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On the Marginal Instability of Linear Switched Systems

Yacine Chitour, Paolo Mason and Mario Sigalotti

Abstract— Stability properties for continuous-time linear
switched systems are determined by the Lyapunov exponent
associated with the system, which is the analogous of the
joint spectral radius for the discrete-time case. This paper
is concerned with the characterizations of stability properties
when the Lyapunov exponent is zero. In this case it is well
known that the system can be stable as well as unstable, even
if it is never asymptotically stable nor it admits a trajectory
blowing up exponentially fast. Our main result asserts that
a switched system whose Lyapunov exponent is zero may be
unstable only if a certain resonance condition is satisfied.

I. INTRODUCTION

We consider linear switched systems of the form

ẋ(t) = A(t)x(t) , (1)

where x ∈ R
n, n ≥ 2, and the switching law A(·) is an

arbitrary measurable function taking values on a compact

and convex set of matrices A ⊂ R
n×n. In the following, a

switched system of the form (1) will be often identified with

the corresponding set of matrices A. This paper is concerned

with stability issues for (1), where the stability properties

are assumed to be uniform with respect to the switching law

A(·).
A characterization of the stability behavior of A relies on

the sign of the (largest) Lyapunov exponent associated with

A, which is defined as

ρ(A) = sup

(

lim sup
t→∞

1

t
log ‖x(t)‖

)

, (2)

where the sup is taken over the set of solutions of (1) with

‖x(0)‖ = 1 and A(·) is an arbitrary switching law. The

Lyapunov exponent is a “measure” of the asymptotic stability

of (1). Indeed the system is (uniformly) exponentially stable

if and only if ρ(A) < 0. That means that there exist C1, C2 >
0 such that, for every trajectory of (1) with A(·) an arbitrary

switching law, one has

‖x(t)‖ ≤ C1 exp(−C2t)‖x(0)‖, t ≥ 0.

On the other hand, (1) admits trajectories going to infinity

exponentially fast if and only if ρ(A) > 0. When ρ(A) = 0,

two situations may occur: (i) all trajectories of (1) starting

from a bounded set remain uniformly bounded and there exist
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trajectories staying away from the origin, in which case (1)

is said to be marginally stable. (ii) (1) admits a trajectory

going to infinity and the system is said to be marginally

unstable.

The role of the Lyapunov exponent is analogous to that

of the joint spectral radius (or, equivalently, the generalized

spectral radius) for discrete-time linear switched systems.

The properties of the latter have been studied extensively in

recent years (see for instance [1], [2], [3], [4]). In particular,

for discrete-time linear switched systems, several results have

been obtained in the case in which the spectral radius is equal

to one under particular assumptions (see for instance [5] and

references therein). This case corresponds to the situation

ρ(A) = 0 for continuous-time systems of the form (1).

The stability properties of continuous-time systems in

the case ρ(A) = 0 have not attracted much attention in

the community up to now. Some results, relating marginal

stability of (1) to the existence of limit cycles and periodic

trajectories can be found in [6], [7], while some general

observations about marginal stability and instability can be

found in [8]. It has to be noted that a qualitative study

of the properties of the trajectories in the case ρ(A) = 0
leads to analogous properties for all values of ρ, since, as

observed in [6], it holds ρ(A′) = 0, where A′ is the set

{A− ρ(A)Id : A ∈ A} with Id denoting the n×n identity

matrix.

The main result of the present paper, Theorem 2.7, states

a necessary condition for marginal instability based on a

resonance concept. Roughly speaking, if the switched system

is marginally unstable then it must be reducible (see Defini-

tion 2.1 below), giving rise to a finite number of switched

systems of lower dimensions, such that at least two of

them are marginally stable and in resonance, i.e. they admit

trajectories staying away from the origin associated with

a common switching law (cf. Definition 2.6). Conversely,

it turns out that the resonance phenomena highlighted in

Theorem 2.7 do not guarantee marginal instability. Namely,

the issue of understanding when marginal instability occurs

appears in general to be very hard. We address this issue in

the particular case in which n ≤ 4 and A is the convex hull

of {A0, A1}; we show that there are no non-trivial examples

satisfying the resonance hypothesis for n = 2, 3 and that,

for n = 4, for almost every choice of the matrices A0, A1

satisfying the resonance hypothesis, (1) admits a trajectory

going to infinity with polynomial rate.

The rest of the paper is organized as follows. In Section II

we provide the main notations and definitions of the paper,

as well as the statement and the proof of our main result,

Theorem 2.7. Section III establishes a sufficient condition for



marginal instability in the particular case in which n = 4.

II. MAIN RESULT

The purpose of this section is to state and prove the main

result of the paper. We first introduce some crucial definitions

and preliminary results.

Definition 2.1: We say that

{0} = E0 ( E1 ( · · · ( Ek−1 ( Ek = R
n (3)

is an invariant flag for (1) if every Ei is a subspace of Rn of

dimension ni, invariant with respect to every matrix A ∈ A.

An invariant flag is said to be maximal if, for every i =
1, . . . , k, there does not exist a subspace V such that Ei−1 (

V ( Ei and V is invariant with respect to A. Finally an

invariant flag is said to be trivial (resp. nontrivial) if k = 1
(resp. k > 1) and a switched system that admits (resp. does

not admit) a nontrivial invariant flag is said to be reducible

(resp. irreducible).

The following result relates the study of the stability

properties of a reducible switched system to those of lower

dimensional irreducible switched systems. The first part of

the proposition is obvious while the second part can be easily

checked by using suitable initial conditions and the variation

of constant formula.

Proposition 2.2: Given a maximal invariant flag, there

exists a vector basis {v1, . . . , vn} such that, for i = 1, . . . , k,

one has Ei = span{v1, . . . , vni
} and such that every matrix

A ∈ A takes the following block form

A =















A11 A12 · · ·
0 A22 A23 · · ·
0 0 A33 A34 · · ·
...

. . .
. . .

. . .

0 · · · · · · 0 Akk















, (4)

where Aij ∈ R
(ni−ni−1)×(nj−nj−1). In this case the subsys-

tems of A, defined as the switched systems corresponding

to the sets Ai := {Aii : A ∈ A} for i = 1, . . . , k, are

irreducible and verify ρ(Ai) ≤ ρ(A) for 1 ≤ i ≤ k, with

equality holding for at least one index i.
Note that the choice of the invariant flag (3) uniquely

determines the subsystems Ai, up to changes of coordinates

on R
n keeping the block form (4). Note, moreover, that

with any switching law A(·) in A it is naturally associated a

corresponding switching law Aii(·) in Ai, for i = 1, . . . , k.

From [6] we have the following.

Theorem 2.3: If (1) is irreducible then there exists a norm

v(·) in R
n such that, for every x0 ∈ R

n and every trajec-

tory x(·) of (1) starting from x0, v(x(t)) ≤ v(x0)e
ρ(A)t.

Moreover, for every x0 ∈ R
n, there exists a trajectory of (1)

starting from x0 satisfying v(x(t)) = v(x0)e
ρ(A)t.

The norm v(·) introduced in the previous theorem will be

referred to as the Barabanov norm.

Remark 2.4: Notice that an immediate consequence of

the previous result is the nontrivial observation that an

irreducible switched system (1) with ρ(A) = 0 must be

stable. Indeed in that case we deduce that the balls with

respect to the Barabanov norm are invariant for (1). On

the other hand, for every initial condition x0, there exists

a trajectory of (1) lying on the sphere v−1(v(x0)).
Remark 2.5: Combining Proposition 2.2 with Theo-

rem 2.3 and by a simple application of the variation of

constant formula to the case where ρ(A) = 0, we get that

a trajectory can go to infinity at most polynomially. More

precisely, there exists C > 0 such that, for every trajectory

of (1) one has

‖x(t)‖ ≤ C(1 + tk−1)‖x0‖, t ≥ 0, (5)

where k is the number of subsystems associated with A.

In the following, for i = 1, . . . , k, we will denote by vi
the Barabanov norm associated with the subsystem Ai and

by Si the corresponding unit sphere v−1
i (1).

Definition 2.6: Consider a reducible switched system A
and denote by A1, . . . ,Ak the subsystems corresponding to

a maximal invariant flag, as in Proposition 2.2. We say that

two subsystems Ai1 ,Ai2 , i1 6= i2, of A are in resonance if

they satisfy the following conditions

(a) ρ(Ai1) = ρ(Ai2) = 0 (thus Ai1 ,Ai2 are stable);

(b) there exists a switching law A(·) in A with as-

sociated switching laws Aijij (·) in Aij and two

corresponding trajectories γij (·) of Aij such that

γij (t) ∈ Sij for every t > 0 and for j=1,2.

We can now state the main result of the paper.

Theorem 2.7: Let A be a convex compact set of n × n
matrices, n ≥ 2. Assume that the linear switched system

associated with A is marginally unstable. Then A is reducible

and, for any maximal invariant flag, it admits two subsystems

Aij , j = 1, 2, in resonance.

Proof: We will prove the theorem by contradiction,

i.e. by showing that, if there are no subsystems of A in

resonance, then the system is stable. Assume that there exists

a maximal invariant flag such that all the matrices of A have

the form (4) and let x = (x1, . . . , xk) where xi ∈ R
ni−ni−1

for i = 1, . . . , k. Consider a switching law A(·) ∈ A and

let Ri(t, τ), for τ, t ∈ R, be the resolvent of the time-

varying linear system żi = Aiizi, zi ∈ R
ni−ni−1 , i.e.

zi(t) = Ri(t, τ)zi(τ).
In particular we have xk(t) = Rk(t, 0)xk(0) and, since

ẋk−1(t) = Ak−1,k−1(t)xk−1(t) +Ak−1,k(t)xk(t)

= Ak−1,k−1(t)xk−1(t) +Ak−1,k(t)Rk(t, 0)xk(0) ,

by the variation of constant formula, we get

xk−1(t) = Rk−1(t, 0)xk−1(0)

+

∫ t

0

Rk−1(t, τ)Ak−1,k(τ)Rk(τ, 0)xk(0) .

Repeating recursively the previous computations, we get

xi(t) = Ri(t, 0)xi(0)

+

k−i−1
∑

h=1

∑

i<i1<···<ih≤k

I(t, i, i1, . . . , ih)xih(0),



where the integral I(t, i, i1, . . . , ih) is defined as
∫

t≥τ1≥···≥τh≥0

Ri(t, τ1)Ai,i1(τ1)Ri1(τ1, τ2) · · ·

· · ·Aih−1,ih(τh)Rih(τh, 0) dτ1 · · · dτh. (6)

We will prove the proposition by estimating each integral

I(t, i, i1, . . . , ih). We first introduce the following matrix

norms. For 1 ≤ i ≤ k,

‖M‖i := max
z∈R

ni−ni−1

vi(z)=1

vi(Mz) , M ∈ R
(ni−ni−1)×(ni−ni−1),

where we recall that vi is the Barabanov norm associated

with Ai. Since two norms defined on finite dimensional

vector spaces are always equivalent there exists Ki > 0
such that ‖M‖ ≤ Ki‖M‖i for i = 1, . . . , k, where

‖ · ‖ denotes the usual matrix norm. Moreover the norms

‖ · ‖i are sub-multiplicative norms, i.e., for every pair

of matrices M1,M2 ∈ R
(ni−ni−1)×(ni−ni−1), one has

‖M1 M2‖i ≤ ‖M1‖i ‖M2‖i. Finally, by definition, they

satisfy ‖Ri(τ1, τ2)‖i ≤ eρ(Ai)(τ1−τ2) for every choice of the

switching law and 0 ≤ τ2 < τ1. Since A is compact, we get

‖
∫

t≥τ1≥···≥τh≥0
Ri(t, τ1)Ai,i1(τ1)Ri1(τ1, τ2) · · ·

· · ·Aih−1,ih(τh)Rih(τh, 0) dτ1 · · · dτh‖

≤
∫

t≥τ1≥···≥τh≥0
‖Ri(t, τ1)Ai,i1(τ1)Ri1(τ1, τ2) · · ·

· · ·Aih−1,ih(τh)Rih(τh, 0)‖ dτ1 · · · dτh

≤ K
∫

t≥τ1≥···≥τh≥0
‖Ri(t, τ1)‖i ‖Ri1(τ1, τ2)‖i1 · · ·

· · · ‖Rih(τh, 0)‖ih dτ1 · · · dτh,

for a suitable K > 0 independent of the switching law. Let

us fix T > 0 and assume, without loss of generality, that

t = mT for some positive integer m. Then, if we indicate

the integer part of a real number with the symbol [·], we get
∫

mT≥τ1≥···≥τh≥0

‖Ri(mT, τ1)‖i ‖Ri1(τ1, τ2)‖i1 · · ·

· · · ‖Rih(τh, 0)‖ih dτ1 · · · dτh

≤ K ′

∫

mT≥τ1≥···≥τh≥0

‖Ri(mT,
[τ1
T

]

T )‖i ‖Ri1(
[τ1
T

]

T,
[τ2
T

]

T )‖i1

· · · ‖Rih(
[τh
T

]

T, 0)‖ih dτ1 · · · dτh

≤ K ′
∑

0≤mh≤···≤m0=m

‖Ri(m0T,m1T )‖i ‖Ri1(m1T,m2T )‖i1

· · · ‖Rih(mhT, 0)‖ih

≤ K ′
∑

0≤mh≤···≤m0=m

mh
∏

j=1

‖Rih(jT, (j − 1)T )‖ih · · ·

· · ·
m1
∏

j=m2+1

‖Ri1(jT, (j − 1)T )‖i1

m
∏

j=m1+1

‖Ri(jT, (j − 1)T )‖i,

(7)

for a suitable K ′ ≥ 1 independent of the switching law. We

want to prove that the previous sum is uniformly bounded

with respect to the choice of the switching law and inde-

pendently of m, at least when T is large enough. To this

purpose, we will need two preliminary results.

Lemma 2.8: Assume that there are no subsystems of A in

resonance. Then, for T large enough, there exists C ∈ (0, 1)
such that, for every pair of distinct indices (i, j) with 1 ≤
i, j ≤ k and for every switching law,

‖Ri(T, 0)‖i‖Rj(T, 0)‖j ≤ C .

Proof: If ρ(Ai) < 0 or ρ(Aj) < 0 then the thesis is true

for every T > 0. Therefore let us suppose without loss of

generality that i = 1, j = 2 and ρ(A1) = ρ(A2) = 0.

Proceeding by contradiction, let us assume that there exist

sequences of switching laws A(n)(·), initial data x
(n)
l (0)

with vl(x
(n)
l (0)) = 1 for l = 1, 2 and times T (n), with

limn→∞ T (n) = ∞ such that vl(x
(n)
l (T (n))) > 1 − 1

n
for

l = 1, 2, where x
(n)
l (·) is the solution of the switched

system Al corresponding to A(n)(·). Since A is compact

and convex, a classical result generalizing Banach-Alaoglu

theorem establishes the existence of a weak-∗ limit of A(n)(·)
in L∞([0,+∞),A) (see for instance [9]) i.e., up to a

subsequence, A(n)(·)
w∗

⇀ A∗(·) in L∞([0,+∞),A). Thus

x
(n)
l (·)

L∞

loc([0,∞))
−→ x∗

l (·) for l = 1, 2, where x∗
l (·) is the

solution of the switched system Al corresponding to A∗(·)
(see for instance [10]). In particular vl(x

∗
l (t)) = 1 for t > 0

and l = 1, 2, contradicting the hypothesis of the lemma.

To prove that the sum (7) is uniformly bounded, we will

use the following lemma.

Lemma 2.9: Let h ∈ N, h > 1. Let us define

Ξm = {k ∈ N
h : kl ≤ kl+1 ≤ m for l = 1, . . . , h− 1}.

Moreover, given a set of real numbers

α = {αl
i ∈ (0, 1] : l = 1, . . . , h+ 1 , i ∈ N}

and k = (k1, . . . , kh) ∈ Ξm, let us define

αk =
(

k1
∏

i=1

α1
i

)(

k2
∏

i=k1+1

α2
i

)

· · ·
(

m
∏

i=kh+1

αh+1
i

)

,

and

Sm(α) =
∑

k∈Ξm

αk .

Then, for any fixed C ∈ (0, 1), there exists a constant L
depending on C such that, for every m ∈ N and for every set

α of the previous form satisfying αj
iα

l
i ≤ C ∀j 6= l , ∀i ∈

N, one has Sm(α) ≤ L.

Proof: Let k(1), k(2) ∈ Ξm and let us observe that

αk(1)αk(2) ≤ Cmaxl=1,...,h |k
(1)
l

−k
(2)
l

|. (8)

Indeed, assume without loss of generality that k
(1)
l∗

< k
(2)
l∗

,

where

|k
(1)
l∗

− k
(2)
l∗

| = max
l=1,...,h

|k
(1)
l − k

(2)
l |.

Let i be an integer verifying k
(1)
l∗

< i ≤ k
(2)
l∗

. If αj1
i and αj2

i

are terms corresponding to the subscript i in the factorization

of αk(1) and αk(2) , respectively, it is then easy to see that



j2 ≤ l∗ < j1, implying that αj1
i αj2

i ≤ C from the hypothesis

of the lemma. Thus (8) follows.

For q ∈ N, let us define the set

Iq = {k ∈ Ξm : αk > Cq},

and let us observe that, if k(1), k(2) ∈ Iq , then αk(1)αk(2) >
C2q so that, from (8), we deduce that

max
l=1,...,h

|k
(1)
l − k

(2)
l | < 2q ∀k(1), k(2) ∈ Iq .

In particular this implies that the set Iq contains at most

(2q)h elements. Since Ξm = ∪∞
q=1(Iq \ Iq−1), we get

Sm(α) =

∞
∑

q=1

∑

k̂∈Iq\Iq−1

α
k̂
≤

∞
∑

q=1

(2q)hCq−1 < +∞ .

The lemma is proved by setting L =
∑∞

q=1(2q)
hCq−1.

The proof of the theorem is then concluded in view of

Lemma 2.8 and by applying Lemma 2.9 to the sum (7).

III. SUFFICIENT CONDITIONS FOR MARGINAL

INSTABILITY

A natural question arising from the results of the previous

section is whether, or under which additional conditions,

a switched system with ρ(A) = 0 and which admits

subsystems in resonance is marginally unstable. A simple

observation is that if ρ(A) = 0 and if we assume that there

exists a vector basis such that each matrix of A can be put

in the block form (4) with Aij = 0 for i < j then the

switched system (1) is stable, independently of the existence

or non-existence of subsystems in resonance. Indeed in this

case, setting x = (x1, . . . , xk) where xi ∈ R
ni−ni+1 for

i = 1, . . . , k, the components xi of a trajectory of (1)

vary independently and the stability of the overall system

is therefore guaranteed by the fact that ρ(Ai) ≤ 0. The

role of the interaction terms Aij is therefore fundamental to

possibly show the existence of trajectories going to infinity.

In the general case, a complete analysis of the contribution of

these interaction terms is definitely a hard issue to address.

Therefore we will limit ourselves to the rather explicit case

where n = 4 and A is the convex hull of two matrices A0

and A1, denoted by co{A0, A1}.

Definition 3.1: A marginally unstable switched system

associated with a convex compact subset A of n×n matrices

is said to be polynomially unstable of degree l if there exists

a positive integer l and constants C1, C2 > 0 such that

every solution x(·) of (1) verifies ‖x(t)‖ ≤ C1(1+tl)‖x(0)‖
and there exists a solution x̄(·) of (1) satisfying ‖x̄(t)‖ ≥
C2t

l‖x̄(0)‖ for every t > 0.

A. The four dimensional linear switched systems

Let A = co{A0, A1}, where A0, A1 are n×n matrices be

a marginally unstable system. We consider the particular case

in which all the matrices uA0+(1−u)A1, where u ∈ [0, 1],
are Hurwitz.

Thus, as a consequence of Theorem 2.7, it turns out

immediately that n ≥ 4, since otherwise one of the two

subsystems obtained by applying Theorem 2.7 would be of
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Fig. 1. Example 3.2: Trajectory of a polynomially unstable switched system

dimension one and its maximal Lyapunov exponent would

be equal to zero, leading to one of the two matrices A0, A1

having 0 as eigenvalue.

Let us fix n = 4. Marginal instability may appear only

when there is a maximal invariant flag (3) with k = 2, n1 = 2
and, for the associated subsystems, ρ(A1) = ρ(A2) = 0. In

particular we can write the matrices A0, A1 in the block form

A0 =

(

A0
11 A0

12

0 A0
22

)

, A1 =

(

A1
11 A1

12

0 A1
22

)

, (9)

where all the blocks are 2 × 2. We know from [11], [12]

that the planar switched systems A∗ = co{A0
∗, A

1
∗}, with

ρ(A∗) = 0 and such that all the matrices of A∗ are

Hurwitz, are those admitting a closed worst trajectory. A

closed worst trajectory corresponds to a periodic switching

law with A∗(t) = A0
∗ on time intervals of length t0 > 0

and A∗(t) = A1
∗ on time intervals of length t1 > 0. In

the following t0, t1 will be called switching times. It turns

out that the period of the closed worst trajectory is equal to

2t0+2t1, i.e. the worst trajectory is the concatenation of four

bang arcs. For simplicity let us denote by T the semiperiod

t0 + t1.

It is now easy to build an example of polynomially

unstable switched system with matrices in the block form (9).

Example 3.2: Assume that A0, A1 in (9) are such that

A0
11 = A0

22 = A0
∗, A1

11 = A1
22 = A1

∗ and A0
12 = A1

12 = Id,

where A∗ = co{A0
∗, A

1
∗} satisfies the previous properties.

If the resolvent R∗(t, 0) corresponds to a worst switching

strategy for A∗, as defined above, one can immediately

verify, with the variation of constant formula, that

x2(t) = R∗(t, 0)x2(0) ,

x1(t) = R∗(t, 0)x1(0) + tR∗(t, 0)x2(0) ,

so that the system is polynomially unstable of degree 1. An

explicit numerical example can be obtained by considering



the matrices

A0
∗ =

(

−1 −α
α −1

)

, A1
∗ =

(

−1 −α
1/α −1

)

.

For a value α ∼ 4.5047 one has ρ(A∗) = 0. Figure 1 depicts

a particular trajectory for such a value.

Remark 3.3: The combined results of Proposition 2.2 and

Theorem 2.7 are in the same spirit as Lemma 1 in [8], where

the author states that a marginally unstable system admits a

(possibly non-maximal) proper invariant flag of length two

identifying two subsystems A1, A2 with ρ(A1) = ρ(A2) =
0. It should be noticed that the conclusion in [8, Lemma 1]

goes a bit further by stating that both A1 and A2 can be

taken marginally stable. However the latter statement is not

true in general. Indeed, let

A1 = A2 =





0 1 0
0 0 1
0 0 0



 .

Then the only proper invariant subspaces of the system

co{A1, A2} are R × {(0, 0)} and R
2 × {(0)}. It is easy

to check that in this case for both possible invariant flags

and every possible choice of compatible coordinates one of

the subsystems is marginally unstable.

Assume that t 7→ R∗(t, 0) x̄1 is a closed worst trajectory

where the resolvent R∗(t, 0) corresponds to the switching

law

A∗(t) =

{

A0
∗ if t ∈

[

kT, kT + t1
)

, k ∈ N,
A1

∗ if t ∈
[

kT + t1, (k + 1)T
)

, k ∈ N.
(10)

It turns out that x̄1 is an eigenvector of the matrix R∗(T, 0)
corresponding to the eigenvalue −1. Let us denote by x̄2

an eigenvector corresponding to the second eigenvalue of

R∗(T, 0) and, for x ∈ R
2, by Πx̄1

(x) the component of

the vector x along the direction x̄1 with respect to the basis

{x̄1, x̄2} of R2.

Theorem 3.4: Let A0, A1 be two 4× 4 Hurwitz matrices

in the block form (9). We use A12(·) to denote the top right

2× 2 block in the switching law A(·). Assume that

(C1) the switched systems A1 = co{A0
11, A

1
11} and A2 =

co{A0
22, A

1
22} admit closed worst trajectories with

switching times t10, t
1
1 and t20, t

2
1, respectively,

(C2) t10 = t20 =: t0, t11 = t21 =: t1,

(C3) the condition
∫ T

0

Πx1
1

(

R1(T, τ)A12(τ)R2(τ, 0)x
2
1

)

dτ 6= 0

is satisfied. Here Rk(·, ·), k = 1, 2, are the resolvents

associated with the time-varying systems defining the

worst trajectories, as in (10), and, similarly to what

done before, T = t0 + t1, xk
1 , x

k
2 are eigenvectors of

Rk(T, 0), for k = 1, 2, and Πx1
1
(x) is the component

of the vector x along the direction x1
1 with respect to

the basis {x1
1, x

1
2}.

Then (1) is polynomially unstable of degree one. Moreover

assume that A1 and A2 verify conditions (C1), (C2). Then,

there exists a subset of pairs of matrices (A0
12, A

1
12) which

is open and dense in M2(R)×M2(R), such that condition

(C3) is verified.

Proof: Let us consider the trajectory of (1) starting at

(0, x2
1)

T and corresponding to the worst switching strategy

for A1,A2,

x2(t) = R2(t, 0)x
2
1 (11)

x1(t) =

∫ t

0

R1(t, τ)A12(τ)R2(τ, 0)x
2
1dτ . (12)

We first prove that the system is polynomially unstable under

the hypotheses of the theorem. Fix τ ∈ [0, t] and consider the

quotient q(τ) =
[

τ
T

]

and the remainder r(τ) = τ − T
[

τ
T

]

.

Notice that

(I) the matrix A12(·) only depends on r(τ), i.e.

A12(τ) = A12(r(τ)),

(II) R1(τ1, τ2) = R1(τ1 + T, τ2 + T ) and R2(τ1, τ2) =
R2(τ1+T, τ2+T ) for every τ1, τ2 > 0, since the period

of the switching law is T ,

(III) for all 0 ≤ τ ≤ mT, m ∈ N, we can write

R1(mT, τ) = R1

(

mT, (q(τ) + 1)T
)

R1

(

(q(τ) + 1)T, τ
)

,

R2(τ, 0) = R2

(

τ, q(τ)T
)

R2

(

T, 0
)q(τ)

,

(IV) by definition of Πx1
1
, if v = v1x

1
1 + v2x

1
2 ∈ R

2, we

have

Πx1
1

(

R1(T, 0) v
)

=v1 Πx1
1

(

R1(T, 0)x
1
1

)

+ v2 Πx1
1

(

R1(T, 0)x
1
2

)

=− v1 = −Πx1
1
(v) .

Combining these facts we easily get

Πx1
1

(

∫ mT

0

R1(mT, τ)A12(τ)R2(τ, 0)x
2
1 dτ

)

= (−1)m−1m

∫ T

0

Πx1
1

(

R1(T, τ)A12(τ)R2(τ, 0)x
2
1

)

dτ .

Then, under the hypothesis (C3), |Πx0
1
(x1(mT ))| ≥ C1m,

so that ‖x(mT )‖ ≥ C2m and, by the continuity of the

resolvent of (1), we easily get ‖x(t)‖ ≥ C3t, for suitable

strictly positive constants C1, C2, C3. The proof of the first

part of the theorem is complete. We are left to prove that

condition (C3) is is verified in a open and dense subset of

M2(R)×M2(R) (in particular it is verified generically with

respect to the choice of the matrices (A0
12, A

1
12)).

Lemma 3.5: With the notations above, the linear map

Ψ : M2(R)×M2(R) → M2(R)

(A0
12, A

1
12) 7→

∫ T

0

R1(T, τ)A12(τ)R2(τ, 0) dτ

is onto.

Proof: Since the resolvents are obtained by composing

exponential matrices we easily get

Ψ(A0
12, A

1
12) = et1A

1
11et0A

0
11

(

∫ t0

0

e−τA0
11A0

12e
τA0

22dτ
)

+et1A
1
11

(

∫ t1

0

e−τA1
11A1

12e
τA1

22dτ
)

et0A
0
22 ,



and, by considering the special case A1
12 = 0, we are reduced

to study the surjectivity of the linear map

A0
12 7→ Ψ1(A

0
12) :=

∫ t0

0

e−τA0
11A0

12e
τA0

22dτ .

Assume that A0
12 ∈ kerΨ1. Then in particular

0 = −A0
11Ψ1(A

0
12) + Ψ1(A

0
12)A

0
22

=

∫ t0

0

d

dτ

(

e−τA0
11A0

12e
τA0

22
)

dτ

= e−t0A
0
11A0

12e
t0A

0
22 −A0

12 .

Therefore, if we set Ψ̃(A0
12) = A0

12e
t0A

0
22 − et0A

0
11A0

12 we

have that kerΨ1 ⊆ ker Ψ̃ .
Let us denote by σ(A0

11) and σ(A0
22) the spectra of A0

11

and A0
22, respectively. Then the spectrum of Ψ̃ turns out to

be

σ(Ψ̃) = {et0λ − et0µ : λ ∈ σ(A0
22), µ ∈ σ(A0

11)} . (13)

For reasons of space here we will just consider the case in

which σ(A0
11) and σ(A0

22) are real. If σ(A0
11) ∩ σ(A0

22) =
∅ we have ker Ψ̃ = kerΨ1 = {0}. Assume now that

σ(A0
11) ∩ σ(A0

22) = {λ}. Let {v1, w1} and {v2, w2} vector

bases such that A0
11 and A0

22 are in Jordan form (v1, v2
are eigenvectors associated with the eigenvalue λ). Notice

that the cases A0
11 = λ Id and A0

22 = λ Id can be trivially

excluded from our analysis. Consider a matrix C ∈ ker Ψ̃.

Then

0 = Ψ̃(C)v2 = Cet0A
0
22v2 − et0A

0
11Cv2

= et0λCv2 − et0A
0
11Cv2

and therefore Cv2 = αv1 for some α ∈ R. Also,

0 = Ψ̃(C)w2 = Cet0A
0
22w2 − et0A

0
11Cw2.

If A0
22 is diagonalizable, the above expression is equal to

et0µCw2 − et0A
0
11Cw2 with µ /∈ σ(A0

11). It implies that

Cw2 = 0. When A0
22 is non-diagonalizable, one has 0 =

etλ(Cw2+αt0v1)−et0A
0
11Cw2. Since A0

11 is diagonalizable

(in particular there exists µ 6= λ , µ ∈ σ(A0
11)), writing the

previous expression in the basis {v1, w1}, we get
(

0 0
0 et0λ − et0µ

)

Cw2 + αt0e
t0λ

(

1
0

)

= 0 ,

which implies α = 0 and Cw2 = βv1 for some β ∈ R. If

both A0
22, A

0
11 are non-diagonalizable then we have

(

0 t0e
t0λ

0 0

)

Cw2 + αt0e
t0λ

(

1
0

)

= 0 ,

so that Cw2 = βv1 + αw1. Notice that in the latter case,

unlike the previous ones, ker Ψ̃ is a subspace of R
2×2 of

dimension two.

Summing up, we have that C ∈ ker Ψ̃ if

• Cv2 = αv1 , Cw2 = 0 , for some α ∈ R if A0
22 is

diagonalizable,

• Cv2 = 0 , Cw2 = βv1 for some β ∈ R if A0
11 is

diagonalizable and A0
22 is non-diagonalizable,

• Cv2 = αv1 , Cw2 = βv1 + αw1 for some α, β ∈ R
2

if A0
11, A

0
22 are is non-diagonalizable.

Let us verify that, when A0
11, A

0
22 are non-diagonalizable,

any C ∈ ker Ψ̃ does not belong to kerΨ1. We have that

0 = Ψ1(C)v2 =

∫ t0

0

e−τA0
11CeτA

0
22v2dτ

= α

∫ t0

0

e−τA0
11eλτv1dτ = αt0v1 ⇒ α = 0 ,

0 = Ψ1(C)w2 =

∫ t0

0

e−τA0
11CeτA

0
22w2dτ

=

∫ t0

0

e−τA0
11A12(e

λτv2 + τeλτw2)dτ

= β

∫ t0

0

τe−τA0
11eλτv1dτ = β

t20
2
v1 ⇒ β = 0 .

Therefore kerΨ1 = {0}. We skip the cases in which at least

one among A0
11, A

0
22 is diagonalizable, that can be treated

similarly.

IV. CONCLUSION

In this paper we showed a necessary condition for

marginal instability of linear switched systems based on

resonance properties of particular subsystems. In addition

we proved that the switched systems defined by two linear

dynamics in dimension four and satisfying this condition

generically admit trajectories going to infinity at polynomial

rate.
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