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Abstract. Since Piaget, it is well accepded that higher level cognitive
functions are settled on low level sensori-motor associations. In this pa-
per, we will show that different kinds of interactive behaviors can emerge
according to the kind of proprioceptive function available in a given
sensori-motor system. We will study two different examples. In the first
one, an internal proprioceptive signal is avaible for the learning of the
visuo-motor coordination between an arm and a camera. An imitation
behavior can emerge when the robot ’s eye focuses on the hand of the ex-
perimenter instead of its own hand. The imitative behavior results from
the error minimization between the visual signal and the proprioceptive
signal. Here, the imitation results from the perception ambiguity: the
robot mistakes its hand with the experimenter hand! In the second ex-
ample, a robot head has to recognize the facial expression of the human
caregiver. Yet, the robot has no visual feedback of its own facial expres-
sion. The human expressive resonance will allows the robot to select the
visual features relevant for a particual facial expression. As a result, after
few minutes of interactions, the robot can imitates the facial expression
of the human partner. We will show the different proprioceptive signals
used in both examples can be seen as bootstrap mechanisms for more
complex interactions. Applied as a crude model of the human, we will
propose that these mechanisms play an important role in the process of
individuation.

1 Introduction

With the recent development of robotics, an important effort has been made to
build robots able to interact easily with humans. This effort mainly result in (1)
researches trying to enhance the robot’s control architecture in order to detect
and take into account the other (from speech recognition, to the addition of
special primitives processing face/body detection and framing and/or emotion
recognition) and (2) technics used to enhance the expressiveness and the aspect
of the robot. (1) is dedicated to enhance the robot interaction and (2) is dedicated
to enhance the human acceptation of the robot, and both approaches intend to
facilitate the exchanges between Human and robots. Nevertheless, as underlined
by decades of studies in developmental psychology, understanding the roots of
communication is still a major issue, and we still not know what are the right
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"properties" that a system must embed in order to detect, exchange, take turn
easily as the young infants do, even at a pre-verbal stage.

In this paper, we wish to show that simple perception-action systems ini-
tially designed as homeostatic machines, without embedding any "interactive
functions", have shown to be the basis of the emergence of higher level behav-
iors when placed in interactive situations. Interestingly, these emergent behaviors
constitute new building blocks favoring at the same time higher level learning
and interaction.

We will give two examples, where the architectures are not designed to inter-
act with others. They are only designed to learn new sensory-motor associations
when detecting changes in self dynamics (imbalances). When acting in front of
the robot, the human is actively modifying the behavioral dynamics of the robot
provoking new situations which are learned by the system.

2 From visuo-motor learning to sequence learning by

imitation

Our model is a perception-action architecture designed to equilibrate 2 kinds of
information : Visual information (V), about the external environment and Pro-
prioception information (Prop), i.e information about the self movements that
are being done (angle of joints φ1,φ2,...,φn, speed of the joints d

dφ
, etc.. of the

devices). In order to compute basic behaviors, like tracking, pointing, reaching
objects, the architecture is designed like an homeostatic machine (Figure 1 a.). It
tries to minimize the differences between the inputs V and Prop, and the imbal-
ances generate the movements of the system in order to reduce the corresponding
error. To do so, V excites a Neural Field (NF) that compute a dynamical at-
tractors centered on the input stimuli [1]. If Prop can be expressed in the same
referential as the NF, then it is easy to extract the command to give to the joints
of the arm in order to move this latter (and therefore the value of Prop) toward
the maximum of the attractor (Figure 1 b.). This read-out [2] mechanism is the
value of the derivative of the attractor at the position of prop. Hence, behaviors
of the robot are NF attractors triggered by V information (representing sensory-
motor “target”). Obviously, the read-out mechanisms is only possible if V and
Prop can be computed in the same space. In previous work, we have shown that
all information can be computed in a simple 2D space (corresponding to the
vision produced by a sole CDD camera). To do so, we used a visuo-motor map
of neurons, that associate multi-dimensional and redundant information about
the joints into a simple 2D “visual” response. The associations are formed during
a learning phase: the system produces initial random arm movements in order
to learn to equilibrate input V and Prop information projected on the Visuo-
motor map. The result is a system that is able to transform motor information
(φ1,φ2,...,φn) into a simpler 2D space corresponding to the visual one. Then, the
movements to reach visual goals is computed in the visual space thanks to the
read-out mechanism. The association of an adaptive visuo-motor map with two
1D neural fields can be seen as a simple and global dynamical representation
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Fig. 1. a. The homeostatic controller trying to equilibrate visual and proprioceptive
informations. The motor command is computed by the neural field and the readout
groups whose activities are illustrated in b. (example in 1 dimension). In this case
Visual and proprioceptive information are different. This unbalance will trigger the
learning of a new association on the visuo-motor map.

of the working space controlling efficiently an arbitrary number of degrees of
freedom according to 2D information coming from the visual system.

Moreover, having a system that is not able to discriminate visual information
about self movements with the movements of others can be, for example, useful
to trigger an imitative behavior. Based on movement detection, the system can’t
differentiate it’s extremity from another moving target. As a consequence, mov-
ing in front of the robot induces visual changes (movement detection) that the
robot interprets as an unforeseen self movement. The robot acts as an homeostat,
it tends to correct by producing the opposite movements, inducing the following
of the demonstrator gesture (numerous psychological works show comparable
human behaviors when visual perception is ambiguous [3–5]). Applied to an eye-
arm robotic system, the generated error will induce movements of the robotic
arm reproducing the moving path of the human hand: an imitative behavior
emerges. Using this setup, we showed that our robot can imitate several kind
of movements (square or circle trajectories, up and down movements. Hence,

Fig. 2. The proto-imitation principle applied to a robotic setup.

the imitative behavior emerges as a side effect of the perception ambiguity (and
limitations). From this low-level imitative behavior, our robot is able to learn
sequences of movements from others. To do this, we use a second sensori-motor
loop (Figure 3 a.) based on a neurobiological model [6] inspired from some of the
properties of the cerebellum and the hippocampus. This model uses associative
learning rules between past inputs memorized as a STM and present inputs in or-
der to learn the timing of simple sequences. In order to learn complex sequences
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in which the same state is repeated several times, we have added a mechanism
that generates internal dynamics and that can be associated with the repeated
inputs of the sequence. The association between the repeated inputs and differ-
ent activities of the oscillator allows to code hidden states with different and
un-ambiguous patterns of activities. As a result, our architecture manages to
learn/predict and reproduce complex temporal sequences.

a. b.

c.

Fig. 3. a. : Complex sequences learning model b. : We manipulate Aibo passively. It
learns the succession of orientations of the movement from these front left leg motor
information. c. : Aibo reproduces the learnt sequence.

Moreover, recent experiments shows that this architecture can be transposed
to learning by demonstration [7], and also to the learning of complex sequences
of displacements with a navigating robot [8]. The coupling between the experi-
menter and the robot is performed via the visual environment (see also [9] for
a similar dynamical coupling)but the visuo-motor coupling has been learned
thanks to the proprioceptive signal.

3 Robot response to an expressive human

This second work is motivated by the question of how a robotic system (Figure 4,
right), able to exhibit a set of emotional expressions can learn autonomously to
a associate theses expressions with those of others. Here, "autonomously" refers
to the ability to learn without the use of any external supervision. A robot with
this property could therefore be able to associate its expressions with those of
others, linking intuitively its behaviors with the responses of the others. This
question is close to the understanding of how babies learn to recognize the facial
expressions of their caregivers without having any explicit teaching signal allow-
ing to associate for instance an “happy face” with their own internal emotional
state of happiness.
Using the cognitive system algebra [10], we showed that a simple sensori-motor
architecture (see Figure 4, left) using a classical conditioning paradigm could
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solve the task if and only if we suppose that the baby produces first facial
expressions according to his/her internal emotional state and that next the par-
ents imitate the facial expression of their baby allowing in return the baby to
associate these expressions with his/her internal state [11]. If the adult facial ex-
pressions are not synchronized with the baby facial expression, the task cannot
be learned. Moreover, recent psychological experiments [12] have shown that hu-
mans ”reproduce” involuntary a facial expression when observing and trying to
recognize it. Interestingly, this facial response has also been observed in presence
of our robotic head. This low level resonance to the facial expression of the other
can be considered as a natural bootstrap for the baby learning ("empathy" from
the parents). Because, the agent representing the baby must not be explicitly
supervised, a simple solution is to suppose the agent representing the parent is
nothing more than a mirror. We obtain an architecture allowing the robot to
learn the “internal state”-”facial expression” associations.

Fig. 4. The architecture used to associate a collection of feature points extracted from
the visual flow with the expressed emotion by the robot. If a human come in front of
the robot an start to imitate the expression, (s)he will closes the loop between vision
and proprioception and allow the system to learn to recognize emotions of others.

We showed that from our departure control architecture, learning is only
possible if the parent agent (supposed to be the teacher) imitates the baby
agent. The roles are switched according to the classical point of view of AI and
learning theory. This advocates that taking account of the interaction dynamics
between two agents can change our way of thinking learning and more generally
cognition problems.

4 Discussion

Both examples show the importance of the interaction with a partner for the
robot development and learning. Imitation appears as an important mechanism
both for learning and communication [13]. Interestingly, in our developmental
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procedure there is no need at first to suppose the robot is able to recognize the
human partner as a model. At the opposite, the robot development is based on
the perception ambiguity. The robot considers the human partner as a part of it-
self. The interaction and the associated correlations extend the proprioception of
the robot to the human partner. They become a single dynamical system able to
learn things that the robot could not learn by itself. Hence imitative behaviours
would be the result at first of the agent unability to perceive something as being
different from itself. We can imagine the capability to predict the feedback signal
can be used to verify if there is some novelty in the sensory feedback related to
the current robot action. Bounded novelty may result from the interaction with
a partner hence allowing to recognize him/her at such. Hence we can propose a
scheme in which the individuation comes after a phase of fusion/merging with
the environement. The proprioceptive signal is necessary to close the loop and
to build a global system composed of the agent and his/her caregivers allowing
simple learning mechanisms to be sufficient for the learning of more and more
complex behaviors (autopoietic loop). First correlations detections allow to build
new predictive signals allowing then to differentiate the agent "inner part" from
the outside and latter the other agents. We have shown for instance that the ca-
pability to discreminate faces from non faces could be the result of the emotional
interaction and not one of its preriquisites as usually supposed in classical image
processing works. In the same vein, joint attention to a given object could be the
result of the emotional association between the facial expression of the experi-
menter and an object (social referencing) and not the opposite as it is classically
supposed. Social interactions can be seen in the first periods of the development
as a way to increase the potential of the proprioceptive function allowing to
maintain more complex and stable dynamics that can be used for the learning of
more complex tasks. Hence, in an epigenitic approach, the sensori-motor control
appears as an essential element to avoid the symbol grounding problem and to
build autonomous robots able to develop more and more cognitive capabilities
thanks to the social interactions.
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