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What should be taught first: the emotional
expression or the face?

S. Boucenna!, P. Gaussier’?, P. Andry!
'ETIS, CNRS UMR 8051, ENSEA, Univ Cergy-Pontoise, 2IUF,
{boucenna,gaussier,andry } @ensea.fr

We are interested in knowing how a robot head
can learn to recognize facial expressions without su-
pervision. Our starting point is a mathematical model
showing that a sensory-motor architecture is able to
express its emotions succeedes to recognize on-line the
facial expression of a caregiver if this latter naturally
tends to imitate or to resonate with the system. In-
terestingly, our works also show that, learning au-
tonomously to recognize a face/non face is more com-
plex than to recognize a facial expression. We propose
an architecture using the interaction rhythm to allow
first a robust learning of the facial expression with-
out a face tracking and next to perform the learning
of the face/non face recognition. Finally we empha-
size the importance of the emotions as a mechanism
to ensure the dynamical coupling between individuals
allowing to learn more and more complex tasks.

1. Introduction

The main goal of this research is to understand the
role of an emotional system in the development of au-
tonomous agents. By “emotional system”, we mean
the system allowing to manage and to express the-
ses emotions. Emotional changes, lead to particular
facial expressions (angry, sadness, etc...) potentially
inducing caregivers to interact and help the agent to
solve the task. In this paper, we are studying a Neu-
ral Network (NN) model allowing an expressive robot
head to engage “natural” emotional interactions in
order to learn on line to recognize facial expressions
of human partners.

The recognition of facial expressions is a well known
issue, and classical solutions have shown impressive
results. Some methods are based on the Principal
Component Analysis (PCA). For example, the LLE
(Locally Linear Embedding) in (Liang et al., 2005)
performs a dimension reduction of the inputs vec-
tors.  Neuronal methods have also been devel-
oped for facial expression recognition. Franco and
Treves (Franco and Treves, 2001), use a multi layer
network with a classical supervised learning rule. The
designer has to determine the number of neurons
associated to the different expressions according to

their complexity. Other methods are based on face
models, which try to match the face (see for in-
stance the appearance model in (B. Abboud, 2004)).
(Yu and Bhanu, 2006) use a support vector ma-
chine (SVM) to categorize the facial expressions.
(Wiskott, 1991) uses Gabor wavelets to code the face
features as ’jets’(labeled graph where the nodes are
'jets’).  While all these technics show a high level
of recognition performances, it is important to no-
tice that they are not easy to adapt in the frame
of autonomous systems. Most of the time, the pro-
posed solutions use ad hoc engineering strategies that
need a strong control of the experimental conditions
(strong supervision, accurate face detection in order
to process the expression recognition). They use off
line learning algorithms with the need to access to
the whole learning database. Moreover, the related
statistical models do not take into account the inter-
action dynamics between the human and the robot,
and can not be accepted for realistic models of emo-
tional expression recognition development. In the
case of complex and unconstrained interactions, our
starting point is the fact that babies learn to recog-
nize facial expressions without explicit teaching signal
or strong supervision (G. Gergely, 1999). Using the
cognitive system algebra (Gaussier, 2001), we showed
that a simple sensory-motor architecture based on
a classical conditioning paradigm (Schmajuk, 1991,
Balkenius and Moren, 2000) can learn on line to rec-
ognize facial expressions under the following condi-
tion (P. Gaussier, 2004).

In this paper, we summarize first the conditions de-
rived from our formal model for the facial expressions
on line learning. Next, we present the implementation
of this theoretical model on a robotic head (fig. 1),
with the constraints of on line learning, that will allow
us to underline three original findings : first, the clas-
sical procedure that suppose to first localize the face
and then to recognize its expression can be avoided :
human face is recognized as such because his/her local
views were associated to emotion recognition and not
the opposite. Second, the dynamics of the human-
robot interaction, brings important and non explicit



Figure 1: The robotic expressive head designed for devel-
opmental psychology and computational modeling stud-
ies (Nadel et al., 2006a). Examples expressions: a) sad-
ness, b) surprise, ¢) happiness. d) Setup of a typical hu-
man / robot interaction game (here the human imitating
the robot).

signals, such as the interaction rhythm, that helps the
system to recognize face/non face.

2.  On line learning of facial expression
recognition: an interactive model

We consider a single system composed of two agents
interacting in a neutral environment (see Fig.2). One
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Figure 2: The bidirectional dynamical system studied.
Both agents face each other. Agent 1 will be considered
as a newborn and agent 2 as an adult mimicking the new-
born facial expressions. Both agents are driven by in-
ternal signals which can induce the feeling of particular
emotions.

agent is supposed to be an adult with perfect emotion
recognition capabilities and reproduction capabilities.
The second agent is considered as a new born without
any previous learning on the social role of emotions.
Formally, the 'baby’ agent can be described as follow
(Fig.3). We suppose our agents receive a visual signal
(V; vision of agent 1). It can be learned and recognized
in R; group, R; being the result of, for example an
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Figure 3: Schematic representation of an agent that can
display and recognize “emotions”. Arrows with one stroke
represent “one to one” reflex connections. Arrows with
labels and 2 parallel strokes represent “one to all” modi-
fiable connections.

unsupervised pattern matching such as a WTA, an
ART network, a Kohonen map. Hence, the vision of a
face displaying a particular expression should trigger
the activation of a corresponding node in R;:

Where ¢ is a competitive mechanism. A;; repre-
sents the weights of the neurons in the recognition
group of the agent ¢ allowing a direct pattern match-
ing. Our agents are also affected by the perception
of their internal milieu (hunger, fear etc.). S; the in-
ternal signals linked to physiological inputs such as
fear, hunger... The recognition of a particular inter-
nal state will be called an emotional state E;. We
suppose also F; depends on the visual recognition R;
of the visual signal V;. At last, the agents can ex-
press a motor command F; corresponding to a facial
expression. If one agent can act as an adult, it must
have the ability to “feel” the emotion recognized on
someone else’s face (empathy). At least, one connec-
tion between the visual recognition and the neuron
group representing its emotional state must exist. In
order to display an emotional state, we must also sup-
pose there is a connection from the internal signals
to the facial expression control. The connection can
be direct or through another group devoted to the
representation of emotions. For sake of homogene-
ity, we will suppose that the internal signal activates
through an unconditional link the emotion recogni-
tion group which activates through an unconditional
connection the display of a facial expression (hence it
is equivalent to a direct activation of F; by .S; - see
(Gaussier, 2001) for a formal analysis of this kind of
properties). Hence, the sum of both flows of informa-
tions is:

B =c(1.8i + A13.R;) (2)
At last, we can also suppose the teacher agent can
display a facial expression without “feeling” it (just
by a mimicking behavior obtain form the recognition
of the other facial expression). The motor output of
the teacher facial expression then depends on both
facial expression recognition and the will to express a
particular emotion:

F,=c (I.El‘ + A12.Ri) (3)



In a previous paper, we have studied the minimal
conditions allowing the building of a global behavioral
attractor (learning to imitate and to understand fa-
cial expression). Fig.4 represents the complete system
with both agents in interaction. After simplifications

S, E, RS, E 3

Figure 4: Schematic representation of the global network
representing the interactions between 2 identical emo-
tional agents. The dashed links represent the connections
from the display of a facial expression to the other agent
vision system (effect of the environment).

(P. Gaussier, 2004), we finally obtained the network
shown Fig.5a.
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Figure 5: a) Final simplification of the network repre-
senting the interaction between our 2 identical emotional
agents. b) Minimal architecture allowing the agent to
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learn “internal state”-"facial expression” associations.

It is simple on Fig.5 to see the condition of the
learning stability. If both agents display their inter-
nal emotional state S; and Sy, the learning is im-
possible if we suppose both agents have independent
emotional states (there is no correlation between Sy
and Sz). The learning cannot stabilized and then
the simplification rules to obtain this Fig.5 cannot
apply. If we suppose that there is no way to con-
trol the internal state of the baby, the only solution
is to suppose that the second agent mimics or res-
onate (Nadel et al., 2006b) to the facial expressions
of the baby thus allowing an explicit correlation (the
parent is no more than a mirror).

If this condition is verified the system can learn, the
agent 1 (baby) learns to associate the visual recogni-
tion of the tested facial expressions to its own internal
feeling (F7). The agent learns how to connect the felt
but unseen movements of self with the seen but unfelt
movements of the other.

To test this model, we propose to develop a neu-
ral network architecture and to adopt the follow-
ing experimental protocol: The facial expressions
of the robotic head calibrated by FACS experts
(Ekman and Friesen, 1978), without any instruction
the human subject resonates with the facial expres-

sions of the robot head (Nadel et al., 2006b). In a
first phase of interaction, the robot produces a ran-
dom facial expression (sadness, happy, anger, sur-
prised) plus the neutral face during 2s, then returns
to a neutral face to avoid human misinterpretations
of the robot facial expression (The same procedure is
used in psychological experiment) during 2s. The hu-
man subject is asked to mimic the robot head. After
this first phase lasting between 5 to 10 min according
to the subject "patience”. The generator of random
emotional states is stopped. If the N.N has learned
correctly, the robot must mimic the facial expression
of the human partener.

The computional architecture (see fig.6) is close to
the therorical model, this architecture allows to rec-
ognize the visual features of the people interacting
with the robot head and to learn if these features are
correlated with its own facial expression. Moreover,
another sub network learns to predict the rhythm of
the interaction allowing to detect if an interacting
agent (a human) faces the robot head. The justifica-
tions of the architecture will be provided in the next
sections.
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Figure 6: The global architecture to recognize facial ex-
pression, imitate and to recognize face/non face. A vi-
sual processing allows to extract sequentially the local
views. The R group (local view recognition) learns the
local views (each group of neuron S, E, ST M> and F con-
tains 5 neurons corresponding to the 4 facial expressions
plus the neutral face). A tensorial product is performed
between E (emotional state) and a reward signal to select
the neuron which must learn. The F'D group (Face detec-
tion) group learns the correlation between the tensorial
product and the reward signal (its activity corresponds
to the recognition of a face). Y learns the correlation be-
tween a local view and a facial expression on a specific
neuron activated if a reward linked to the interaction has
been obtained or not.

3. Facial expression recognition

Our initial approach followed classical algorithms: (1)
face localization using for instance (R.L Hsu, 2002)



or (Viola and Jones, 2004), then (2) face framing,
and (3) facial expression recognition of the normal-
ized image. In this case the quality of the results is
highly dependant on the accuracy on the frame of the
face (the generalization capability of the N.N can be
affected).

In the perspective of embedding the process, we
had to avoid any ad hoc framing mechanism. Our
solution introduces a visual system independent from
face framing. The visual system is based on a sequen-
tial exploration of the image focus points (Fig.7). The
focus points are the result of a DOG filter convolved
with the gradient of the input image (we used this
technics both for visual place and object recognition
(Giovannangeli et al., 2006)). This process allows the
system to focus more on the corners and end of lines
in the image (eyebrows, corners of the lips, etc). Its
main advantages over the SIFT method are its com-
putational speed and the few number of needed focus
points.

One by one, the most active focus points of the
same image are used to compute local views (a log
polar ! transform centered on the focus point and his
ray is 20 pixels).

This collection of local views is learned by R:

convolution with DOG focus points
v

input image

gradient extraction

Figure 7: Visual processing: with the input image
(100x100 pixels) is performed the gradient extraction,
convolution with a Difference Of Gaussian (DOG) pro-
viding the focus points, the focus points extraction, local

views extraction around each focus points.
Rj = netj.Hmaw(%@Jmmt)(netj)

1 N
netjzl—N;WV”—m

R; is the activity of neuron j in the group R. Hp(z) is
the Heaviside function 2. v is the vigilance (threshold

1The local polar transform increases the robustness of the
extracted local views to small rotations and scale variations
2Heaviside function:

o 1 ifo<x
Hp(z) = { 0 otherwise

of recognition, if the prototype recognition is below
~ then a new neuron is recruited). net is the average
of the output, o,e is the standard deviation. The
learning rule allows both one shot learning and long
term averaging. The modification of the weights is
computed as follow:

AWy = 5,4 (0O + e(Is = Wig) (1 = By))
with k = ArgMaxz(a;), a;j(t) = 1 only when a new
neuron is recruited otherwise a;(t) = 0. &;* is the
Kronecker symbol 3 and ¢ is the constant in order to
average the prototypes. When a new neuron is re-
cruited, the weights are modified to match the input
(term a;(¢)I;). The other part of the learning rule
e(l; — Wi;)(1 — R;) averages the already learned pro-
totypes (if the neuron was previously recruited). The
more the input will be close to the weights, the less
the weights are modified. Conversely the less the in-
puts will be close to the weights, the more they are
averaged. The quality of the results depends on the
€ value as shown in Fig.8. If € is chosen too small
then it will have a small impact. Conversely, if € is
too big, the previously learned prototypes can be un-
learned. Thanks to this learning rule, the neurons
in the R group learn to average prototypes of face
features (for instance, a mean lip for an happy face).

Of course, there is no constraint on the selection
of the local views (absence of any framing mecha-
nism). This means that numerous distractors can be
present (local views in the background, or inexpres-
sive parts of the head). It also means that any of
this distractors can be learned by R. Nevertheless,
the complete architecture will tend to learn and re-
inforce only the expressive features of the face (see
Fig.6). The robot will extract important informa-
tion from the dynamics of the interaction, thus to
know when the face is present and when a facial ex-
pression is showed. In such face to face situation,
the distractors are present for all the facial expres-
sions so their correlation with an emotional state is
null. FE associates the activity of R with the cur-
rent internal state S of the robot (simple condition-
ing mechanism using the Least Mean Square (LM .S)
rule (Widrow and Hoff, 1960)). ST M> is Short Term
Memory used to sum and filter on a short period (N
iterations) the emotional states F;(t) associated with
each explored local view:

STMyi(t +1) = %.Ei(t +1) + ST Mzi(t)

i is the indice of the neurons, for instance F; corre-
sponds to the i*" emotional state (0 < i < 5).

3Kronecker function:

sk_J 1 ifj=k
J 0 otherwise



coefficient | sadness neutral happy anger surprised | total
3

1 49% 6% 92% 64% 42% 51%
0.1 51% 4% 92% 66% 49% 52%
0.01 51% 34% 94% 67% 49% 59%
0.001 49% 51% 79% 70% 57% 61%
0.0001 49% 51% 78% 69% 56% 60%

Figure 8: Effect of the € local view averaging on the global performances of the system (with y=0.92).

Generally, the 10 most activive focus points are
selected. A majority of focus point (around 7/10)
belongs to the face (mouth, eyebrow) but there are
distractors belonging to the background.

F triggers the facial expression of the robot, the
F; highest activity triggers the i*" facial expression
thanks to a WTA. For more robustness, I’ used also
a short term memory (it gives more importance at the
present than at the past) with 8 = 1 and a < 1
(usually o = 0.8):

Fi(t + ].) = ﬂ.STMQ}i(t + 1) + OZ.Fi(t)

After learning, the associations between R the view
recognition and F the emotional state are strong
enough to bypass the low level reflex activity com-
ing from the internal state S (see section 2.). In this
case, the facial expression F’ will result from the tem-
poral integration of the emotional state associated to
the different visual features analyzed by the system
(features will have an emotional value if they are cor-
related with the robot facial expression, basically the
expressive features of the human head). Hence the
robot head will begin to imitate the facial expression
of the human partner.

The results of Fig.8 show that our architecture is
able to recognize the facial expression without the
face detection. The theoretical model has been suc-
cessfully translated in a computational model. Nev-
ertheless, the on line learning can involve problems
because the human reaction time is not immediate
(see Fig.9a). First, 150 ms are required to recognize
an object (Thorpe et al., 1996), hence the minimal
duration to recognize the facial expression for a hu-
man is 150ms. The minimal period T of an interac-
tion loop is the sum of ¢; the time for the robot to
perform a facial expression plus to the time for the
human to recognize the facial expression plus t3 the
time for the human subject to mimic the recognized
expression (T = t1 +to +t3). When the robot is only
an automata producing facial expressions, we mea-
sure a minimal period 7" around 800 ms for expert
subjects (a person knowing the robot) and 1.6 s for
a novice subject (a person who never interacted with
the robot). This time lag can pertubate the learning
because if the robot learns the first images which are

still associated to the human previous facial expres-
sion then the previous expression is unlearned. The
presentation time of a given expression must be long
enough to neglect the first images.

Fig.9.b shows the neural activity during the test
phase. In this figure, we can see that the robot reacts
correctly for the different facial expressions excepted
the neutral face.

4. Face/non face recognition thanks to
facial expression recognition

The goal of this section is the face/non face recog-
nition without an external supervision. Since, the
robot is able to recognize a facial expression with-
out the face/non face recognition, we will show that
the facial expressions recognition can be a bootstrap
to recognize the face/non face. To perform this task,
the robot uses the interaction rhythm (reinforcing sig-
nal) and the facial expression recognition. We will
see the importance of the interaction rhythm and
we will describe the global system for the face/non
face recognition. This system has no real interac-
tion capability during the learning phase since this
phase is completely predetermined (the robot con-
tinues to trigger randomly the facial expression even
if the subject is gone). In first time, we introduce
the prediction of the interaction rhythm to solve
this problem. Psychologists underline the impor-
tance of the synchrony during the interaction between
the mother and the baby. For instance, babies are
extremely sensitive to the interaction rhythm with
their mother(Devouche and Gratier, 2001). A social
interaction rupture involves negative feelings (agita-
tion, tears ...). However, a rhythmic interaction be-
tween the baby and her mother involves positif feel-
ings and smiles. These works show the importance
of the interaction rhythm. In our case (following
(Andry et al., 2001)), the rhythm is used as a reward
signal:

e A rhythmic interaction is equivalent to a positive
reward: The robot head and the subject produce
a coherent action at each instant.

e Conversely, an interaction rupture means a nega-
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Figure 9: a) phase shifting between the human facial expression and the robot facial expression during an imitation game
(the human imitating the robot). b) Temporal activity of the neurons associated to the triggering of the different facial

expressions when the robot imitates the human (after learning).

tive reward.

When a subject displays a facial expression, he/she
performs whole face or body motions. If the subject
imitates the robot then his/her movement peaks have
a frequency depending on the frequency of changes in
the robot facial expressions (in our case this frequency
is constant since the robot facial expression changes
after 4s). Hence, the robot can predict the interac-
tion rhythm either using a prediction of the timing
between 2 visual peaks (stable frequency of interac-
tion of the human partner) or using the prediction of
the delay between the triggering of its facial expres-
sion and the motions perceived by its CCD cameras
(reaction of the supposed human partner to the robot
expression). So the robot can predict the interaction
rhythm and it can measure the prediction error. If the
error is important, there is a novelty (subject is not in
the rhythm). Otherwise, the prediction error is small
which involves a good interaction between the subject
and the robot (see Fig.10b)). The details of the neu-
ral network used for the rhythm prediction, were pre-
sented in (Andry et al., 2001, Banquet et al., 1997).
The Neural Network uses three groups of neurons,
each group having a different functionality. A Deriva-
tion Group (DG) receives the input signal. The Tem-
poral Group (T'G) is a battery of neurons (15 neu-
rons) with different temporal activities. The Predic-
tion Group (PQG) learns the conditioning between DG
(the present) and T'G (the past) informations. This
model (see Fig.10 a) is grounded on the following rule:
a PG neuron can learn and also predict the delay be-
tween two events from DG.

The interaction rhythm provides an interesting re-
inforcement signal to learn to recognize an interacting
partner, in our case a human and more specifically

his/her face because of the short interaction distance
(the robot sees the human face and not really the
other part of his/her body).

A tensorial product is performed between the
reward signal (built according to the interaction
rhythm, one neuron is used if the interaction rhythm
is coherent, otherwise another neuron is used) and F
(5 neurons), to build the X group of neurons which
is a matrix of 10 neurons (5 lines and 2 columns). A
simple conditioning mechanism using the LM S rule
is used to associate the activity of the neurons in the
recognition of the local views R with the current X
activity, the group Y learns this conditioning (if Xj ;
is activated then Y; ; must learn). After learning, the
associations between R activity and Y activity are
strong enough to bypass the low level activity com-
ing from X, ;. Next, a ST M3 (10 neurons) is used to
accumulate the focus points of an image:

STMy (1 +1) = 3 ¥(o (¢4 1)+ ST M (1)
(,7) is the indice of the neurons (0 < ¢ < 5 and
0 < j <2)and N is the number of focus points.

When the system has learned, The ST M3 matrix
tends to activate more the first column when there is
a face than the second column, inversely if it is not a
face. It remains to learn the conditioning to associate
the activity of the neurons in the group ST M3 and the
reward signal provided by the interaction rhythm. A
simple LM S (F D Face Detection) is used to perform
this task. The group of neuron F'D (2 neurons) is
able to recognize the face after the learning.

The first results linked to this on-line learning of
the face are very positive. When the face detection
is learned and tested on the same subject, the sys-
tem success rate on that subject tends toward 100%.
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neuron PG for the rhythm prediction, when the robot performs the facial expressions and the human imitates the robot

head.

However, when the face detection is learned with a
single subject and tested on 4 other subjects, the sys-
tem success rate scales between 29% (for people with
beard) and 90%. It is not so bad if we consider that
the learning was performed during only 10 minutes
(in real time) with a single subject. This show the
generalization capabilities of our visual system and
justify the choice of DOG filter to focus the robot
attention on particular visual features. Now, when
the face detection is learned on 3 subjects (1500 im-
ages) and the tests are performed on 5 others differ-
ent subjects (5000 images), the system success rate
tends toward 70% for the face detection. The per-
formances should be improved after the interactions
with more and more people. The goal here was to
show that the emotional interactions can structure
the learning. Thanks to the emotional interactions
(the on-line facial expression recognition), the neu-
ral network is able to perform a face/non face recog-
nition. The emotional interaction is a bootstrap to
learn to recognize what is a human face.

5. Conclusion

The theorical model has allowed us to show that in
order to learn on line to recognize the facial expres-
sions, the learner must produce facial expressions first
and be mimicked by his/her caregiver.

The system proposed in (Gaussier et al., 2007) had
no real interaction capability during the learning
phase since this phase was completely predefined.
The idea used in this paper is to introduce the pre-
diction of the interaction rhythm as a way to build an
internal reinforcement signal allowing to change the
robot behavior. Interestingly, the reward can also

be used to detect if the robot is interacting with a
partner or not. Since, in our case, the interacting
agent is a human, it was easy to derivate a neural
network for the face/non face discrimination as a par-
ticular case linked to the properties of the visual sig-
nal. If the human partner is near the robot head
then a face/non face discrimination can be learned.
For longer distances, one can imagine a human/thing
discrimination could be performed. We have shown
there is no need to find first the face and to recog-
nize next the facial expression. The recognition of
local views associated or not to a given emotional
state is sufficient to ”recognize” the facial expression
of the human partner. The attentional strategy (us-
ing focus points) presented in this paper corresponds
to a sequential and time consuming analysis of the
image. It could be seen as a simple implementa-
tion of the thalamo-cortico-amygdala pathway in the
mammal brain (LeDoux, 1996). In previous works
(Gaussier et al., 2007), we tested simpler and faster
architectures using the whole image. They could
correspond to the short thalamo-amygdala pathway
(Papez, 1937, LeDoux, 1996) implied in rapid emo-
tional reactions. In future works, we will try to ver-
ify the idea emerging from the present work that the
thalamo-cortico-amygdala network may be a way to
control the learning of the thalamo-amygdala network
allowing both a quick recognition of the facial expres-
sions and their precise labelling.

Finally, in the proposed architecture, the emotional
interaction can be seen as a way to structure learn-
ing (the emotional interaction is a bootstrap for the
face/non face discrimination). Our approach could be
to generalized to the learning of more complex tasks
involving other kinds of movements since we have



shown in (Gaussier et al., 1998, Andry et al., 2001,
Andry et al., 2002) that a simple sensory-motor sys-
tem is sufficient to trigger low level imitations.

In  conclusion, this work  suggests the
baby/parents system is an autopoietic social
system (Mataruna and Varela, 1980) in which the
emotional signal and the empathy are important
elements of the network to maintain the interaction
and to allow the learning of more and more complex
skills. Future works using our robotics head will try
to test this hypothesis in more dynamical situations
involving human /robot and robot/robot interactions.
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