N
N

N

HAL

open science

Preconditioning operators and L*° attractor for a class of
reaction-diffusion systems

Boris Andreianov, Halima Labani

» To cite this version:

Boris Andreianov, Halima Labani. Preconditioning operators and L attractor for a class of reaction-
diffusion systems. Communications on Pure and Applied Analysis, 2012, 11 (6), pp. 2179-2199.

10.3934/cpaa.2012.11.2179 . hal-00522783

HAL Id: hal-00522783
https://hal.science/hal-00522783
Submitted on 1 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License


https://hal.science/hal-00522783
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

PRECONDITIONING OPERATORS AND L>* ATTRACTOR FOR
A CLASS OF REACTION-DIFFUSION SYSTEMS

BoORIS ANDREIANOV

Laboratoire de Mathématiques CNRS UMR 6623
Université de Franche-Comté, 16 route de Gray
25030 Besancon Cedex, France

HAavLiMA LABANI

Université Chouaib Doukkali
Faculté des Sciences, Département de Mathématiques et Informatique
BP20 24000 El Jadida, Morocco

ABSTRACT. We suggest an approach for proving global existence of bounded
solutions and existence of a maximal attractor in L for a class of abstract
3% 3 reaction-diffusion systems. The motivation comes from the concrete exam-
ple of “facilitated diffusion” system with different non-homogeneous boundary
conditions modelling the blood oxigenation reaction Hb + O2 = HbOs>.

The method uses the LP techniques developed by Martin and Pierre [MPT]
and Bénilan and Labani [BL2] and the hint of “preconditioning operators”:
roughly speaking, the study of solutions of (at + Ai) u = f is reduced to the
study of solutions to

(0r+ B) (B~ *u) = B f + (I-B~'A;)u,
with a conveniently chosen operator B. In particular, we need the L>° — LP
regularity of B~!A; and the positivity of the operator (B~'A; —I) on the
domain of A;.
The same ideas can be applied to systems of higher dimension. To give an
example, we prove the existence of a maximal attractor in L*° for the 5 x 5

system of facilitated diffusion modelling the coupled reactions Hb 4+ Oy =
HBO2, Hb + CO2 = HbCOx.
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1. INTRODUCTION

Consider the following reaction-diffusion systems in (0, +00) x Q, where 2 is a
bounded domain of R™ with a sufficiently smooth boundary 0€:

8{&1 — dlA’U,l = U3 — UL1U2
(1) 8tu2 - dQA’UQ = U3 — UrU
6tu3 - d3A’LL3 = UjUuz — U3z,

8tu1 - dlAul = K2u2 - K1U1U5
atUQ - dzAUz = —KQUQ + K1U1U5
(2) (9tU3 — d3AU3 = K4U4 — K3U3U5
Opug — dyAuy = —Kaug + K3usus
Orus — dsAus = Kouo + Kaus — Kiujus — Ksusus

with the boundary conditions (BC, for short) of the following general form:
(3) NiOpu; + (I—Ai)ui =a; onf, «;>0, i=1.3 or i=1.5.
Here 0 < \; < 1.

For bounded nonnegative initial conditions u;(0) = uY, global existence of so-
lutions, attractor in L°° and asymptotic behaviour for , and for , have
been studied in many works (see e.g. [Rofl [El, MP1], Ll [ATJ]), under different restric-
tions on the boundary conditions and data. The aim of the present work is to show
global existence and to construct the attractor in L* in some of the cases which,
to the authors knowledge, are not covered by the existing literature. In particular,
we treat the case of non-homogeneous Robin boundary conditions for , with
A1, A2, A3 which do not coincide (see §. The case where some components may
have Neumann boundary conditions is more subtle (see §, and we only prove
the global existence in this case.

Let us briefly recall the known results and the methods used to obtain them.

Rothe [Rot] showed the global existence for (1)), under the homogeneous Neu-
mann boundary conditions and for n < 5, using feedback or bootstrap arguments
ant Sobolev embeddings. He also studied the asymptotic behaviour under the same
assumptions, showing that the solution converges, as t — +00, to the unique equi-
librium point. This result was achieved thanks an entropy production functional. In
the same direction as Rothe, Ebel [E]| considered system (/1) with a nonhomogeneous
Dirichlet condition on u; and the homogeneous Neumann conditon on us, us. The
most general results are obtained for n = 1; namely, Ebel showed that the solution
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exists globally in time; using a Lyapunov functional, she proved that the solution
converges to the asymptotically stable steady-state solution uniquely determined
by the value C' = ﬁ fQ (ug +us). For n <5, same results are obtained for a special
choice of the Dirichlet BC on u;. Further, system was studied by Martin and
Pierre in [MPI]; they developed the L technique in order to prove the global ex-
istence under the Neumann boundary condition for any space dimension n. Using
these LP techniques, Labani in [[] has shown, in collaboration with Ph. Bénilan,
the result of global existence and convergence to zero of solution of , for all n,
under the homogeneous condition with

(4) A=Az = A3 =\

with A € [0,1) (either the Dirichlet condition, or the same Robin condition is
imposed on all the three components). In the same way, Amraoui and Labani
[AT] gave global existence of solutions and existence of a maximal attractor in
((L*°(€2))™)? with non-homogeneous BC under the restriction ().

System was studied by many authors (see Morgan [Mo], W. Feng [Fell [Fe2]
and references therein). In particular, using upper and lower solutions and following
the result of Rothe, Feng proved global existence for n < 5 under the homogeneous
boundary condition (or when some of the five components of the solution have the
same boundary condition, like in ; see [Fe2] for the precise statements). Under
the same conditions, the convergence of the solutions to a steady-state solution is
shown, using a Lyapunov functional and the idea of w-limit set.

The motivation of this paper is to study system under non-homogeneous
boundary conditions in all space dimension, and to relax considerably the assump-
tion used by Amraoui and Labani. Namely, we assume that one of the following
three situations occurs:

(5) either \; € (0, 1), i=1.3, or Ay = Ay = A3 =0,
or A\; € [0,1) with a; = 0 for ¢ such that A\; = 0.

These assumptions allow to introduce an operator B as a “preconditioner” for
the system; the sense of this term will become clear from the use we make of this
preconditioning operator. Let us briefly describe our approach and give the main
assumptions. Following Bénilan and Labani [BL2], we recast problem , under
the abstract form :

dt

d
(S) { —uZJrAZ(ulfo_zz) :fi(uhUQ,’UG),
u;(0) =uf, i=1.3,

where for i = 1..3, (—A4;) is the infinitesimal generator of an analytic exponentially
stable semigroup of positive linear operators e~*4i on L2(2); we assume that these
semigroups are LP-nonexpansive and hypercontractive. We refer to Section [2] for
the exact assumptions on A; and for the definition of a solution.

Further, in (S) we assume

(6) a; € (L))" with e~*Ya; <a;, i=1.3

(to get from , to (S) one takes for @; the solution of the appropriately defined
elliptic problem with BC ; in particular, &; = 0 if a;; = 0).
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Finally, the source terms f;, i = 1..3 in (S) are assumed to be locally Lipschitz
continuous on (R*)? and verify for all u1,us,us € RT, the properties

(7) f1(0,uz,uz) >0, fa(u1,0,uz) >0,  fs(ur,u2,0) > 0;
(8) fi(u, ug, uz) + fa(ur, uz,uz) < 0;

(9) Ja >0 fi(ui,uz,u3) < a(l+us), fa(ur,uz,us) < a(l+us);
(10) >0,>0,vy>0 f3(u1,u2,u3)§b(1+Uf+ug).

Local existence and uniqueness of a non-negative L mild solution for nonnegative
L initial data is obtained by the standard fixed-point technique based upon the
Duhamel formula. Under the assumptions we will impose on the operators A;,
this solution is a strong solution, in the sense that u; € W,22((0,T); L*(Q)) N
C([0,T],L?(2)) and (S) is verified in L?(Q), for a.e. t > 0.

Time-dependent a priori L°° bounds on the solutions ensure the existence of a
nonlinear semigroup {S(¢)}+>0 on (L*°(£2))? solving (S). Then, L™ estimates of
attractor type ((E.A.T.), for short; see for the definition) and the asymptotic
compactness of {S(¢)}:>0 are needed in order to construct the maximal attractor
for (S) in L*>(Q) (see [BL2]). The technique to obtain the (E.A.T.) estimates is
the main contribution of this paper; let us describe briefly this technique.

We proceed in four steps in order to obtain L estimates (E.A.T.) for the solu-
tion (u1,us,us). Firstly, we assume that there exists a “preconditioning operator”
B on L?(Q) satisfying the same requirements as those imposed on A;, i = 1..3 (see
Definition below); and such that, for A = A;, i = 1..3, the two properties hold:

(11) (I-B71A) <0 in the sense that
for all w € D(A) N L>(Q), u >0, one has u < B~'Au

and (for ¢ such that a; # 0)
(12)
for all p < 400 there exists Cp, > 0 such that
{ for all u € D(A) N L>(Q), u >0, one has | B~ A ul|rrq) < CpllullL=(0)-

We consider the operator (25+B) applied to the function B~ (uy (t)—a; +us(t)—as).
Using (8), we deduce (E.A.T.) estimates on |[B~'u;(t)||1r(q) for i = 1 and i = 3,
for all p < 4+00. Then analogous estimates on ||Aj_1ui(t)||Lp, j=1.3,i=13,
follow. Applying (4 +B) to the function B~ (uz(t) — @), we deduce an (E.A.T.)
estimate on ||Aj_1u2||L;D, j=1.3.

Secondly, we exploit the idea of the proofs in [BL2] and [AL]. Using the first
two equations in (S) and property (9), we deduce (E.A.T.) estimates on |lu;(t +
N ze(o,5)x0) for i = 1 and for i = 2, for all p < 4-00. Here § > 0 is a fixed real
number. At this stage we exploit the LP maximal regularity property (see [La] and
Theorem [3.2]in Section [3)) for the operators A;, i = 1,2.

Thirdly, choosing p sufficiently large in the preceding arguments, with the help
of the LP techniques of Martin and Pierre [MP1], from and the third equation
of (S) we deduce an (E.A.T.) estimate on ||uz(t+0)||r=. In the two latter steps,
we use the exponential decay of e7*4% and the L? — LP regularizing effect of the
semigroup, 1 < g < p < 4o00.

Finally, using the exponential decay of e *4¢ i = 1 and i = 2 in LP(f), from @
and the first two equations in (S) we deduce (E.A.T.) estimates of ||u;|| =, i = 1,2.
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We refer to Definition 2:1] and Lemma [3.1] for the exact assumptions on the
operators and the properties of the semigroups used in our arguments.

The outline of the paper is as follows. In Section [2] we describe our abstract
framework, give the definitions, and state the main results (one more result is
given in Section . In Section |3) we give the proofs. Section {4 is devoted to
the study of concrete examples of preconditioning operators. In Section we
apply the abstract results of Sectionto problem with boundary conditions ({3)
of Dirichlet or Robin type. Then we give two extensions. Section deals with
problem with Neumann BC on some of the components; we only prove that the
solutions are global in time. In Section [5.3] we apply the technique of Section [3| to
the 5 x 5 system . For Dirichlet or Robin boundary conditions , we deduce
that solutions exist globally, that there exists a maximal attractor in (L°°(2))5
for system . If also Neumann boundary conditions are allowed, one can get the
global in time existence of solutions, as for the case of system .

2. THE ABSTRACT FRAMEWORK AND THE MAIN RESULT

2.1. Some notation. In the sequel, C' denotes a generic constant that only de-
pends on the problem, excluding U?; i.e., C' depends on €, &;, A;, fi (via, in
particular, ||a;|| (o), meas(Q2), the regularity of 9, the constants a,b, 8,7, w,o
appearing in our assumptions). By ¥ we will denote a generic non-decreasing func-
tion from R* to R* depending on the same parameters.

Similarly, by ® we will denote a generic function

®:RT x Rt RT  satisfying
(13) ® is bounded, ®(-,¢) is non-decreasing, sup lim ®(r,t) < C;
rer+ o0

any such function will be called “estimate of attractor type” ((E.A.T.), for short).
Notice that, upon replacing ®(r,t) by supy~; ®(r, s), we can always think of ®(r,-)
as being non-increasing. B

The argument of ¥(-) and of ®(-,t) will have the meaning of [|U°|| L (q).

Finally, in case C,¥ or ¢ depend on additional parameters introduced below
(namely, on p € [1,+00) and/or on ¢ € (0, +00)), we will indicate these parameters
as subscripts.

Notice that with this notation, we have e.g.

Cs + U, (1) = Us (1), CH4 e W, (r) + O(r, t) = B, (1, 1), su}g@(r, t) = U(r),
te
C+ ,(r,t) = Dp(r, 1), \I/(T)]l[o’g(;) (t) + ®(r,t — 25)]1[2574_00)(0 = ds(r,t)

and so on. This kind of relation is often used in the proofs of Section [3}

By u™, respectively by v~, u A 1 we denote max{u,0} (resp., max{—u,0},
min{u, 1}).

2.2. Abstract problem and assumptions. Let 2 be a given bounded domain
of R™ with a sufficiently smooth boundary 0€2. We consider the abstract reaction-
diffusion problem (S). In order to simplify the presentation, we gather the assump-
tions on the operators A; in the following definition.

Definition 2.1. We say that A is an operator of class A if the following holds:

e —A is the infinitesimal generator of an analytic semigroup e~*4 on L?(Q)

tA

e the semigroup e~*4 is positive, in the sense that e *4u > 0 for u > 0;
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e ¢~ % is non-expansive on all spaces LP(Q), i.e., for all t > 0,

(14) p € [1,400] [le ull, < Jlull, for u e L=(Q);

e ¢ *4 is exponentially stable on L2(Q), i.e. there exists w > 0 such that for all
t>0,

(15) le™ Al 2(ze) < e

e ¢t is hypercontractive, i.e., there exist ¢ > 0 and C' > 0 such that

(16) e~ ull @) < el

Remark 1. It is well known that the operators A; featuring in 7 are of class
A, provided \; < 1, i = 1..3 (see in particular [Frl [Pal Rot]). If A; = 1, then for all
¢>0, (A; +cl) is of class A.

More generally, following [BL2] consider an abstract operator A defined by a
symmetric positive definite bilinear form a(:,-) on a Hilbert space V under the
norm |[ul|} = a(u,u). Assume

(17) V is densely embedded in L(Q2) for some g > 2.

Then we have, in particular, the triple V' C L?(Q2) C V' with the operator A :

V — V' defined by duality, i.e. < Au,& >y v=a(u,§) for all £ € V. Restricting

the operator’s domain, we have the operator A on L?(Q2) defined by
DA)={ueV cL*Q)|Iw=Auec L*(Q)VEeV [ywE=a(u,};

then it is well known that the operator —A generates an analytic exponentially
stable semigroup on L?(Q) (see e.g. [B, Chap.IV],[Al Chapter 7.1]). Moreover,
under the Beurling-Deny assumptions
ueV = [uteVunleVandawt,u™)>0,a(unl,(u—-1)T)>0],

the semigroup e~*4 is positive and non-expansive in LP(Q), p € [1,+00] (see [Al
Section 7.1] and references therein). Finally, the embedding ensures the hy-
percontractivity property (see [Al Section 7.3.2]). Therefore such operators are of
class A.

We assume that the operators A; in (S) fulfill the assumptions

the operators A; in (5), i = 1..3, are of class A;
(H) in addition, there exists an operator B of class A

which satisfies , with A = A;, i = 1..3.
We impose the restrictions f on the reaction terms. Finally, we assume that
a; € LOO(Q), a; >0,1=1.3.

2.3. Definitions and results. Let us first make precise the two notions of solution
we use.

Definition 2.2. For T € (0,+00), a mild solution of (S) on [0,T) is a triplet
U = (uy,uz,u3) of functions on [0,7) such that U € C([0,T), L*(Q)) and the
Duhamel formula represents U(t) for all ¢ € [0,T):

(18) ui(t) = a; + e i (ud — a;) + /t e =94 £.(U(s)) ds.
0
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A strong solution is a triplet U = (ug,uq,us) of functions on [0,7) such that
u; € WE2((0,7); L2(Q)) N C([0,T), L*(Q)) with u;(0) = u?, u;(t) € D(A;) for a.c.

t and the equation in (9) is verified in L?(Q) for a.e. t € (0, 7).

Inserting a strong solution into the right-hand side of the Duhamel formula
and taking the time derivative in the sense of W1:2(0, T; L?(2)) space, it is easy to
check that a strong solution is also a mild one. In the framework we are given, the
converse is also true (see Remark [2[ below).

In order to show global in time existence of a (strong) solution, we start with the
standard local existence and uniqueness result for a mild solution with non-negative
L*> data:

Theorem 2.3. For all UY € ((LOO(Q))+)3 there exists Taz = Tmaz (U x) €
(0, +00] such that (S) with the initial datum U° admits a unique mild solution on
[0, Thaz) with values in ((LOO(Q))+)3,' moreover, Tyae = +00 unless ||U(+)|| L~ gets
unbounded as t — Tipae — 0.

The arguments of the proof are classical (cf. [Pal Th.6.1.4] applied in L?(Q)),
except that we need additional L*° growth estimates and the positivity control.
Thus we combine the local Lipschitz continuity of f;, i = 1..3, the non-expansiveness
property of e7*4 in L>°, the Gronwall inequality, and the Banach fixed-point
theorem to get a unique local mild solution with values in (L°° (Q))3 The positivity
comes from the sign properties , the inequalities @ and the Duhamel formula.
Finally, the continuation principle is used to get the solution on a maximal interval
[07 Tmax)-

Now let us state the main result of this paper.

Theorem 2.4. Assume that the operators A;, i = 1..3, satisfy the properties (H).
Assume that a; € (L>(Q))" satisfy (6) and f;, i = 1..3, are locally Lipschitz con-
tinuous functions satisfying @7. Then

(i) Any mild solution of (S) for L™ initial datum U° can be continued globally in
time.

(ii) An L*°(Q) estimate of attractor type holds: namely, there exists ® satisfy-
ing such that the solution U = (u1,uz,us) of (S) with initial datum U° =
uy, Us, Us) satisfies

) sa

vt e R ([U®)]1~(0) < P(IU° L= (o), 1)-

We also have the above result (i) in the case the exponential stability hypothe-
sis is suppressed (notice that by the contractivity assumption , still
holds with w = 0), provided the assumptions @D, (10) made in the introduction are
replaced by , below. In the case of system ,, this corresponds to the
Neumann BC imposed on some of the components of the solution; and (19)),(20)
are fulfilled. To be precise, a careful modification and simplification of the proof of
Theorem yields the following abstract result.

Theorem 2.5. Assume that f;, i = 1..3, are locally Lipschitz continuous functions
satisfying ,, that the following weaker condition substitutes @D

(19) Ja >0 fi(ur,us,us) <a(l+wu; +us+us), i =1,2;
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and assume that the following stronger condition substitutes (|10)):
(20) IB>0,8>0,v>0 fy(uy,ug,us)+cus < b(l+ul +ud).

with some ¢ > 0. Assume that &; € (L>())T satisfy (6).

Assume that hypotheses (H) are replaced by the assumptions on A;,c:= A;+cl and
the associated preconditioning operator B, = B+-cl:

the operators A; . in (S), i =1..3, are of class A;
(He) in addition, there exists an operator B such that B is of class A
and B, satisfies , with A=A, 1 =1..3,
where B is the infinitesimal generator of an analytic semigroup of positive linear
operators et on L2(R)) satisfying the LP-contractivity property and the hy-
percontractivity property .
Then the mild solution of (S) for any ((L>=(Q)T)3 initial datum U° is defined
globally in time.

Corollary 1. There exists a nonlinear semigroup on the positive cone ((LOO(Q)+)3

giwen by Theorem [2.4] or by Theorem under the respective assumptions of the
theorems. We denote this semigroup by {S(t)}+>0.

Clearly, the (E.A.T.) of Theorem [2.4{ii) implies the existence of a bounded ab-
sorbing set £ in ((L>(2))T)? for the semigroup {S(¢)}+>0; e.g., one can take

&= {U = (Ul,UQ,Ug) |, Vi=1..3 Hul||Loo(Q) § C+ 1}

where is given by in the (L>°(2))? (E.A.T.) of U(¢). By the general result (see
Bénilan and Labani [BLI]; cf. Temam [Teml])), under the additional assumption of
asymptotic compactness of the solution semigroup,

(21) M=) UJse+oe

>0 §>0
is the maximal attractor for the semigroup. In the definition of M, the closure is
taken in (L?(£2))3; yet, as the semigroup is also compact in (L>°())? (see Corol-
lary i) below), this closure could be taken in (L>°())3.

Corollary 2. With the assumptions of Theorem [2.4] suppose in addition that for
i = 1..3, the semigroups et i = 1..3, are compact in L>(Q), for all t > 0. Then

(i) the nonlinear semigroup {S(t)}+>0 associated with problem (S) is compact
in (L (Q))*;

(il) M given by is the mazimal attractor for the semigroup {S(t)}i>0 in
(L (Q)F)°.

Notice that in general, a maximal attractor in the framework of Theorem
may not exist (cf. the asymptotic behaviour results of [Rotl [E]).

The result of Corollary [2]is almost classical (see e.g. Temam [Teml|), except for
the fact that we replace the assumption of continuity of the semigroup on L*° by
the continuity in a weaker topology (see [BL1,[BL2]). For the sake of completeness,
in Section we give a proof adapted to our setting.

3. PROOFS

The main arguments are those of Section Section [3.2] gives the guidelines.
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3.1. Preliminary statements. Let us first recall a few well-known properties
of semigroups generated by operators of class A; these properties will be used
throughout the proofs.
Lemma 3.1. Assume that A is of class A. Then

(i) A=Y is bounded, and for all u >0, one has A=1u > 0;

(ii) there exists C > 0 such that for all t > 0,

_ o
(22) | Ae™ | £(r2(y) < 7

(iii) the unique mild solution of the evolution problem
d
—u+ Au=0, u(0)=ug € L*(Q)

dt

verifies the equation in the classical sense in L*(Q), for all t > 0.
Namely, u — ug € Co([0,00); L2(Q)) N C1((0,00); L*(2)), both Lu and Au
belong to C((0,+00), L*(2)), and the equality Lu-+ Au = f holds in L*(2)

for allt > 0.
(iv) there exist o > 0 and C > 0 such that for all p > 2 there exists A\, > 0 such
that
(23) le™ A ulloy < C e 5 |[ull Loz
in addition, for all ¢ > 1
(24) le " )l o) < Ct7 4 ||u]la(oy.
(v) for all § > 0 there exists a constant Cs such that
(25) Vp€[2,400) Vt 26 ||Ae™ " oiLr) L) < Cs.

(vi) A=11 € LP(Q) for all p < +oo0.

Let us briefly indicate the arguments of the proof. The points (i),(ii) and (iii)
are classical (see e.g. [Pal Ch. 1, Remark 5.4], [Pal, Ch. 2, Theorem 5.2] and [Pal
Ch. 4, Theorem 3.5] respectively). The item (vi) is a straightforward combination
of the estimates (for t < 1) and (for t > 1) with the inversion formula
A7l = [P emtA gt

The point (iv) follows by the Riesz-Thorin interpolation theorem (see e.g. [DS])

from (14),(15) and (16). Indeed, we first interpolate and (where we take

either p = oo, or p =1). We get for all r € (1, 00),
2w
(26) le™* ) £iray) < e mtT Y,

Then we interpolate and (where we choose r =1+ ). We find that for
all p > g > 1 there exist A, 4 > 0 such that

Co(l_1
(27) le " ul o) < C e e 7770 ul| pa(q);

On the one hand, the choice ¢ = p/2 yields . On the other hand, as p — oo in
and ¢ remains fixed, estimate follows. )
For the proof of (v), we write Ae™#4 = e*(t"S)Ae*%A(Ae’%A) and get

[Ae™t4 |l 222 (9), L))

—(t— _3 _9d
< e peree @y lle™ 2 cerz @) L@ 1 Ae™ 24 | o2 () < $T5o72
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thanks to (14), and (22)). Then we use the Holder inequality for p > 2 and
infer .

Finally, recall the following maximal regularity statement (see Lamberton [Lal).
Theorem 3.2. Assume that —A is the infinitesimal generator of an analytic semi-

group on L*(Q) verifying (14). Let p € (1,+00).
Then the unique mild solution of the evolution problem

d

ﬁu—i—Au =felL} ([0,+00) xQ), u(0)=0
verifies the equation in the strong sense in LP(Q). Namely, u € W, ([0, 00); LP(Q))
(so that the mapping t — u(t) € LP(Q) is continuous and w(0) = 0), both Lu and
Au (defined a.e. on (0,+00)) belong to LP(RQ), and the equality %u+ Au = f holds
in LP(Q) for a.e. t > 0.

Moreover, there exists Cp, > 0 such that for all T > 0, the mazimal regularity
estimate holds true:

d
H%UHLP([O’T]XQ) + | Aull oo, myx0) < Cp I fllze(0.11x0)-

By our assumptions, the operators A;, i = 1..3, as well as the “preconditioning
operator” B verify the properties stated in Lemma and in Theorem [3.2] In
particular, we have the following remark concerning solutions with L initial data.

Remark 2. The notions of mild and strong solutions are equivalent. Indeed, we
only have to notice that a mild solution is also a strong one. Separating the right-
hand side of the Duhamel formula , using Lemma ili) and Theorem we
see that the unique mild solution U (t) = (uq(t), u2(t), us(t)) to problem (S) verifies
the equation in the strong sense, i.e. each term in (S) makes sense in L2((0,T) x 2)
and the equality holds in L?(f2) for a.e. t € (0,7).

3.2. Auxiliary statements and proof of Theorem The proof of Theo-
rem is based upon the three following lemmas.

Lemma 3.3. Under the assumptions of Theorem [2.4], the following estimates of
attractor type hold:

(28) Vi,j=1.3 Vpe[l,400) Vt<Tmaz [|A; ui(t)]|r (@) < Pp(l|U% |10 1);

(29) Vi=1..3 Vd > 0 Vt > 1) VT<Tmaz ||€_tAiui(T)HLoo(Q) < ¢§(||UO||LOO(Q), T).

Lemma 3.4. Under the assumptions of Theorem the following estimate of
attractor type holds:

Vi=1,2 Vpe[l,4o0) V>0 V7 <Dz —26

[ui(T 4 )| Le(s.26)x9) < Pap(1U° L (0, T)-

Moreover, if Tyar > 26, then

(31) Vi=1,2 ¥pe[l,400) V6>0 Vt<26 Hui(~)||Lp((07t)XQ) < \]:167P(HUOHLOC(Q)).

Lemma 3.5. Under the assumptions of Theorem the following estimate of
attractor type holds:

(32) Vi=1.3 ¥6>0 V7 €[26, Trnaz) ||wi(7)||p=(0) < @s(IU°|| 2o (), T)-
Moreover, if Tipaz > 20, then
(33) Vi=1.3 ¥6>0 ¥7€[0,28] [lus(7)]| @) < Cs(IU°]| o (o)-

(30)
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The proofs are given in the next subsection; with Lemmas 3.3 [3-4] 3.5] in hand,
we justify the claims of Theorem as follows.

PROOF OF THEOREM 2.4}

(i) Take a solution of (S) defined on the maximal interval [0, Tpnaz); if Trax < 400,
then ||U(t)||L~ gets unbounded as t approaches Tp,q,. Pick 6 < Tyaz. Then
the bound in Lemma [3.5] contradicts the unboudnedness of ||U(t)| . Thus
Tmaz = +00.

(ii) Now fix e.g 6 = 1/2. Then by (i) and the two estimates of Lemma for
t = 1..3 we have the estimate

vt € RY lui()| ) < W1/2(|U°| poe ) Lo,11(8)+@1 2 (1U° | £oe () )1, 100) (£),
which is an (E.A.T.). o

3.3. Proofs of Lemmas Now we turn to the proofs. Notice that
by the Hoélder inequality, it is sufficient to prove the estimates of Lemmas [3.3
for p satisfying

(34) p > po:=max{2,0}.
PRrROOF OF LEMMA B3}

We work with the local solution U(t) = (uq(t),us2(t),us(t)); recall that it is

defined, for t € [0, Thnaz); Tmar < +00, as an element of (LOO(Q)+)3.

e Step 1. We obtain an LP(Q)) E.A.T. on B~1u,(t), for i = 1, 3.

For 0 <t < Tynqa, define w(t) := B~ ((u1—an) + (us—as)).

Apply the operator (% + B) to w(-). As pointed out hereabove, equations (.5)
are satisfied in the strong sense. In particular, u; € E := Wli’f((O,T],L2(Q)) N
C([0,T),L?(2)). The operator B~! being bounded and &; € L*(Q) being inde-
pendent of t, we have B~!(u; —a;) € E. Thus we can apply the operator B~! term
per term in equations (S); it follows that w verifies

d B _ _
(35) %w tBuw=258 1(f1 + f3) + 21:1,3 (I - B 1Ai)(uiiai)

w(0) = B! ((uf —an) + (ug—as))
in the strong sense.

The first term in the right-hand side of the above equation is non-positive thanks
to assumption () and the positivity of B~1. Now we want to benefit from hypothe-
ses and (12)), by splitting s; := (u; — @;) € D(4;) into its positive and negative
parts sii.

We cannot do it directly, because sli may not belong to D(A;). Therefore we
regularize s* by setting

S:I: — (I o pflAi)fls:I:

P " i

L —1 —1 — ot —
Sip=U—p A) s = iy = Sip

It is well known (see e.g. [Pal, Ch. 1, Lemma 3.2]) that as p — oo,
Ve LA(Q)=D(A;) (I—ptA) 'z — 2z in L?(Q).

Because B! is continuous on L?(Q2) and A; commutes with (I — p~14;)~!, we
infer that
(I — B*IAZ-) Sip — (I — BflAZ-) S; as p — 0.
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In addition, e~*4* being positive and non-expansive in L for all ¢ > 0, from the
representation

o0
(I - p_lAi)_1 = p/ e Ple~tAi gt
0

we infer that 0 < Sj,p and 0 <'s; ) < [|(wi — @)~ || Lo (). Now, taking into account
the positivity of u; and of @;, we can write
+ _ _
(36) OS si,p and Hsz,pHLx(Q) S HO[lHLoo(Q)
Now we come back to . Then for ¢ = 1..3,
— —14. ) = ] —_ 14, .
(I B Az)(uz @;) pgr_ir_loo(l B Az) Si,p

= dim [(1- B A sf, - (1= B A s, | < tim [(B1 40— D))

p—~+o00 ~ p—+oo

by assumption . Finally, from assumption and the uniform in p bound
we infer

d
pri +Bw < g(t), |g(t)|ra) < Cq for all ¢ < +oo.

Being a strong solution of problem , w is also its mild solution. By the
Duhamel formula and the positivity of e=*”, we have

t
(37) w(t) < e_th(O) +/ e_(t_s)Bg(s) ds, |g(t)|lLe) < Cq.
0

The first term is the operator e~*# applied to the function w(0) = B~ ((uf—ay) +

(u$—a3)) which belongs to LP(€2), thanks to Lemmavi). By (14), for all p < +o0
the LP norm of e~ *Bw(0) is globally bounded on [0, T},4.) by a constant depending
on [U% 1o (qy; by [@3), e Pw(0)]|1r () decreases to zero if Tpap = +00, t — +00.
Thus for all p € [1,+00), we have the (E.A.T.)

le™ Pw(0)|| ey < Pp(|U°]| 2 (), t)-
For all p satisfying , % < 1, so that and provide the bound

t
[w* (#)]| 2o ) < @p(|U°]| oo @) t) + C /0 =) (t—5) 7% ||g(s) | Los2 (0 ds

38 b, e
(38) < B0 orst) + Gy [ e s

0
< @,(|U | Lo (), ) + Cp.

This yields the (E.A.T.) [|w™(®)] e < Pp([U°| Lo (), 1)-

It remains to notice that by the positivity of B~! and of u;, w™(¢) is bounded by
B~1(ay + @3); thanks to Lemma [3.1(vi), [|w™ (¢)||r(0) < Cp. Finally, using again
Lemma v) and the positivity of u; we infer the (E.A.T.)

1B~ uy ()| o) + 1B us(t) || o) < 211B~ Mo + as)|| ey + [w™ ()|l 2e o)
< Cp+ P, ([|U° | 1= (0), t) = @p(|U°]| o< (), 1)

e Step 2. We deduce the same (E.A.T.) for Aj_lui(t), fori=1,3 and j = 1..3.
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Indeed, from the positivity of u;, the positivity of Aj_1 and assumption (11)),
we have 0 < Aj_lui and 0 > (I — B’lAj)(Aj_lui) = Aj_lui — B~ lu;, so that
0< A;lui < B~ lu;; this implies the desired (E.A.T.).

e Step 3. We deduce the LP(£2) (E.A.T.) on Aj_lug(t), for j =1..3.

To this end, we now assign w(t) := B~1(uz — az). As in Step 1, we infer
d
(39) vt Buw= B 'fo+ (I — B 'As)(ua—a2), w(0) =B ' (uj—an).

By the growth assumption @D on fy, we can dominate the first term in the right-
hand side of by the quantity aB~!(1 + u3(t)), which is already estimated in
Li(Q) for all ¢ < +o00, thanks to Lemma vi) and to Step 1. Splitting (us—do)
and using and as in Step 1, we deduce

d
(40) S0+ Bw<g(t), l9®lLa) < Pa(|U° L), 1)-

Similarly to the reasoning in Step 1, for all p < +oo from the Duhamel formula we
deduce the LP(2) (E.A.T.) of w, and then of B~1uy(t). Indeed, the integral

t
I(t) = / Cp et = 5) 700 (|U°| L (@) 5) ds

appearing in this calculation is estimated by splitting it into integrals over [0, %] and
[£,t]. Because @, /(r,t) < W,,/9(r) := sup,cp+ ®p/2(r,t), and because ®,,/5(r, ) can
be assumed non-increasing, we infer for all ¢ € [0, Ty,42), t > 2

l1-o/p _
1(t) < Cy ()7 e 20, i (| U0 e () + D10 ), 5) )

= ®,(|U° o< (a2, £)-

For t < min{Ty,az,2}, we simply have

2
I, <G (I)p/2(HUO||L°°(Q)aO)/O (t —5)77/"ds = Up([U°]| 1= 0)-

Finally, I, < W, (r)ljg 2 (t) + @p(r,t) s 100y (t) = Pp(r,t), 7 = [[U°|| (), which
is the desired (E.A.T.) estimate for B~!(us — ao). Since B~'as is bounded by
Lemma (vi), we proceed as in Step 2 to deduce the same (E.A.T.) for Aj_luQ (t).

e Step 4. We deduce the estimates on e *4iy;(7), for i = 1.3 and t > § > 0.

Fix some p < 400. Because for ¢t > 0, Ran(e™*4¢) € D(A;) and A;' commutes
with e~*4, using the regularization property we get

He—tAiui(T)”Loo(Q) — ||Aie_t“‘i (A;lui(T))HLOO(SZ)

< Csl| A7 ui(T) [ pe (o) = s (|U° | poe (@), 7)- o

Remark 3. In the above proof, the assumption on B71A; can be dropped

when a; = 0 (see (36)).
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ProOF OF LEMMA [3.4  We exploit the bound @D, the E.A.T. estimates shown in
Lemma and the maximal regularity for the operator (% + A;). Let us prove
the estimates for uy; the case of ug is entirely similar.

Fix § > 0 with 2§ < Ty Fix 7 > 0 such that 7 + 20 < T}p,4, (the case 7 =0
will be considered separately). Set w(t) := ui(t + 7) — &;1. Because the system is
autonomous, we deduce that w is a strong and thus also a mild solution of

(41) %M+A1w:f1(U(+T)), ’LU(O) :Ul(T)—dl.

By the bound @ on fi and the positivity of e=*41, we have
(42) fort €[0,20], 0<uy(r+1t) <ag+e “M(u(r) —ar)+w(t),

where 0 is the mild solution, on [0, T},qz—T), of the auxiliary homogeneous problem

(43) %u?—i—Aw? — a1 +ug(r+), @(0) =0,

Now we set W := A7 "b; W is a strong solution of
d - - .
(44) %W—l—AlW:aAl_l(l—i—u;g(T—i— ), W(0)=0.

By the maximal regularity result of Theorem for all p € (1, 4+00) we have

s d -
(45) 1A WllLr(o,200x9) » Iz Wller (0,26 x0)
< Cpll AT us (T + ) || o (0.26) x2) + a(20) VP AT 1| 1o (-

In particular, using the estimate of Lemma[3.3]and the uniform on [0, 26] bound
D, (IU°| Lo (), T + +) < @p(|U°|| Lo (), 7) (recall that without loss of generality,
®,(r,-) can be assumed non-increasing), with the help of Lemma [3.1|vi) we get
(46) (1@l Lo(o.20)x) = AW | Lo (0,20)x) < 8P (@p(IU° | Lo ()5 ) + Cp).-
Furthermore, using estimate with ¢ € [, 26], using , we get
le™ A1 (ua (7) = @)l Lo ((5,26) <)
< Cp VP (5(|U° L= (@), 7) + @]l oo 0)) = @op(1U°] o0 0 T)-

Gathering the obtained estimates, from inequality and the boundedness of &;
we deduce the required (E.A.T.) (30).

Now let us prove . Fix 7 = 0, start with and use the same technique ex-
cept for the term e~*1 (uf —@1). This term is estimated by |[uf || oo () + [0 || o ()
uniformly in ¢, thanks to (14). Therefore and the bound yield

[t ()| 2o 0,26y x) < 8P @, (|U°|| Lo 0y, 0) + Cp 8P ([t || poe () + 16| Lo ()
= ‘1’6,17(||U0||Loo(9))~

PrROOF OF LEMMA [3.5F The proof is split into two steps.

e Step 1. We prove the required (E.A.T.) for us(t).
We use the third equation of the system and exploit the Duhamel formula, the
estimates of Lemma and the polynomial growth restriction .
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First, take any 7 € [20, Thnaz ). We have

(47) 0 <ug(t+7—0)=as+e " (uz(1—0) — as) +w(t),
where @ solves the problem

(48) %uﬁ + Asw =g, w(0) =0,

with g-(-) := fs(U(- +7—9)); we have

(49) 9:() < b(L+ |- +7—0) + [ua| (- +7-9))

thanks to the growth assumption . Hence estimate implies the (E.A.T.)
(50)  Vp € [1,+00) V7 € [26, Thnaz) 1197 lLe0,0)x) < Pop(IU° Loy, T — ).

Using the positivity of e7#43, the Duhamel formula and the LP — L* regularizing
effect , we infer for p such that O'% < 1 (in particular, for p as in ) the
inequality

)
[ (6) | ey < / Col6 — 3)~ 10 () | o e dis

g N1/ !
51 _a p
(51) <G (/o (6—s)77)" ) 97 | 2r (0.6 x )

< Cop@sp([U° |10 ™ = 0) = 5 (|1U° | oo (@), 7).
In addition, using estimate for t = 7 — ¢ and using , we get
le™04 (ug (1-0) =@3) || oo () < Ps(|U° Loe () 70) |l L= () = P (1U°| Los ) 7)-
Gathering the obtained estimates, from (with ¢ = §) we infer for i = 3.
With the analogous reasoning, taking 7 = § in , replacing estimate by
the uniform in ¢ € [0, 26] bound (B3I, and using the bound
le " (u§ — as)||Le() < ”ug”L‘X’(Q) + ||l as|| Loy = ‘I’(HUOHLM(Q)),

we infer for 1 = 3.

e Step 2. We deduce the required (E.A.T.) for uq(t) and usa(?).
Thanks to @ and the bound obtained in Step 1, we have
Vi=1,2 Vt>0 [[fF(U1)ll=0) < (UL (), t)-

Therefore we can repeat the reasoning of Step 1, replacing uz with u; and us. ¢

3.4. The Neumann case. In this subsection, we prove Theorem [2.5| used in the
case some of the operators A; are not invertible (in practice, this corresponds to
the Neumann boundary conditions in )
Proor oF THEOREM 2.5t We indicate the modifications to the statements and the
proofs analogous to those of Lemmas [3.3] [3-4] [3:5]

Because we only get time-dependent bounds, denote by O(r, t) a generic function
from RT x R to RT which is non-decreasing in each of the two variables; additional
subscripts ¢, p of § denote the dependence of O(+,) on these parameters.

Similarly to Lemma we first prove, in the place of and , the bounds
(52) Vi,j=1..3Vp € [1,400) Vt<Tiax ||A;iui(t)||Lp(Q) S@c7p(“UO||Loo(Q), t);
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(53) Vi=1..3V6>0 Vt>¢ VT <Thaz ||67tAi’Cui(T)HLoc(Q) §®c,6(||UO||LOO(Q)7 7').

We follow step by step the proof of Lemma [3.3
e Steps 1 and 2. We use w, := By '((u1 —a1) + (us—as)) and remark that w,
satisfies the inequations

d _ _
%wc + Bcwc <cw.+ Zi:l,S (I - Bc 1Ai,c) (ui_ai)v

which leads to $w. + Bw. < g(t) with [|g(t)||za(q) < Ce,q for all ¢ < +o0.

Notice that B satisfies the properties (i)—(v) of Lemmawith the value A, =0
in . Then we can still write (38)) with A, = 0; the remaining arguments do not
change, and we conclude to with i =1, 3.
e Step 3. We put w(t) := B ! (ug—az) and get with @4 (||U°]| L= (q), t) replaced
by O¢,q(|[U°| = (02),t). Because of the weaker hypothesis (19)), we have to use the
Gronwall lemma to control the growth of B lus(t) in LP(Q).
e Step 4. There is no change to this argument; we get .

Now we follow the proof of Lemma In the place of , we write

d

pri + A cw=fL{U-+7)+cu(-+7), w(0)=ui(r)—a1.

for w(t) = uy(t+7) — ay; then we use growth assumption on fi, the estimates
for j =1, i =1,2,3; we base the calculation upon the semigroup e~ 41 and
exploit the maximal regularity of the operator A; .. We do the same with A; .
replaced by As .. In the place of , we obtain the bound
Vi=1,2 Vpe[l,+00) V6>0 V7 <Tpae—26
llwi (7 4+ ) Lo (5,26 x2) < Ocsp(IU° L (qy, T)-

Finally, we follow the proof of Lemma In the place of , we get the bound
(55) Vi=1.3 ¥0>0 V7 €(20, Trnaz) |Jui(7)|l 1) < @C,§(||UO||L00(Q)7 7).

In Step 1 of the proof, while considering w introduced in , we need the assump-
tion that allows to write

(54)

d
(56) 0+ A < gr @(0) =0,

with the bound . We conclude to for i = 3. Finally, in Step 2 of the proof,
we use again the Gronwall lemma to limit the growth of (|[u1]] Loe () +[|u2]| Lo (0))(t)-

We eventually arrive at a finite bound [|U(t)p) < Ocs(|U°||L(0), t) for

t < Tinax; this amouts to global existence of a mild solution to (5). o

3.5. Existence of a maximal attractor. The result is classical, except that
{S(t)}+>0 is not continuous in the topology (L>°(Q))?; thus the L2-continuity and
the L? — L™ regularizing effect are used instead (cf. the general statement of
Bénilan and Labani [BL2]).

PROOF OF COROLLARY [2

(i) For T > 0, » > 0, let (U%*)ren be a sequence in ((L>(£2))T)? such that
|U%*||L~ < K. We have to show that (U*(T))ken := (S(T)U%*)ren is relatively
compact in (L>°(€2))3. For t < T, by the Duhamel formula (18], u(t)—a; is the sum
—tA; (u?’lc —a;) which is compact by the assumption, and the

of two terms: the term e
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term TF(t) := [) e™s4 fF(t — s)ds with fF(t) == f;(U*(t)), for i = 1..3. Because
Theorem implies a uniform L> bound on the source terms f¥, the families
(TF(-))x are compact in C([0,T]; L?(2)) by the result of Baras, Hassan and Véron
[BHV]. Consequently, from we get uf(t) — w;(t) and fF(:) — fi = fi(U(")
in C([0,T]; L*(Q)) for a (not relabelled) subsequence k — oo; here we denote the
limit by U := (u1, uz2,u3).

Moreover, by the continuity of e~*4¢ from L?(2) to L () (we use (L)), for all
5 > 0 we have

e Akt — ) e ifi(t — 5) in L(Q) as k — oo.

Applying the Lebesgue dominated convergence theorem (note with p = 00),
we get the convergence of TF(t) to fot e *Ai f;(U(t — s)) ds also in the L*°(9). Now
from (18], we deduce that, for a subsequence, S(t)U%* — U(t) in (L>(Q2))?, which
had to be proved.

(ii) Recall that a maximal attractor in ((L>°(€))")? is a compact set that is invari-
ant for the semigroup {S(¢)}+>0 on ((L>())")? and satisfies

(57) Vr>0 tllz?o SUPyoe (Lo (Q))+)3, U |oo <7 dlSt(S(t)UO,M) = 0.

We first show that for all 7 > 0, S(7)M = M. First, by the definition of M, U € M
if and only if there exists a sequence (tz ) going to infinity and a sequence (U*);, € £
such that S(t,)U* — U in (L*°(Q2))3. By the L? continuity of {S(t)};>0, we have

S(r\U = LQ—klim S(ty +1)U* € M.
—00

Further, by (i) there exists a (not relabelled) subsequence (t)r such that ¢, > 7
and S(ty, —7)U* — V in (L>°(Q))3. By the definition of M, we then have V € M;
and

U= L2—klim S(tp)U* = S(1)V € S(T)M.

It remains to show . Reasoning by contradiction, assume that (U*); is a
bounded sequence in ((L>°(€2))T)? such that dist(S(tx)U*, M) > const > 0 for
some sequence (tx)x going to infinity. By (i), up to extraction of a subsequence we
have S(tx)U* — U in (L>=(Q))3. Yet for 7 large enough, the (E.A.T.) estimate
ensures that S(7)U* € £, therefore we obtain a contradiction from the fact that

U= lim S(t)U* = lim Sty —7) (S(r)U*) € lim S(t — 7)€ C M.
k— o0 k—o0 k—o0

It remains to notice that M is bounded because it is included in &£, and M is
closed by construction; thus from (i) and the identity S(7)M = M, we see that M
is compact in (L>(Q))3. o

4. EXAMPLE OF A PRECONDITIONING OPERATOR

In this section we prove existence of a preconditioning operator for the Laplace
operator —A with homogeneous Robin or Dirichlet boundary conditions. Notice
that the case of the Dirichlet boundary condition has to be treated apart. Let
us also point out that in the case where A is the Laplace operator with the Neu-
mann boundary condition, preconditioning operator B satisfying cannot exist,
because B~1Au =0 < u for u = 1.



18 BORIS ANDREIANOV AND HALIMA LABANI

Proposition 1. Let A be the operator associated with —dA on §) with the boundary
condition Adpu+ (1—XN)u = 0 on 9Q with parameter X € [0,1). Take e € (0,d] and
w € [\ 1). Consider the operator B associated with —eA on Q with the homogeneous
boundary condition on O with parameter L.

(i) The operator B is of class A and satisfies property .
(ii) Assume that either A= =0, or A > 0. Then property holds.

Remark that (ii) holds also for = 0 and A > 0 (see [BL2]; cf. the L' estimate
of Opz in [DL] Vol.2, 11.6.4, Proposition 9]); yet the constraint p > A is required for
(1).

PrROOF :

(i) Tt is well known that —B generates a positive, analytic, exponentially stable
semigroup on L2(Q) that is LP-non-expansive and hypercontractive (see in par-
ticular Friedman [Fr], Pazy [Pa], Rothe [Rot]; in particular, the generator of the
semigroup is the linear operator induced by a bilinear form satisfying the properties
listed in Remark [I| and [BL2]).

For the proof of the inequality (L1), consider v € D(A), u > 0. Then there exists
h € L?(2) such that v and v := B~! Au verify

—dAu="h in Q —eAv =~h in Q
A0ptu+ (1 —AN)u =0 on 09, 1Opv + (1—p)v =0 on IN.

Set k := d/e (notice that k > 1) and z := ku — v. We have two cases.
o If X\ > 0, then an easy calculation shows that z verifies
—Az=0 in Q
,uaanr(l—u)z:k’\;)\”u on 0N.
Because u > 0 and A — pu < 0, z is a subsolution of the problem Bw = 0 with the

Robin boundary condition with parameter . By the maximum principle, z < 0.
Then v —v < ku — v <0, because k£ > 1 and u > 0.

o If A =0, then z verifies

—Az=0 in
1oz + (1 — p)z =k poyu on ON.

The maximum principle yields 9,u < 0 (in the weak sense) on 9Q; we conclude in
the same way as above.

In both cases, we have found that v < v, that also reads as (I — B_lA)u <0.

(ii) The proof is the duality reasoning of Martin and Pierre [MP2] and Bénilan and
Labani [BL2]; we give it here in a simplified setting.

First we fix p € (1,400) and w € D(A) N L>®(Q), u > 0. Let v and h have the
same meaning as in (i). Without loss of generality, we may assume that d = e = 1.
Notice that thanks to (i), we already have 0 < u < v. Now we consider the auxiliary
problem

_ — pp—1 ;
(58) { Az=wv in

1Oz + (1 —p)z=0.

Once more, we consider separately the two cases.
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e If A > 0, then using the Green-Gauss formula (or the symmetry of B in LP), we
get

ety = [ o= [onz= [ mwz= [0
/Auz- /qu+/ ua z— 20y, u) :/uvpfl—i—/ (u@nz—zanu).
El9) o0

Because A > 0 and i < 1, we can write z0,,u = "8 Bu@ z. As in [MP2], we notice
that the combination of the Calderén-Zygmund W24 regularity estimate (see e.g.
[GT]) and of the trace embedding ensure that the solution of verifies the L’

estimate

(59) ”anZHLP’(aﬂ) <G ||’Up71||m’(9 Cp ||U||Lp(9

with a constant C),, that depends on p and 2 but that is independent of v.
Therefore, with the help of the Holder inequality we deduce that

10112,y < Co lulloe o 0115 -

Hence ||v]|r(0) < Cp ||t oo (0), which means that [|[B~ Aul| 1) < CllullL=(q)
eIf A=y =0, then A = ¢B, and (even with p = 00) is evident. o

Remark 4 (cf. Martin and Pierre [MP2]). In the setting of Proposition|[I] estimate
(12) may fail in the case A = 0 and p > 0. To give an example, consider the one-
dimensional case with £ = (0, 1) and (with the notation of the above proof) consider
the family (un m)m>n solving the Dirichlet Laplacian problem

—(w)" = hpm, w(0)=0=nu(l) with Ay, m(z) = mp(m(z — 1)),

n

where p € C§°([-1,1];R™) is the standard function used for construction of se-
quences of mollifiers. As m — oo, h,, ,, goes to the Dirac measure concentrated
at z, = 1, and w,,, goes to the function u,(-) := G(-,x,), where G(-,-) is the
Green function of the Dirichlet Laplacian on (0, 1). Explicit calculation shows that
limy, 00 My s o0 [ Un,m || oo ((0,1)) = 0. Moreover, limy, o0 lim, 00 Uy, ,,, (0) = 400,
which forces the solutions v,, ,,, of the Robin Laplacian problem

—(v)" = hnm, (=" + (1=p)v)(0) =0 = (v’ + (1—p)v)(1)

to go to infinity (e.g. in L'(0,1)) as m — oo and then n — oo; this is easily seen
from the fact that the difference v, — Uy m is an affine function. Thus the ratio
Vil ((0,1))/ [un.ml Lo ((0,1)) is unbounded, which contradicts the statement (12)).

Remark 5. The above Remark |4| (together with Remark [3]) corresponds to the
third case of the assumption ; this case excludes the possibility to have Robin BC
on some component(s) of U = (uy, uz,uz) and non-homogeneous Dirichlet BC on
some other component(s). We guess that this restriction is a technical one. Indeed,
the above restriction is needed to get the upper bound on (I — B=1A;)(u;(t) — &;)
in the proof of Lemma we stress that the difficulty comes from (u;(t) — a;)~,
i.e. from the small values of u and not from the large ones.
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Proposition 2. Let A be the operator associated with —dA on ) with the boundary
condition AOpu + (1—=X)u = 0 on IQ with parameter A € [0,1]. Take e € (0,d].
Consider the operator B associated with —eA on Q2 with the homogeneous Neumann
boundary condition on 02. Take ¢ > 0.

(i) The operator (B + cI) is of class A and satisfies property
with A, B replaced by (A + cI), (B + cl), respectively.

(ii) Assume that A > 0. Then property holds
with A, B replaced by (A + cl), (B + cI), respectively.

The proof is left to the reader; the arguments are the same as for Proposition

5. EXAMPLES AND EXTENSIONS

5.1. A 3 x 3 system with Dirichlet or Robin boundary conditions.

Theorem 5.1. Consider system with the Dirichlet or Robin boundary condi-
tions with \; that satisfy one of the assumptions , Assume in addition that
the boundary source terms oy belong to the class HY/?(9Q) N (L>®(0Q))* (if \s = 0)
or to the class H=/2(0Q) N (L= (o)t (if A; > 0).

Assume that the locally Lipschitz reaction terms f;, i = 1..3, satisfy 7.

Then for all initial data (uf,ud, ul) € ((LOO(Q))+)3 there exists a unique global

in time mild (and also strong) solution to (1)),(3) with values in ((L‘X’(Q))“')g;

moreover, there exists a mazimal attractor in ((L™ (Q))+)3 for system (1), ().

PROOF : First, let us point out that the data «; of the type we consider admit a
WE2(Q) N (L>=(Q))* lift @; inside Q defined by

—d;Aa; =0 in Q
XiOn 0y + (1 — /\1)651 = on 0f2.

The so defined extension satisfy e"®a; = a; for all r > 0, in particular @ holds.
Since we have the equality —d;Au; = —d; A(u; —@;) in Q with A\;0y, (u; —ay) + (1 —
Ai)(u; — &;) = 0 on 99, in the W12(Q) sense, we can recast the problem into the
abstract form (S) with the operators A; given by —d; A with homogeneous Robin
or Dirichlet boundary conditions. It is well known that the linear semigroups e ~*4
are compact in L?(Q2) for ¢t > 0 (see e.g. [Pa]), hence the compactness of e~*4
L>°(92) follows from the hypercontractivity (16]).

Assume that the first or the second case of assumptions occurs. Then, ac-
cording to Proposition |1} condition (H) holds true; indeed, we can choose for the
preconditioning operator B the operator —eA with e = min;—; 3d; with the ho-
mogeneous boundary condition corresponding to A := max;—1.3 A;. In the last
case of assumptions , we notice that a; = 0 implies @; = 0, thus Remark |3| can
be used in the place of Proposition [f(ii).

Therefore the conclusions follow by Theorem [2.4] and Corollary [2} o

“in

5.2. The case of a Neumann boundary condition. In a similar way, we get
global existence for when Neumann boundary conditions are imposed on some
of the components.
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Theorem 5.2. Assume that \; € [0, 1] satisfy

either \; € (0,1], 1 =1..3, or Ay = Aa = A3 =0,
or \; € [0,1] with o; =0 for i such that \; = 0.

Assume that o; are of the same kind as in Theorem [5.1], and the locally Lipschitz

reaction terms f;, 1 = 1..3, satisfy , and ,.

Then for all initial data (uf,u,u3) € ((L>(Q))T)" there ewists a unique global
in time mild (and also strong) solution to (I)),(3) with values in ((LOO(Q))+)3.

(60)

PROOF : The proof follows the lines of the previous one, using Theorem [2.5] and [2]
in the place of Theorem (1) and Proposition [1} respectively. o

5.3. A 5 x5 system. It is easy to use the same approach on system ,. We
get the following result.

Theorem 5.3. Consider system with the Dirichlet or Robin boundary condi-
tions corresponding to \; and «; of the same kind as in Theorem (but now
fori=1.5).

Then for all initial data (u?)i=1..5 € ((LOO(Q))+)5 there exists a unique mild
(and also strong) solution to (2),(3) with values in ((LOO(Q))+)5; moreover, there
exists a mazimal attractor in ((LOO(Q))+)3 for system (2)),(3).

PROOF : One follows the whole scheme of the proof of Theorem [2.4] (via Lem-
mas ; then the claims follow exactly in the same way as in Theorem [5.1

The main modification (which is a simplification) is in the proof of the analogue
of Lemma In the place of the function w(-) used in the proof of Lemma
here we use

w(t) =B ((u1—a1) + 2(us— ) + (us—as) + 2(ua—au) + (us —as)).

Combining the five equations in with the respective weights 1,2, 1,2, 1, proceed-
ing as in Lemmawe get directly the L> (E.A.T.) estimate on || B~ u;(t)| 1r(0)
for all i. Hence the estimates 7 with 4, j = 1..5 follow readily from the prop-
erty of the preconditioner B. Then, as in Lemma we deduce the (E.A.T.)
estimates 7 fori =1,i= 3 and ¢ = 5. Finally, as in Lemma with the
LP technique of Martin and Pierre [MP1] we get the estimates ll for i =2
and ¢ = 4, whence the same estimates for ¢ = 1, 3,5 follow. o
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