L0

E[B4(t)]<—/OtIE

n

+o0 A1
<,u?(dv)u? (dy)’ U/\ / 9" (]lz<v/\y + ]lny<z<v+y) dl‘> ‘| ds.
0 (2)
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According to Lemma 5.1-(4i), and since (v A y)*(v V y)? < v2y? + y*0? for a > 0 and B > 0, we
have

o0 x’\_l
<H?(dv>ﬂg (dy)a ’U)\ /O GT (ﬂz<v/\y + ]lv\/y<m<v+y) dx S
(z)

2V vy ). )

1 n n
+\/ﬁ (22/\+8 =+ _> <Ms (dv)ﬂs (dZJ), UQ/\Z/QH& + y2/\v2’\+8> ]l)\E(O,l/Q)

A
+/n (22”5 +

1 B .
X) (i (dv) (dy), vy =7+ yo™ 1) 1oy,

Finally, we deduce the bound:

8%0

<

(5.13) +C [My (pg) Maxye—1(p3)] Lnepiyz,11 | ds,

E [Ba(0)] E [ MG + C [Maa () Mo« ()] Tre(oa 2

where C' = ()\22’\""E +1).
Conclusion.

Gathering (5.8), (5.11), (5.12) and (5.13), from (5.7), we get:

+oo

Bl )] < [ 2 oy, (Ba(0.0)ds
0

Ho()\+€)
Aev/n
22/\_1,“60 ¢ 8Ko t 2
E [Ma (1" 250 R My (e
S [ B s+ 2 [ B0 ds

8Ck t
+)\—\/ﬁo E[[M2A(N?) Moxte(ps)] Tae(o,1/2) + [Ma(pg) Maxye—1(p5)] Tagiiyz, | ds.
0

B MG g0 + M )]s+ 5 [ MG + )]
0 0

We use (5.6) to bound the first term on the right-hand side. According to Proposition A.4 —(a),
Mo, (2 + ps) < Mo (uf 4 po) a.s. for o < 1. Since pf is deterministic, we get (recall that 2A+¢ < 1
it A e (0,1/2)):

" " 2 tko(A+¢€ n n
B [dx(pf', pe)] < da(pgs po) + Wi + /\(e:\/ﬁ )(MO(,UO + o) + Mx(ug + po))

#5005+ ) [ Bt s+ E [ s+ S5 a1
i\ Ay T Ho o AMMg s s . 22 (Mg )\\/ﬁ Ao
SCtlio

N [Max(p1g) Max+e(pg)] Tre(o,1/2)

SCHO n ¢ n
—i—li(uo) ; E [Maxye—1(p5)] Tnepiy2,1)ds.
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Again, according to Proposition A.4 —(b), E [M,(p2)] < Mo (uf) expls Cx,a Mx(u))] for o > 1, and
where C) , is a positive constant depending on A, a and ko. Thus

2 thko(A+¢)
E [dy(u? < dx(uy Mol My (ul
[da(pg s )] < da(pg s o) + W + v (Mo(pg + o) + Mx(pug + o))

K1 n ¢ " 22)\71tlﬁo " .
+ Mg + po) | Elda(ug, ps)] ds + —————Max(ug) explt Cx.e Mx(ug)]
0
+ 8tli0
Mn
SCtlio

AV

" 8Ctk " n
(M ()] + )\_\/ﬁo [Mox(p6) Max+e (16)] Tae(0,1/2)

My (pg ) Maxye—1 (g ) explt Cx e Mx(pg)| Trepi/2,1-

Recall that v = max{2),4\ — 1}. Observe that for p € M™, M, (u) < My(p) + Ma(p) for any
0 < a < . Elementary computations allow us to get:

E[da(uf )] < dA<u3,uo>+<1+t>f}; (14 (Mo + p0)]? + (M (i + 10)]”)

t
< exp [t Cre Ma(uh + p0)] + oo Ml + p10) / E [da (7, 1)) ds,
0

for some positive constant C . depending on A, €, ko and 1. We conclude using the Gronwall
lemma that Theorem 3.1 holds under (2.3).

6. Special Case

Now we are going to study the special case (2.4) for which A € (0,1]. We have a better result
and a simpler proof than (2.3).

In the whole section, we assume that K satisfies (2.4) for some fixed A € (0,1]. We fix e > 0, and
we assume that po € MY N M3, .. We denote by (11)¢>0 the unique (uo, K, A)-weak solution to

the Smoluchowski equation. We also consider the (n, K, uf)-Marcus Lushnikov process, for some

. . " N
given initial condition ug = L Dinq Oy

T n

As we did before we introduce E,(t,2) = F* (z) — F*t(x) for z € (0, +00), as defined in (2.6).
We observe that 1, 1) € HS, since sup,~g v’/\|1(m,+oo)(v)| = 27* < 4o00. Exactly as in Section
5 (see (5.3), take the absolute value and integrate against x*~!dz), we obtain:

(6.1) da (', ) < dy (4, o) + Ca(£) + Ca(t) + Ca(t) + Ca(t),
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1 t “+o0 —+oo 3
Ci(t) = 5/0 /0 /0 A1 []lm>yK(x =y, )| En(s,z —y)| + | En(s, )| K(z,y)|dx

(s + ps) (dy) ds,

1 t “+o0 “+o0 “+o00 3
Co(t) = 5/0 /o /o /o z* 02K (2,9)] (AL (s 400)) (2,9)| | En (s, 2)| dz da

Cy(t)

(12 + 1) (dy) ds,

1 t pr+o00 p+too B
_”/o /0 /0 21K (v,v) ’]I(I,Jroo)(%) — 2]1(1#00)(?})’ dx g (dv) ds,

2
oo 1t Foo , ‘

/ T ﬁ/ / / (A]l(x,Jroo)) (X;,,Xgi) ]l{ K(x;’,xg)}]l{j<N(s)}
0 o Ji<jJo e R )

J(ds,d(i, 7),dz)

We now study each term separately.

Term C(t).

We have, using the change of variable z + w + y, (2.4) and using the fact that a*~

non-increasing function:

Ci(t)

(6.2)

Term Cs(t).

<

IN

IN

P t —+o0 —+oo
il / / / (w+ 9 (w0 A g) | En(s, w)] duw (42 + 1) (dy) ds

“+o0 “+o0
/ / / A )| (s, )] di (47 + o) (dy) ds

o +oo —+oo
—// / WY E, (5, 0) | duw (40 + ) (dy) ds

2 0 0 0

KO t “+o0 “+oo /\ L
L ho / / / B (s,2)| da (i + 1s) (dy) ds

2 0 0 0

t
Ho/o M (g + ps) dr(ps, s )ds.

Recall (5.10), use (2.4), we have immediately:

Cs(t)

(6.3)

Term Cs(t):

<

<

/ /m /m"9 K(z,9)| (2 Ay) | Buls, 2)] (7 + i) (dy) ds

//*“’/*00 (s, 2)|2* "™ (U2 + ps) (dy)dz ds

)\ / d)\(usaﬂs)Mk(Ms +:us)d
0

dx.

L

21

a
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As before, recalling (5.12), we write:

22k—1l€0

(6.4) Cylt) < 1 / Mox () ds.

Term C,(t):

The submartingale term is going to be treated exactly as in the case A < 0. Using similar
arguments as for the term As(t), we get

4 +OO>\1
< — ™
7l

(e[ (@), &) [(A1040) 00)*) a5 }

Using now (5.9) and (2.4), we deduce that

< e +°° A{E[ / t <u’;<dv>uz<dy>, (v A y)

E | sup C4(s)

s€0,t]

=

E [ sup Cy(s)

s€0,t]
2
(6.5) [T {ee(,vry)} + ]1{ze(vw,v+y)}]>d5]} dz.
. . (wAy) w+y)?
First a/\ssume that x < 1. Since Liseoony)) < o since Lize(ovyoty) < ) <
V
P VI ond since (v A 5) (0 A ) < 09 and (0 A )MV y) = 0¥, we deduce that

A

142>
<M?(dv)ﬂg(dy) ) (U A y))\ []l{zG(O,v/\y)} + ]l{me(ny,v+y)}]> < (1'7)\)[]\4)\(”?)]2

Thus,

1
2

/01 ! {E [/Ot (2 (dv)p (dy) , (0 AP [Lae©wnn) + ]l{ze(wy,vﬂ)}pds]} dz
\/H—?/leéldx X {E [/Ot[MA(M?)]Q ds] }é

- @{E [/Ot[MAst]}%-

(6.6)

IN

) ) v A y)2/\+a v+ y)2/\+a
Next consider > 1. Since Tiecoory)y < (xT’ and Lizevy,vty)) < (xT <
(’U v y)2/\+a )
22/\+8W’ and since (v A y)M(v A y)2A e <0 y? e and (v A y) Mo Vo)A TE < vy
v2 ey and using the symmetry, we deduce that

n n 1+ 22Atett n n
<:u’s (dv”JJs (dy) ) (’U A y)A [ﬂ{mE(O,UAy)} + ]l{ze(u\/y,v+y)}]> < (ﬁiﬁ-a)M/\ (MS )M2/\+‘€ (,LLS )
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Thus,

W=

+oo t

/1 w)\_l {E [/O <N?(dv)ﬂg (dy) ) (U A y))\ []l{zG(O,v/\y)} + ]l{me(ny,ery)}] > dS] } dx

+oo . t 3
(6.7) < V14 22)‘+5+1/ rT2 e x {IE {/ M () Moxye(pl) ds]}
1 0
oy/1F 2Tl t . . B
= 2P e | [ andac G as]
0

Gathering (6.5), (6.6) and (6.7), we obtain:

Sl Sﬁo{@ (E [ /Ot[Mszn?dsp;

<
s€[0,¢] - n A
(6.8) +7(E [/ Mx(u?)Mzmra(M?)dSD .
0

€

Conclusion.

Therefore, gathering (6.2), (6.3), (6.4) and (6.8), we obtain:

K t
E | sup dy(ul )| < da(uomo) + (mo+ ) / E [d (i, 1) Ma(u + )] ds
s€[0,t] A 0

22k,€0

+ / E [Max (u")] ds

nA
SBR[ )
+ 71+2€2H8+1 (E [/Ot M/\(MZ)M2A+5(MZ)dS:|)% }

Observe that My (ug) < Mo(ul) + Moxye(pg) for o = A, 2X. Proposition A.4 implies that
for @ € (0,1), Mo(pd + pe) < Mo(pd + po) as. and for @« = 2\ 2\ + &, E[M,(u?)] <
Mo () expls Cx,o M (u))] where Cy , is a positive constant depending on A, «, ko and 1. Since
(g is deterministic, we deduce that

E

n n C 3 n n n
s?op]dx(us,us)] < da(pg, po) + (1+1) \/Aﬁg (Mo(pg) + Maxte(pg)) explt Cx .« Mx(pg )]
se|0,t

t
+C/\,5M>\(,ug+ﬂ0)/ E [dx(uy, ps) ] ds,
0

for some positive constant C . depending on A, ¢, ko and k1. We conclude using the Gronwall
lemma.

7. Choice of the initial condition

The aim of this section is to prove Proposition 3.2. We thus fix A € (—o0,1] \ {0} and uo €
M N M. We first treat the case where pg is atomless, next the case where fi is discrete.
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7.1. Continuum System. — We assume that pg is atomless. For 0 < a < A < 400, we consider
o] i, the restriction of po to K = [a, A]. We consider also N points a =xg < x1 < - <azny < A
such that:

1 . 1
(71) Ho ([xi—la xl)) =—, Vi=1,---,N and MO([:ENa A]) < -

n n

We will use the points {x;};=1...., N to construct the discrete measure u{ choosing a and A following
the value of A as a function of n.

7.1.1. Case X € (—00,0):— First, we choose a,, < A,, as follows:

72) - (%)i wa [ < L

Next, we assign the weight uo ([z;—1, 2;)) = % to the point x; and we set

a1
(73) Ko = E Z(szw

If a <0, we get:

N, N, +o00
1
Moz(:ug) = g E 'Tia = E 'Tia MO([-Ti—la .Tl)) = E /O xia]l[mi—lqmi)(‘r)uo(dw)
i=1 =1 i

(7.4)

IN

No o ptoo TNy,
Z/ T Uy, 00) (@) o (d) = / a%po(da) < Ma(po)-
i=170 a

n

For the distance, we have, with K,, = [a,, 4,]:

+oo +oo
il = [ ﬂ(o,z)(y)(M0|KnMo)(dy)‘dz
0 0

+oo
- /O x/\il [,LLO ((va)) ]lm<an + po ((Anvx)) 111>An + po ((O,Gn)) 111>an]d1'

Qn Qn, “+o0 —+oo
= [ [ detan + [ [ ety
0 Y An Y

an “+o0
/ eV d o (dy)

)
[

n +oo +oo +oo
< [ ety + [ [ e tay)
y Ap y
2al) e ) 1t 1
(7.5) < —"/ y uo(dy)+—/ Y o(dy) < (2M2x (o) + 1),
Al Jo Al Ja, A V/n

we used (7.2) for the last inequality. Next, we introduce the notation i, = max{i : x; < x;i =
0,---, N} for x > a,. We remark that u{ ((0,2]) =0 if = < a,, and p§ ((0,2]) = po ((an, z;,]) if
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x > a,. Hence,

+oo —+o00
dy (il polk,) = / A / L 0.0y () (45 — polic,) ()|
Ap
- / A o((an, 2.)) — po([an, 2))| de
oo /\ 1
+ N |,U0 anvngc))*ﬂo([amAn)”dx
Ann +oo
< / A (s, 7)) de + / o[y, s An)) de
QAn, An
9 [tee ) 2
7.6 < Z Mgy = — o < )
(7.6) . n/ T R S VR

We used [po([an, zi,)) — po([an, )| = po((ws,,2)) < po([zj-1,2;)) < 5 for some j =1,

and (7.2). Finally, from (7.5) and (7.6), we obtain:

1
dx (kg s o) < da(pg s ol k) + dx(pol i, s o) < (2Max(po) +3).-
0 0 ALV
7.1.2. Case X € (0,1]:— First, we choose a,, < A, as follows:
An 1 1
(7.7) / a2 po(dr) < —= and A, = (vVn)*>.
0 Vn (va)
Next, we assign the weight uo([2;—1,2;)) = = to the point x;_1, recall that o = a,,. We set
1 Nnzl
7.8 o(dz) = — Op. .
(73) () =5 Y b
If a > 0, we get:
1 Np— Ny, Ny +o00
Ma(ﬂg) = E Z :C Zzz 1:“’0 .CCZ 1 1'1)) - Z/O zia—l ]1[1171711)(1')M0(d1‘)
=1
Ni +oo TN,
(7.9) <3 o s g @olde) = [ 2 pa(de) < Ma(uo).
0 an

25
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For the distance, we have, with K,, = [a,, 4,]:

—+o00 —+o0
dx(polr, o) = / ! }/ L2 400y (¥) (10l k,, — t10) (dy)| dz
0 0

+oo
- / 2 [t ([, an)) L + o ([, +00)) T a, + 10 ([Amy +00)) Ly n, ] di

R A fee v
[ et [ ety
0 0 A, A,
+oo  rA,
T / | ooty

+oo
< / / A1 da o (dy) +2/ / A1 da o (dy)
(7.10) < / (dx) + 24, / (d (14 2Max (o)),
. — z
=3 Holax \ o yuoy_A\/— 2x (Mo
we used (7.7) for the last inequality. Next, using the notation i, = min{i: 2; > ;i =0,---, N—1}

for > a,, we remark that uf} ([x, +00)) = 0ifx > A, and uf ([z,+00)) = po ([2i,, An)) if z < A,,.
Hence,

—+oo
dr (i pol,) = / A1 da
0

Anp
[ (o A) = po((o A do

+oo
/0 Lo 400)(¥) (1 — 1ol xc,) (dy)

n

N / " o[, An)) — pio((ans An)| da

- LA Lo

we used [po((%i,, An)) — po((, An))| = po((, x:,)) < po([zj—1,2;5)) for some j =1,---, N, and
(7.7). Finally, from (7.10) and (7.11), we deduce:

(7.11)

da(pgs o) < )\\/—(sz\(uo)ﬂLl)

7.2. Discrete System. — Let us thus, consider puy € M™ with support in N, i.e.
(7.12) 1o = Z ay 0k,  with ai € Ry.
k>1

We set for A € N:

A
k=1
7.2.1. Case X\ € (—o0,0):— We choose 4,, such that:

(7.14) > ok < —

k>A,
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and we set,
(7.15) n_1 Z ) ith

. =— i

o o Q. Ok, W
(7 16) 0/11 - LTLOélJ,

' ap = |n(ar+--+ap)] —[n(lar+--+ag1)] fork=2,---, Ay,
where [-] is the floor function Remark that chosen in this way, the o} are non-negative integers
and Ho can be written as = Z 0z,, hence pf is the measure we search. Observe that for
k=1,---, A,, we have

k
Z lo/-lfozz = l(o/f+~~~+oz2)f(a1+~~+ozk)
—\n' n
1 1
(7.17) = ‘ELn(a1+~~+ak)J(oe1+~~~+oek) < o
If a <0, we have:
1 &
Mo (u) = = apke
k=1
1 1 1
= gLnalj + ZLn(al + o Fag) | BY — - ZLn(al + -t ag—1)k
k=2 k=2
1 1 4n | At
= —lnon)+ =3 lnon 4ot ap) KT = = 3 [nlon o+ an) (R + 1)
k=2 k=1
1
=~ ([nou) + Adln(r + -+ aa,)] — 2% [na )
| An=
Z kY — (k+ 1)
+”kz:: n(ar + -+ o) | (% — (k+1)%)
A,—1
< (124 A% (a1 +-+oaa,)+ Y (ar+-+on) (= (k+1)%)
k=2
An
(7.18) = Z ap | A2 + Z G+ | +ASaa, =Y ark® < Ma(po).
k=1

Next, for the distance, we have:

i (i) < [ /mnm,z)(y) (1~ o) ()

+oo
/ At Z ay, 0 (dy)de = Z ak/k 2z

0 k>aA, k> Ay

dx

(7.19) = |A| > okt < |f

k>A,
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we used (7.14). Next,

+oo +oo
dx (ug,ué‘") = /O ! /0 L(0,4)(%) (u’o’*ué‘")(dy) dx
Eo et A—1 =1 T (1
= x™ —o) — oy dx—i—/ x™” (—a? —ai) dx
> Gere)e [ G

(7.20) <

we used (7.17) for the last inequality. Finally, from (7.19) and (7.20), we have:

" " 1 2
0 5 )+ o) < (1)

7.2.2. Case X € (0,1]:— We set
(7.21) A= |(Va)* | +1,

Note that chosen in this way, we have A-* < %, implying

1
(7.22) Z (a3 R < A’r_L/\ Z (a3 k2 < TMQ,\(,UQ).
k>As, k>As, K
We set the measure u as defined in (7.15), with

(7.23) ap = nZai —In Z a;|, fork=1---,A,.

i>k i>k+1
Observe that, since Y, o, ar = Mo(po) < Ma(po) = Y45 ark™ < +00, the weights {al},>1 are
well-defined. Remark that chosen in this way, the a} are non-negative integers and pg can be

. 1 Ny, n
written as - > ;" 0., hence uf is the measure we search.

For 1 < j < A, we have:

/1 1 1 o
Z(Eagak) D3 B SR o
k=j i>] i>Ap+1 k=j
A A
1 n 1 n
< o nZozz + - — oy
| i=J k=j
A A
1 1 - “ 2
(7.24) < —+1|—In a;| — apl < =
n |n _ n
i=j k=j
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If @ > 0, we have:

A A A
n 1 - nio 1 - « 1 - «
Mo(uy) = EZO% :EZ nZai k fﬁz n Z a; | k
—1 k=1 | >k k=1 | i>k+1
1 & A5
= > Y | k- k=0T = 0> | -2 e > w
n k=2 >k i>1 i>Ap+1
(7.25) < a | k= (k=1)°] = > a; [k = (k= 1)°] = Ma(po),
E>1 \i>k i>1 k=1

For the distance, we have :

]l[x,+oo)(y) (Mé" - Mo) (dy)| dx

k
/ ™ 1/ Z ay 0 (dy)d Z ozk/ 2 Vdr
r E>A, 0

k>A

I
\

dy (MS‘ ",uo)

(7.26) = Z \/—Mz\(uo)

>A,

we used (7.22). Next,

dx

/ Lo, 400) (%) (MS — ”) (dy)
/7 i (%az — ak) dx

k=j

dx (u’o’,ué")

[
>

2 [An 24 4
(7.27) < —/ e < T < ——)
n Jo An Avn

we used (7.24) and (7.21). Finally, from (7.26) and (7.27), we obtain:

d)\(ILL87MO) < d/\(:uga ,LLO ) + d/\(MO ’:LLO) )\\/— (MQ)\(:LLO) + 4)

7.3. Conclusion. — In any case, (A € (=00, 1] \ {0} and pg either atomless or with support in
N), we have built a measure of the form pj = % Zivz"l 0, satisfying the desired conditions on the
moments and distance. It is straightforward to show that N,, = n (u{(dz),1). Hence, according
o (7.4), (7.9), (7.18) and (7.25), we deduce,

(7.28) Ny = nMo(pg) < nMo(po).

This concludes the proof of Proposition 3.2.

Appendix A

This section is devoted to some technical issues.
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Lemma A.1. — Consider A € (—o0,1]\{0}. Then, there exists a positive constant Cy depending
on ¢ and X\ such that

if)‘ € (—O0,0), ('T + y)/\ |(A¢)(m,y)| < C¢($y)>\ Vo € Ha,
a | <Cy (1+a* +y?) Vo eH,,
<

Co(zy)* Vo € HS.

(A1) if A e (0,1], (x+vy)

if A€ (0,1, (@ Ay |(Ad)(z,y)]

Proof. — Assume first that A\ € (—00,0) and ¢ € H,. Since |¢p(z)| < Cz* for some constant
C > 0, we have

(@ + )M (A9) (z,y)| < C@* AyY) [(z +y)* + 2 +y*] < Clay)™.
Next, for A € (0,1] and ¢ € H,, since |p(z)| < C(1 + 2) for some constant C' > 0, we have
(z+y)* [(Ad)(z,9)| < Clz +y)* [3+ (@ + ) +2* + ] <C (1 +22 +y).
Finally, for A € (0,1] and ¢(z) € HS, there exists C > 0 such that |¢(z)| < Cz* and we have
(@ Ay (Ag)(z,y)| < Cla Ay [z +y)* + a2t + 7] < Clay)™
O

Lemma A.2. — Let A € (—00,1]\ {0} and K € W' ((g,1/¢)?) for every e € (0,1). If K
satisfies (2.2), then for all (x,v,y) € (0, +00):

K(’U, y) [IL (0,z] (’U + y) - IL(O,I] (’U) - IL(O,I] (y>]
(AQ) = K(‘r - Y y)]l(O,z] (U + y) - K(‘Ta y)]l(O,ac] (U)

+oo
—/ 0K (2,y) [L0,2)(z +y) — L(0,01(2) — L(0,2)(¥)] dz.

If K satisfies (2.3) or (2.4), then for all (z,v,y) € (0,+00)3:

K(’U, y) [ﬂ(m,-i-oo) (’U + y) - 11(1,-{-00) (’U) - 11(1,-}-00) (y>]
(AS) = K(‘r - Y, y)]lz>y]l(m,+oo)(v + y) - K(m, y)]l(ac,Jroo)('U)

+/0 8IK(Zvy> [ﬂ(z,-l-oo)(z + y) - IL(z,-l—oo)(z) - ﬂ(m,-{-oo)(y)} dz.

Proof. — For A € (—o00,1]\ {0} we have that K(-,-) and its weak partial derivatives belong to
L> ((e,1/¢)?), whence, for all 0 < a < b < 400 and for all y > 0 (see for exemple [16]):

b
(A4) / 0. K(z,y)dz = K(b,y) — K(a,y).

First assume (2.2), and fix A € (—00,0). Remark that:

+oo b
/ 0:K(z,y)dz = lim 0. K(z,y)dz= lim K(b,y) — K(a,y) = —K(a,y).

b—+o0 a b—~+o00

Hence,

“+oo —+o0
/ amK(Zay)]l(O,m](z + y)dZ - ﬂz>yﬂv§x7y / azK(zvy)ﬂvgzgxfy dz
v 0

= H(O,m](v + y) [K(x - yay) - K(Uay)] .
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Next

)

+oo oo
*/ azK(zvy)ll(O,z] (Z)dz = *]lvgz/ amK(Zay)]lvgzgz dz
v 0

= ]l(O,I] (’U) [K(’U, y) - K(:L'a y)] )

—+o0 —+o0
- / azK(zvy)ll(O,z] (y)dz = 711y§z / amK(Zay)]lvgz dz
v 0

10,2 (y) K (v,y)-
Adding these three terms to the terms on the right-hand of (A.2) the result follows.

Next, assume (2.3) or (2.4). Observe that for (x,y, z) € (0, +00)3, we have
(A5) IL,2'>1ij - ]ly>ac = Il-ygzﬂz>zfy-
Thus,

/ GZK(Z, y) []lz+y>m - ]lz>ac - ]1y>96] dz
0

= / GZK(Z, y) []lygz]lz>z—y - ]lz>ac] dz
0

— Lyerlonasy | 00K (2)dz — Toes / 0. K (=, y)d-

z—y
= ly<aloso—y [K(v,y) = K(z = y,y)] — Luse [K(v,y) — K(2,y)]
= Loy = Lysal K(v,y) — Lycaloso—y K(z —y,y)
—Luso [K(v,y) — K(2,y)].
Adding these terms to the remaining terms on the right-hand of (A.3), the result follows. O

Now we will show a lemma which is useful to show Proposition A.4 stating that the a-moments of
1o and pf remain bounded in time.

Lemma A.3. — Consider o € R, A € (—00,1] and a kernel K satisfying either (2.2), (2.3) or
(2.4). We set V(x) = x*. Then,
(i) if a € (=00, 1], (AV)(x,y) < 0, for (z,y) € (0, +00)?,
(it) if o € (1,+00), K(z,y) [(AV)(2,y)| < Cra (2°y* +2*y*), for (z,y) € (0,+00)%,
where C o is a positive constant depending on A\, a and Kg.
Proof. — Point (i) is obvious, since for « < 1, (x + y)® — 2® —y* < (z* 4+ y*) —2* —y* =0.
Next, if a > 1, using (2.2), (2.3) or (2.4), there holds K (z,y) < ko(z* + y*). We get

K(z,y)|(A0)(z,y)] < rox [[(x +y)* — 2% +y°] + roy™ [|(z + y)* — y*| + 2°]
< akg [(:I:)‘yo‘ + xo‘yA) + (z+ y)°‘71 (:I:)‘y + :I:y)‘)]
< C [(:ckyo‘ + zayk) + (2 +y* ) (xky + fcyk)}
< C (sza F a4 ately 4 xyA+a71) _
1-A

Aa—1, _ A
Note that a1y = gy (£)

alent bound for the fourth term and the result follows. O

a—1
= ’y” (%) < 2%%YMysy + 2y 1<, We have an equiv-
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Proposition A.4. — Consider X € (—o0,1] \ {0} and a coagulation kernel K satisfying either

(2.2), (2.3) or (2.4). Let pg € MY, and denote by (put)icpo,r) the (o, K, \)-weak solution to

Smoluchowski’s equation. Let uf be a deterministic discrete measure and (u})i>o the associated

(n, K, p3)-Marcus-Lushnikov process. Let o € R, then

(a) if « <1, t— My(ut) and t — M, (1) are a.s. non-increasing;

(b) if a > 1, there exists a positive constant C o depending on A\, a and ko such that My (p) <
Mo (o) exp [t Cx,a M (p0)] and E [Mo(ui')] < Ma(ug) exp [t Cx o M (ug))-

Proof. — Let ¢(x) = 2®. For point (a), first consider (2.8). From Lemma A.3.—(%), we immediately
deduce

d

), 6(2)) = Mo(yu) = 3 () (), (AD) (2, 9)K (2,) < 0.

Next, consider (2.10) and remark that ¢ (X;', + Xg,) —¢(Xi)—¢ (Xﬁ,) = (A9) (X;;, ng)-

From Lemma A.3.—(%) and since J is a positive measure, we deduce that the jumps of M, (uy) =
(up(dx), p(x)) are negative and the conclusion follows.

For point (b), consider (2.8). According to Lemma A.3.—(4i), we deduce:

EMa () = 5 pedn)pa(dy), (A ) K (0 9) < 2 (uldo)aldy), 29 +225°)

dt 2
< Cxa M (pe) Mo (pt)
< Cha My (/LO) M, (.Ut> )

we used the point (a). We conclude using the Gronwall lemma.

IN

Next, we take the expectation in (2.11). Remarking that (A¢) (z, x) > 0, using Lemma A.3.—(ii),
since pfy is deterministic, and since M, (u') = (uf(dz), ¢(x)), we deduce:

BV ()] = Mo )+ [ B3 (), (49) (20K (2. 9))) d

t

-5 || El2(). (40) (z.0) K )] ds.

Cre [*
o [ (it o + )
0

< My () + Cra / E My (u0") Mo (4] ds

IN

M, (pg) +

t
< Mo (1) + o M () [ BIMG ()] ds,
0
where we used the point (a). We conclude using the Gronwall lemma. O

Finally, we present the

Proof of Lemma 5.1. — Assume that A € (0, 1] and recall (5.1). First, for (i) and (i), by direct
integration, we have

+OOA1 1 1)\1 1 e A—e—1
O dr = —/zfd:ch—/ N T dx
/0 (=) v Jo v i
1 1 2

W RN N AWk
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and

e 221 1 ! 22—1 e 1
0 dx = —/ dz+—/ z ¢ dx
/0 (=) v Jo
1 1 )\-l-f;‘

i e S ey

Next, for (iii) we have:

+oo A1 A1 vty A1
An (’U, y) = U/\ / 9” (ﬂz<v/\y + 11uvy<z<7ﬂry> d:L' = ’U)\ / 9” d:L' + ’U/\ / 9n d:L'
0 () 0 () Wy Y(a)

We have the following bounds: if v Ay < 1, then
vAY
I,(v,y) = ’U)\/ Ve = @vk(v Ayt < @vkyk.
0

Next, if v Ay > 1,

1 vAY
I,(v,y) = v/\/ \/ﬁx/\_ldquvA/ Vit teldy
0 1

1 'U /\ y 3)\"1‘6
< M
Sk [/\ S 3\ te
< 4 [v +(WwAy) 3”\+8v’\}
< VR 2X 22teq Arte-1q
Y [0 + (v Ay (v V) re(0,1/2) T (WA Y) (v Vy) rel1/2.1]) -

Thus, in any case

B

I,(v,y) = N [v/\y)‘ + (v A y)”‘(v Vv y)2A+511,\e(071/2) +(wAy)(vV y)4)‘+5*1]l>\6[1/2,1}] .

Next, since 2*~1 and 7, are non-increasing functions, according to the mean value theorem, we
9 (m) 9 9

deduce that J,,(v,y) < v* (%) (v Ay).

(v+y)
First, assume that v + y < 1, then we get J,,(v,y) < /no (v Vy) v Ay) < /noy
Next, assume that v +y > 1, then
Tn(v,y) < Vot Vy) T+ )P Ay) < 2o e Ay)(v v )P
< 2PE/n [(U R CAY 9)2A+€1>\€(0,1/2) + (wAy)(vV 9)4/\+€71]1Ae[1/2,1]] .

When A € (0,1/2), we used (v Ay) < (vAy)2 (v Vy)'=? to deduce the bound v*(v A y)(v Vv
y>3A+€71 S ,U)\(,U A y)Q)\(,U \Vi y)l ( Vi )3)\4’671 S (,U A y)Q)\(,U \Vi y)QAJrE.

Thus, in any case

Tn(v,y) < Vnory + 2225/ [(v A y)* (v v 9)2/\+8]l>\€(0,1/2) +@wAy)(vV 9)4/\+8_1]1>\e[1/2,1ﬂ .
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Finally, we deduce the bound:

Ap(v,y) < ¥1ﬂyA

1 _
+\/ﬁ <22/\+€ + X) [(’U A\ ’y)Q}\(’U V y)2/\+€]l)\6(0,1/2) + (’U A y)(v V y)4/\+€ 1]1)\6[1/2,1]} .

This concludes the proof of Lemma 5.1. O

(1
2]

(16]
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