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PERCEPTION: INSIGHTS FROM THE SENSORI-MOTOR APPROACH
L. Hafemeister, P. Gaussier?, M. Maillard!, S. Boucenna C. Giovannangeli

'ETIS, CNRS UMR 8051, ENSEA, Univ Cergy-Pontoise, F-9500@y¢¢’ontoise, Francé|UF

ABSTRACT to handle the recognition problem as numerous systems seek
0 more and more autonomously process the rich visual in-

A wide variety of visual recognition systems are developeci o . . X
rmation in a non-friendly, changing environment, under

for precise tasks and types of objects. In this paper we woul . . . .
. . ) : ... time constraints and objects and human interactions. In psy
like to emphasize ways to build a more generic recognition o

o i hology, perception is known to be one of the fundamental
system. Perception is one of these mechanisms that psychola

) . ; . “mechanisms that organizes and makes sense of input sen-
gists particularly pointed out as a fundamental one forvabti . . S . .
L : : . . sory information. It is different from classical recogotti

organizing and making sense of input sensory information; T . ,

. . as no labeling is performed. Moreover it can’t be confused

Based on psychological assumptions, we propose to explore

o N . with the passive processing of visual inputs into an interna
the concept of perception, infer formalization in the dymam . . .
L . : model as it refers to an active process, emerging from the
cal system framework and quantitatively analyze it on rabot . : . . >
. . : ) agent interaction with the environment (enactive approach
platforms using a unique simple neuronal architecture dbas . e
2 . . . 20]) and that can be slowly or quickly modified as the agent
on the association of visual and motor information (move- L . . )
. . keeps its interaction with the environment. One can observe
ments of the body or part of the body). This coupling of sen-, , Lo L .
: . . that human’s or animal’s perception is very stable for a wide
sory flows of information can be characterized by a sensori-

motor invariant, a dynamical attractor that we identify as avarlety of environments, objects and tasks even in changing

) . ) . . conditions. Moreover variations in proximal sensory stimu
perception function. For place, object or facial expressio .. . ) .

. . . . lation from a same object that grandly affect the informatio
recognition, we show how simple sensori-motor architextur

. . . . d limit the efficiently of direct processing of the visuahfi
can be applied to accomplish each task in terms of behavioral C . :
o o : . . Of information is well handled. The interactions between
recognition. In each application, some pertinent visual in

. . . : environment and system are not all known in advance as the
formation, based on classical focus point detection, aga-or

nized as local views and associated to an action or an imemenwronment is not supposed to be controlied by the system.

state corresponding to a set of actions, in order to reach a Ioﬁence it is a challenge to develop systems which support

cation, an object or recognize a facial expression. Theeacti berturbations, short term changes and long term modifica-

: . . : - tions. In this paper, we will show how to endow artificial
learning phase for different points of view or face expressi : . .
L system with a neuronal architecture allowing perceptual ca
allows the emergence of a stable perception linked to a sta-

ble sensori-motor attractor and allows the robot to perfarm pacity to emerge. D'ﬁeref“ real cases W'“. be |nvest|g'ate(.j
stable behavior in very different initial conditions. Wellwi place perception in a homing task, object view perception in

show how the attractor/perception emerges during the leary object reaching task and face expression perception in an

: . : o - 'imitation task. But for all these cases we propose to use a
ing phase and evaluate its spatial generalization pragserti . : :
unique neuronal architecture to learn the sensori-motar co

Index Terms— Perception, Vision, Recognition, Sensori- pling. Finally consequences on the way to process the visual
motor coupling, Attractor information flow and properties of the behavioral recogmiti
will be discussed.

1. INTRODUCTION

o . . . 2. MODELISATION OF PERCEPTION
Inspiration from biological systems points out new ap-
proaches and new strategies to perform tasks that are diiffiCLb 1

to achieve on artificial systems. Modelisation and simula-
tions on robotic platform allow to stretch these solutions i AJl of the psychological research carried out in the perizept
real conditions and see if or until which limits they are ef- genesis context C|ear|y shows the necessity of an active use
ficient. We will follow this approach to seek for new ways to constitute the perception of objects or scenes. This-is es
This work was supported by the European project "FEELIX Grag/ pecially demonSt_rat_ed n eXpenm.entS u_smg a system k_r_lown
IST-045169, the French Region Ile de France, projet DIGIT@@Digation ~ &S SENnsory substitution teChn0_|09|eS_ Wh|.Ch transformausti
Gnrale pour 'Armement (DGA), contract’r04 51 022 00 470 27 75 suitable for a sensory system into stimuli for another sgnso

Insights from psychological studies




system. For example, the TVSS, Tactile Vision Substitutiorronment. Thus being active allows the animal (agent) to find
System, used by Bach-y-Rita [1] makes it possible to convethese invariants Thus we suggest that perception should be
an image collected by a video camera into a tactile image, ightly linked to the presence of an attractor generatecty s
matrix of 20 x 20 tactors that is placed on the subject skin (orsorimotor invariants. In addition as the interaction bedwe

the back, thorax,..) Equipped with the TVSS and only if ac-the agent and its environment is maintained, a specific per-
tively handling the camera, the subjects (complying people ception emulated by some current sensations, will maintain
blind persons) are quickly able to discriminate oriente@d  the agent in an efficient behavior and thus will control the ac
and to indicate the direction of the movement of moving tartions of the agent.

gets. With a more significant active training, simple geomet  Based on these considerations, we propose to define the
rical patterns, and even usual objects placed in vario@neri perception of a cognitive system as an emergent fundtien
tations can be recognized. One absolute essential obigervat of a sensori-motor invariant and such as the action vedtor

is that the capability of pattern recognition is accompdnie of the cognitive system is the result of a gradient operater o

by the experience of the externalization of percepts. It facthe scalar functio®er according to the sensorial information

at the beginning when the user is passive, he only feels su&en (vector ofn components) and the hidden internal state
cessive stimulations on his skin. But after a training segsi  of the cognitive system:

the user ends up forgetting these tactile feelings to relyote

perceive distal stable objects in front of him. Ac(t) = —MVPer(Sen(t),s(t)) 1)

This type of experiments clearly shows that with train-yyith v (the nabla symbol) denoting the vector differential op-
ing, & subject can constitute a new perceptive capabiligeon erator (defining a vector field) and a transformation matrix
he actively handles the artificial sensor collecting themdl allowing a selection of the sensations in regard of the plessi
information and forgets the sensation as if he does not ltave {¢ctions of an agent (taking into account the agent body char-
decode them anymore. Thus the perception reaches a partiGysteristics, etc...). In consequence, considedngs a vector
lar status in regard to the sensation. Perception cannaeme fie|q, its inverse gradienPer is defined as the scalar func-
from only the sensations (tactile in the TVSS case). There i§on which brings the cognitive system in a minimum energy
no perception without action. Perception is constituteth®y  state. In the framework of dynamical systems and motor con-
sensorimotor loop which binds action and multimodal reaf+,q), [10, 15] already proposed to consider the action as the
ferent signals. The sensory feedback does not deliverttiirec gerivate of such a potential functiof®er can be seen as the

and completely the form but forces or guides the couplingntegral over the sensation along the whole sensation space
and support motor-sensory or gestural invariants. Thesstibj

must control his activity and through this activity can e&xe Per(Sen) = / Ac(Sen)dSen )
his agency, his gesture and the effects of his gesture. Q

with Per only determined up to a constant which can be cho-
2.2. Formalization in the dynamical system framework ~ S€n arbitrary.
The minimum of the Perception function is associated
Inspired by the TVSS experiments and studies on perceptiygith an attractor. As the notion of stable behaviors is re-
exploratory strategies [18, 17], aiming at the modeling@&fp lated to the presence of stable attractors, one wants to know
ceptual mechanisms, we propose to pursue a formalism of thghether the solution is stable or not. If one looks at a fixed
perception in a sensorimotor context. The work in [13, 14]point attractor, one way to assure the existence of a stalge o
already assumes the emergence of perception from sensoi-to prove the existence of a function, namely a Lyapounov
motor contingencies laws and more precisely considers pefunction, which decreases along all possible trajectosies
ception as the cognitive access to the co-variation lawsgul least on a subspace of the sensorimotor system space. The
sensations and actions. convergence of the system to a stable state is seen as the de-
Since the perception emerges from a dynamical couplingease of energy in the system during its evolution. It cao als
between the sensations and the actions, and more globally bee seen as a ball rolling down a hill constituted by a poténtia
tween an agent and its environment, the framework of dynanfunction, namely the Perception function (fig. 1) [2]. From
ical systems seems to be appropriate to derive a definition dhis potential function a potential field can be defined. Fna
perception. It highlights the tight coupling between anrdge to assure the stability of the system, tRer function results
and its environment via the sensorimotor loop: according t®f the learned sensorimotor invariant patterns and themcti
agent actions, its sensations are modified. This coupling bef the system is derived from th8er function. A stable
tween the agent and the environment was already develop@erception can emerge and consequently a coherent behavior
by Gibson [7] in its ecological view of perception and Varelaof the agent in its environment is observable. The learning
[20] in the concept of enaction. More precisely, Gibson sug<capabilities of the system allow to improve its behavior due
gested that the perception comes from the occurrence of setw its generalization properties as we will see in the folloyv
sorimotor invariants that the agent has to capture in it3-env section.



2D state space Perception
(sensori-motor)

Fig. 1. Trajectories converging towards a fixed-point attractor |
A and the corresponding potential function (in 1D only) —~— one to one links

A . onetoall links

2.3. A neuronal sensori-motor architecture

Fig. 2. A neuronal sensorimotor architecture PerAc from [6]).
The goal is to sum up in a generic architecture the necess,, S,, R, Ac are neurons vector representing the 2 sensation
sary mechanisms for the emergence of a percept in an agefputs, the learned categories and the possible outpatrecti

in interaction with its environment. We propose to investi- 4,, A,, I are connection weights matrixes and ¢, repre-
gate a simple neuronal architecture named PerAc which wasent operators associated to group of neurons.
proposed to solve a wide variety of control problems requir-

ing learning capabilities. Previously developed in [6)wis ~ Competitive structure Competiive structure = Competitive structure
studied with a special formalism used to describe robotic afie sl - I Pt gl oL 2
chitectures [4]. To fully use the sensori-motor loop, thé-ou iy 2 /“\ e g = b
put architecture is an actioAc which, when performed by /y\

the agent, affects the sensation inputs (fig. 2). We consider Sociion G 5
two different sensation vectors,. and S,. S, represents a blace 1 Place 2
coarse feedback information from the execution of the mo- ~_ 9 (rilracton basin 05
tor command, namely proprioceptive information, or can be

an external signal in a supervised casSg represents a more

global and rich information (as visual one) about the enviro

ment. To be useful, this information needs to be organized.

A robust distance measure on local visual features extlacterig. 3. Left TheoreticalR level in two different locations.

from the visual flow, namely exteroceptive features, is comCenter Theoretical actionsic (speed vector of the system
puted and learned by a competitive group with output agtivit with the sign being the direction) after learning 2 sensa-
R categorizing the local features. The operatorepresents tjon/action associations and their competition accorthirthe

a soft Competitive structure WTA (Winner Takes A”) able to system pos|t|0nR|ght Theoretical perception Computed by
self-organize according to one sensory data flow. Hence, afntegration of the Theoretical action.

ter the competition, the activity ok reflects the categoriza-

tion level. Finally the two inputs path are merged at the moto

level allowing the learning of some sensori-motor couplingproperties. The proprioception pathway allows to struetur
laws. More precisely, the "one to one” connections (one inthe learning and the organization of the exteroceptiverinfo
put is definitely connected to one and only one output) bemation, while the pathway with the exteroceptive inforroati
tween the sensations. and the motor commandc gener-  as input allows the spatial generalization of the learned be
ates a reflex behavior. It can be considered as a regulatohavior. This generalization not only depends on the visual
pathway linking a proprioceptive sensor to the motor com{eatures and their learning but also on the competition mech
mand. Before any learning happened, this path is the ongnism between actions at the motor level. In fact this com-
controlling the action. At the motor level the operatgran-  petitive mechanism has great importance for the definitfon o
other soft competitive structure, allows to condition tiehr a robust perception as only the rank of a competition pro-
input data flowsS,, via the categorization groufs, according cess matters. While classical systems fail when the noise or
to the unconditional flow coming fron§,.. Finally we can perturbation oversteps an absolute recognition threstioé
remark that no direct visual recognition is performed (oaly behavior of such a sensorimotor system is robust until some
local categorization). The system behavior does not dyrect perturbation affects the rank in the competition mechagism
depend on the absolute level of categorization of the lehrne An illustration of a very basic sensorimotor associationd a
exteroceptive features. The decision is delayed until tied fi the resulting perception functioRer are shown on fig. 3. It
competition. Recognition in such a system must be underesults from an object centering behavior in the agent Visua
stood according to the global temporal dynamic of the systenfield and hence the percept of the position of the object rela-
This especially allows the system to have good generatizati tive to the agent is studied. If the object doesn’t move in the




environment, after each action of the agent, the agentistate scribed on the fig. 4. It shows the merge of the two sensorial
characterized by its position relative to the object ledrrtee  paths at the level of th&lovement directiorgroup of neu-
sensation vector is reduced to this position. In a one dimerrons, initiated by the reflex path using tfAarget direction
sional space, at two different positions (placel and placednformation. TheS,-R path seen on fig. 2 results here in a
on each side of the center position (goal) are first assatiatdearnedPlace cellgroup of neurons. In order to generate a ro-
two antagonist actions, "go left” (negativir) and "go right”  bust behavior a specific model of visual place cells, ingbire
(positive Ac) in order to reach the center. The further awayfrom what and wherdunctional theory of the cortical path-
the agent is from one of the place where it has learned a couvay downstream the hippocampus [19, 9] was developed. A
ple sensation/action, the less activated are the neurois of place is defined by a spatial constellation of online learned
and consequently the neuronsAé. In order to compute the visual features corresponding to a set of tripletsdmark-
Per function, let us consider the evolution of a dynamicalazimuth-elevation The different process to learn the activ-
system ruled by the generic equatio%% = f(x). Inthe ities of thePlace cellsare illustrated on the fig. 4. From
simplified case of fig. 3, we consid%fti = Ac, with Ac the & panoramic image the visual system autonomously extract
actions performed by the robot to go from an x-coordinate tdandmarks by computing the gradient from the CCD input.
another one and allowing going from one sensori-motor statéhis gradient image is then convolved with a DoG (Differ-
to another one. Also as we earlier admitted the action deriveence of Gaussian) filter to detect robust focus feature point
from the Per function, in a one dimensional space, we canat low resolution. A competition between the feature points
write Per(z) = — [, Ac(u)du and we can easily verify that enables the system to primarily focus on the most activated
the functionPer is a Lyapunov function. In consequence, by focus points (activity based on a contrast and edge cuatur
integrating the actions over the visual sp&eve have away criterion). A small image, named local view, of a given cicu
to compute and to plot the perception of the agent. Fig. 3lar area around each focus point is extracted and transtbrme
Rightshows the computed perception functiBer resulting i log-polar coordinates to enhance the pattern recognitio
from the numerical integration of the curve showed on fig. 3when small rotations and scale variations occur [16]. Dur-
Centerrepresenting the actions to be performed in order tdng the learning of a place, each local view in log-polar co-
reach the center position. It presents a basin curve with ardinates is considered as a landmark prototype for the sys-
single minimum guiding the system towards the central goatem. Otherwise eadandmark neuroractivity expresses how
location The perception allows the system to have a coheglose is the current local view from the learned prototype.
ent behavior (going towards the center) whatever position iThey provide the "what” information that models the tem-
initially has. poral pathway. The elevation or absolute angular position o

Double door
3. PLACE PERCEPTION IN A HOMING TASK ™ 7

Poster

The neuronal architectuRerAcwas initially used for a hom- Chair| g

ing situation where a robot returns to a place without being g

able to statically recognize it [5]. The details of the nenab L .‘ : il
architecture used in inside and outside experiments are de /| P : : /

ur /.

Place code

Elevation

Local view

Kuooreg

Landmarks Place cells

Visual input
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@-Lcarnt place and azimuth

00000 @ Windows
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—— Unmodifiable link from one to o
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Fig. 5. Top view of an indoor environment with superposed
theoretical place fields and homing trajectories for foitiah
robot positions. 8 places (black circles) were first learaet

m from the goal.

O O @ Increasingly active neuron T
e

Fig. 4. PerAc architecture for a homing task. Tharget
directionandMovement directiomre competitive groups.  the landmarks provides the "where” information relativeato



vestibular information or a visual compass [8] that modie¢s t
parietal pathway. The azimuth or absolute direction is Igua
obtained with a magnetic compass, even if it is not strictly
necessary and a local reference (such as the bearing of a dis- "
tant landmark) was shown to be a sufficient estimation of the
robot orientation to infer correct place recognition. Eazh
imuthandelevation neuroinas a favorite firing direction and
expresses how near is the current extracted local view from
its favorite direction. The merging of thishatandwherein-
formation is performed in a product spade( a third-order

tensor compressed into a vector of product neurons. The muIlfig. 6. Place cells activity computed every 2 cm over a line of

tiplicative merging r_eallzes an analoglcal_ AND qperatlo 4.8 mlong and induced by a strict (a) or a soft (b) competition
The recruited merging neurons characterize a point (or a re-

gion) in thelandmark-azimuth-elevatiospace. At the end

of a visual exploration, the set of activated merging NesroN, e sensations and actions spaces but where more complex
defines a place-code which can be leamnt as an invariantreprga g orimotor laws are introduced. The task of the robot is to
sentation of the location on a new place-cell (PC). The wholeq .y a4 object whose sensorimotor coupling laws have been
architecture is bootstrapped by a vigilance signals whleh ao5ned during a training phase. In particular the obtained
lows the one shqt learning of all the extracted landmarks ifyanhavior has to be completely independent of the object loca
the current location (except the ones already encoded), the,, in the room. Only the sensorimotor laws directly rethte
building of the corresponding constella}tlon and the rEerui 4 the object have to be learned by the robot. Returning to a
ment of a new place-cell. At the merging level, each PC igyen oject will be interpreted as the fact that the robet“p
associated with a movementto trigger when being recognizethjyes” the object. The robotic experiment use a Koala robot
(_purel_y reactive behavior). Ifth_e_ PCs and the actu_)r_ls are deequipped with a CCD camera with no explicit static recog-
fined in the frame of a competitive structure, a minimum of,iis of the object. The global architecture of the robot is
three place-action associations around a goal creates-an gfosented on fig. 7. In order to provide useful but simple sen-
traction basin, enabling the robot to return to the goal fromyqjmqtor associations, the visual features extracten fiee

each place in the attraction area (fig. 5). The robotis se@n as;g 5| flow must be robust enough regarding the robot task.
dynamical system in which the learning modifies the paramepq the robot moves towards an object in unknown environ-

ters. Learning is equivalentto shape this basin [12]. S8 a yena) conditions, it has to face large non-linear tramstor
step, the robot reacts e_tccordlng to the Iearneq sensoryrmotlions of the images (scale, perspectives, etc.). To phprtial
dynamics, as a ball rolling deeper and deeperin a valley: Nepjeye scale, contrast and luminance invariance, keytgoin

ther Cartesian nor topological map building is requirede Th .o aviracted on the input images (fig. 7) by a multi-scale al-

system builds its own metrics based on the parallax and the, iihm inspired by Lowe's work [11].

recqgnition of the Iandn_’nark_s. Hen_ce, the dimensiqnal_ity 0 Following is a mechanism supplying a coarse local fea-

:22 (Iantelrc:]rijrsfer:st)ert]trzttlr?grlts) n_?st gglear} rbey tr;:r_rtneg!c senfze Oture at each key point at the scale where the key point is ex-
xplor ut! YIS VISU gulartty. m tracted. For each key point only the two first moments of the

place-action associations built by the competitive aggttitre

allow a homina behavior with a relatively qood precision Weorientation of the four neighborhoods relatively to the mai
. g bet Y9 P '~ ~orientation are kept. Finally, the association is perfairbg
show in [9] that to improve the robustness of the place recog:- e . .
I . " . a conditioning mechanism based on the classical LMS (Least
nition algorithm the use of a soft competition allowing se&le

interpretations of an extracted local view was essentigl. 6~ Mean _Square_) algorithm. In this group of neurons the v_veights
shows how soft competition can enlarge place fields énd a _ssoc_|ated with stabl_e sepsatlon/acnon _couples areoreid.
lows them to overlap. As the final decision is delayed at the hus if th? target object is placed on d|ff§rent backgrounds

. . . X . . only the visual features related to the object are stablee Th
motor level, this multitude of interpretations is possialed

even is favored to assure good generalization capabilities weights associated with these features grow up sufficiéatly
9 9 P generate a motor action. The final decision of the performed

action is given by a competitive neural network WTA (Win-
4. OBJECT PERCEPTION IN A REACHING TASK ner takes All). After only two headings “left” and “right” re
peated on two different backgrounds, the robotis able tolrea
In the homing case, the invariants and the resulting percephe learned object. In addition the perception functian: of
tion were commonplace since the sensations are constant athee robot is a posteriori computed. The state of the robot is
given place and a unique action per place is provided. Inrordedefined by its spatial location in the environment and by its
to apprehend the object perception case, we propose to studlpdy and CCD camera orientation relative to the learned ob-
it in a simplified version where still few dimensions are usedject. According to our definition of perception, we propose
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Fig. 7. top: The sensori-motor architecturbottom Trajec-
tory of a robot performing an object reaching task. The abjec]
enters the robots visual field only at the black cross pasitio

to visualize thePer function by experimentally computing
the integral of the actions performed by the robot over the
2D space. This allows to visualize tliter function for each
position and so for each sensation/action couple. In additi
by computing thePer function at different training steps, the
role of the learning phase, shaping deeper and deeper the
traction basin, is essential in the perception genesis.

Thus the learning can be considered as the emergence of
a potential function allowing the robot to create a sensofim
tor attractor. The learning allows to “dig” the potentiahfts
tion and consequently the robot behavior is more stabledn th
presence of distractors in its visual field. The learningals ination of the two objects, we observed a change in the robot
allows enlarging the sensorimotor attraction basin. Tlmwes t orientation relative to the target that could explain thebgil
robot behavior is less dependent on the initial spatialtmrsi behavior of the system. The display of the Per function pro-
of the robot in the room since at all the position in the attrac cessed over the 2D space for two different orientationsef th
tion basin created during the training the robot can reaeh throbot confirmed our intuition. On fig. 9 top-right, we can see
object (experimentally the attraction basin measures 4&5 m that the Per function has two local minima although for an-
ters). other body orientation only one deeper minimum is visible
In the case of fig. 9 two similar objects are set closely to(bottom-right). This change of orientation was enough 8 di
each other, but only the circled one was previously learnecambiguate the visual flow. Unfortunately the 4 dimensional
We surprisingly observed that the robot has a stable behavitasin cannot be easily display and each of B function
successfully reaching the learned object independentitgof plot in this paper is drawn relatively to one orientation loé t
starting spatial location and even if the neurons actisitied- robot. This experiment clearly shows how essential it is to
ing the robot’s actions (“right” or “left” headings) can baite  consider all the dimensions of the context in order to captur
similar. As the coarse features didn't allowed a good diseri  the sensorimotor invariant.

R Y m_
= distance

Fig. 9. The perception function (on the right) is dependent
gf the position of the robot but also on its orientation (o& th
right)



1S: Internal State

VF: Visual Features

ISP: Internal State Prediction
FE: Facial Expression

STM: Short Term Memory

——>link one to all modifiable
—/—plink one to one non modifiable

ISP STM FE

Fig. 10. Global architecture of facial expression perception.
Fig. 11 Joy expressions on unknown faces and at different

distances are successfully imitated by the robot head.

5. FACE EXPRESSION PERCEPTION IN AN
IMITATION TASK the associations between th&” group and/.SP group are

strong enough to bypass the low level reflex activity coming

In a special paradigm of communication and imitation (s¢e [3770M the 15 group. In this case, the activity of tieacial

for details) between a robot head and a human, a face exprég)fpressmn groug” £ will result from the temporal integra-

sion recognition system is developed with the sensori-motgt!on (Short Term Memory grou7'A/) of the emotional state

approach. In a first phase of interaction, as the robot pro2Ssociated to the different visual features analyzed bgybe
duces a random facial expression (sadness, happy, anger, s m. Each focus points vote for the recognition of a given

prised), the human subject facing the robot is asked to mimif2¢ial expression as each facial expression is mainly ehara
the robotic head expression, allowing its neuronal system tterlzed by a specific set of focal points corresponding talloc
learn the sensori-motor associations between its visual se&€as on the face which are relevant for the recognitionatf th

sations, the images of the human face, and its internal, stat‘éXerst'o_n'l It follows that t_hef_robot headhcan_lmltate the hu
referring to its current proprioception as it is performimdp- man's facial expression as in fig. 11 Ast ereisno consx_traln
cial expression. After this first phase, the robot must be ablon the selection of the local views (no framing mechanism),

to mimic the facial expression of the human partner Showin@umerous distracters can be present either in the backdroun

by this behavior the success of the human expression reco@([ on inexpressive parts of the head and can be learned on the

nition. Based on the PerAc architecture, the computationay £ 9roup. Nevertheless, the architecture will tend to learn
architecture on fig. 10 allows to recognize facial exprassio and reinforce only the expressive features of the face. i ou

and imitate them. Each group of neurds, ISP, STM face to face situation, the distracters are present fohalfa-

and F'E contains 5 neurons corresponding to the 4 facial eX_cial expressions so their correlation with an emotipnaiesta}
pressions plus the neutral face. In particular we recognizEends toward zero. Moreover the system shows interesting

the two sensorial paths merging in thgernal State Predic- ProPerties as shown on fig. 11. The robot successfully imi-
tion group IS P. This group learns, via a simple condition- tates the facial expressions when facing unknown faces and

ing mechanism using the Least Mean Squat@/(s) rule even when the interaction distance is important. So evem wit
the association between theternal State group S showiné no framing, we can see that the system had learned to discrim-

the emotional state and thésual Features group/ F' that inate background information from relevant visual featuné

learned the local views. In fact the visual system is based off€ face. Indeed this sensori-motor face expression récogn

a sequential exploration of the image key points that resuffON System is a good candidate to bootstrap a sensori-motor
from a DOG filter convolved with the gradient of the input A€ récognition system, see [3] for a detail analysis.

image. This process allows the system to focus more on the

corners and end of lines in the image (eyebrows, corners of 6. CONCLUSION

the lips, etc). One after the other, the most active focustpoi

of the same image are used to compute local views: eithd?roviding to our robots sensori-motor architecture to ooint

a log polar transform centered on the focus point or a featheir movements, we demonstrate for three different cases
tures extraction from a Gabor decomposition is performed tdhow action is central to efficiently perform a recognitioaka
obtain an image more robust to small rotations and distanckk not only provides another point of view but allows the
variations. This collection of local views is learned by the  organization of the complex visual flow of information, and
cruitment of new neurons in thE F' group using a k-means the selection of relevant information in function of thekas
variant allowing online learning (both one shot learninglan The agent learns to decide on its own what to react to, what
long term averaging) and real time. After the learning phasds relevant, what to learn. Stable and adaptable behavfors o



the agent that learns from its own perspective in interastio
with complex environment leads to a behavioral recognition
of the context and not a symbolic recognition. In fact using
the term perception is more appropriate as the agent will notl®]
perceive the same way (not the same attractor) if a different
task had to be performed facing the same target (as turning
away of an object instead of reaching it). We favor minimal
robotic set-up and coarse visual features as it is interng$ti [10]
test which are the really important features for the rectogmi
task. Fortunately only the rank of the key points matter het t
recognition level allowing our systems to adequately behav[11]
in their environment. But in fact more complex visual pro-
cesses could be used in order to increase the stability of key
points and of the local view features for different scale; or
entation, texture conditions. In addition an attentiolyatem [12]
would be a useful complementary mechanism to increase the
level of interest of some part of the image or features. Bmal
an internal measure of perception is not easily grabbed, but
from our modelisation an internal signal could be processed
A code, representing the whole invariants information,ldou [13]
be built from the pertinent local views information and thei
associated action specified by the task. This code could be
then categorized to give access to an internal percept.

[14]
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