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BESOV ALGEBRAS ON LIE GROUPS OF
POLYNOMIAL GROWTH AND RELATED RESULTS

ISABELLE GALLAGHER AND YANNICK SIRE

Abstract. In this paper we prove an algebra property under
pointwise multiplication for Besov spaces defined on Lie groups
of polynomial growth. When the setting is restricted to the case of
H-type groups, this algebra property is generalized to paraproduct
estimates. Some considerations on pseudodifferential calculus are
also provided in that setting.

1. Introduction

1.1. Lie groups of polynomial growth. In this paper G is an uni-
modular connected Lie group endowed with the Haar measure. By “uni-
modular” we mean that the Haar measure is left and right-invariant.
If we denote by G the Lie algebra of G, we consider a family

X = {X1, ..., Xk}
of left-invariant vector fields on G satisfying the Hörmander condition,
i.e. G is the Lie algebra generated by the X ′

is. A standard metric on G,
called the Carnot-Caratheodory metric, is naturally associated with X

and is defined as follows: let ℓ : [0, 1] → G be an absolutely continuous
path. We say that ℓ is admissible if there exist measurable functions
a1, ..., ak : [0, 1] → C such that, for almost every t ∈ [0, 1], one has

ℓ′(t) =
k∑

i=1

ai(t)Xi(ℓ(t)).

If ℓ is admissible, its length is defined by

|ℓ| =
∫ 1

0

(
k∑

i=1

|ai(t)|2 dt
) 1

2

.

For all x, y ∈ G, define d(x, y) as the infimum of the lengths of all
admissible paths joining x to y (such a curve exists by the Hörmander
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2 ISABELLE GALLAGHER AND YANNICK SIRE

condition). This distance is left-invariant. For short, we denote by |x|
the distance between e, the neutral element of the group, and x so that
the distance from x to y is equal to |y−1x|.
For all r > 0, denote by B(x, r) the open ball in G with respect to

the Carnot-Caratheodory distance and by V (r) the Haar measure of
any ball. There exists d ∈ N∗ (called the local dimension of (G,X))
and 0 < c < C such that, for all r ∈]0, 1[,

crd ≤ V (r) ≤ Crd,

see [27]. When r > 1, two situations may occur (see [20]):

• Either there exist c, C,D > 0 such that, for all r > 1,

crD ≤ V (r) ≤ CrD

where D is called the dimension at infinity of the group (note
that, contrary to d, D does not depend on X). The group is
said to have polynomial volume growth.

• Or there exist c1, c2, C1, C2 > 0 such that, for all r > 1,

c1e
c2r ≤ V (r) ≤ C1e

C2r

and the group is said to have exponential volume growth.

When G has polynomial volume growth, it is plain to see that there
exists a constant C > 0 such that for all r > 0, V (2r) ≤ CV (r).
In turn this implies that there exist C > 0 and κ > 0 such that for
all r > 0 and all θ > 1, V (θr) ≤ CθκV (r).

1.2. Nilpotent Lie groups. A Lie group is said to be nilpotent if its
Lie algebra G is nilpotent: more precisely writing G1 = G and defining
inductively Gk+1 = [Gk,Gk], then there is n such that Gn = {0}. It can
be shown that such groups are always of polynomial growth (see for
instance [16]).

1.3. Stratified (Carnot) and H-type groups. Carnot groups are a
particular version of nilpotent groups, which admit a stratified struc-
ture and for which V (r) ∼ rQ for some positive Q, for all r > 0.
One advantage of this additional structure is that such groups admit
dilations. Important examples of such groups are H-type groups, a
particular example being the Heisenberg group (in those cases there is
actually an explicit formula for the Fourier transform).
More precisely, the Lie group G is called a Carnot group if G is

simply connected and the Lie algebra of G admits a stratification, i.e.
there exist linear subspaces V1, ..., Vr of G such that

G = V1 ⊕ ...⊕ Vr
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which satisfy [V1, Vi] = Vi+1 for i = 1, ..., r − 1 and [V1, Vr] = 0.
By [V1, Vi] we mean the subspace of G generated by the elements [X, Y ]
where X ∈ V1 and Y ∈ Vi. Carnot groups are nilpotent. Furthermore,
via the exponential map, G and G can be identified as manifolds. The
dilations γδ (δ > 0) are then defined (on the Lie algebra level) by

γδ(x1 + ... + xr) = δx1 + δ2x2 + ...+ δrxr, xi ∈ Vi.

We then define the homogeneous dimension to be

Q = dimV1 + 2dimV2 + ... + r dimVr.

Moreover, if G is a Carnot group, we have for all r > 0,

(1.1) V (r) ∼ rQ

(see [17]). We will say that the Q−dimensional Carnot group is of
step r with k generators. For instance the Heisenberg group Hd is a
Carnot group and Q = 2d+ 2.

We denote ∆G =
k∑

i=1

X2
i the sub-laplacian on G, and the associated

gradient ∇G = (X1, ..., Xk).

The previous abstract definition of Carnot groups is not always
very practical. It is however possible to prove (see [9]) that any N -
dimensional Carnot group of step 2 with m generators is isomorphic
to (RN , ◦) with the law given by (N = m+ n, x(1) ∈ Rm, x(2) ∈ Rn)

(x(1), x(2)) ◦ (y(1), y(2)) =
(

x
(1)
j + y

(1)
j , j = 1, ..., m

x
(2)
j + y

(2)
j + 1

2
〈x(1), U (j)y(1)〉, j = 1, ..., n

)
,

where U (j) are m×m linearly independent skew-symmetric matrices.

With this at hand, one can give the definition of a goup of Heisenberg-
type (H-type henceforth). These groups are two-step stratified nilpo-
tent Lie groups whose Lie algebra carries a suitably compatible inner
product, see [24]. One of these groups is the nilpotent Iwasawa sub-
group of semi-simple Lie groups of split rank one (see [25]). More pre-
cisely, an H-type group is a Carnot group of step 2 with the following
property: the Lie algebra G of G is endowed with an inner product 〈·, ·〉
such that if Z is the center of G, then

[Z⊥,Z⊥] = Z
and moreover for every z ∈ Z, the map Jz : Z⊥ → Z⊥ defined by

〈Jz(v), w〉 = 〈z, [v, w]〉
for every w ∈ Z⊥ is an orthogonal map whenever 〈z, z〉 = 1.
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If m = dim (Z⊥) and n = dim (Z), then any H-type group is canon-
ically isomorphic to Rm+n with the above group law, where the matri-
ces U (j) satisfy the additional property

U (r)U (s) + U (s)U (r) = 0

for every r, s ∈ {1, ..., n} with r 6= s. Whenever the center of the group
is one-dimensional, the group is canonically isomorphic to the Heisen-
berg group on Rm+1. We will always identify Z⊥ with Cℓ with 2ℓ = m
and Z to Rn thanks to the discussion above. Note that the homoge-
neous dimension of a H-type group so defined is Q = 2ℓ+ n.

On an H-type group G, the vector-fields in the algebra G are given
by

Xj =
∂

∂xj
+
1

2

n∑

k=1

2ℓ∑

l=1

zlU
(k)
l,j

∂

∂tk
and Yj =

∂

∂yj
+
1

2

n∑

k=1

2ℓ∑

l=1

zlU
(k)
l,j+ℓ

∂

∂tk

for j = 1, ..., ℓ, z = (x, y) ∈ R
2ℓ and t ∈ R

n. In the following we shall
denote by X any element of the family (X1, . . . , Xℓ, Y1, . . . , Yℓ).

The hypo-elliptic Kohn Laplacian on H-type groups writes

∆G =
m∑

j=1

∂2

∂x2j
+

1

4
|x|2

n∑

s=1

∂2

∂t2s
+

n∑

s=1

m∑

i,j=1

xiU
(s)
ij

∂2

∂ts∂xj
·

In the general case of Carnot groups, the Laplacian allows to define
the Sobolev space Hs(G), for s ∈ N, as the space of L2(G) functions
such that (Id − ∆G)f belongs to L2(G). The case s ∈ R follows by
interpolation and duality. We also define the Schwartz space S(G) as
the set of smooth functions f on G such that for any κ ∈ N,

‖f‖κ,S = sup
|α|≤κ,N≤κ

w∈G

∣∣X α
(
|w|2Nf(w)

)∣∣ <∞,

where we denote X γ any vector-field of the form

(1.2) X γ = Xj1 . . .Xj|γ| ,

where jm belongs to {1, . . . , 2ℓ} with the convention that Xj+ℓ = Yj.

1.4. Main results and structure of the paper. In [14], the authors
investigate the algebra properties of the Bessel space Lp

α(G) with

Lp
α(G) =

{
f ∈ Lp(G), (−∆G)

α
2 f ∈ Lp(G)

}
,

where G is any unimodular Lie group. We address the same type
of question here for the scale of Besov spaces, when the group has
polynomial growth. As pointed out below in the definition of Besov
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spaces (see Section 2), we need to distinguish the different cases of
homogeneous and non homogeneous spaces.
We prove the following theorems. The first one considers low regu-

larity inhomogeneous Besov spaces.

Theorem 1. Let G be a Lie group with polynomial volume growth. For
every 0 < s ≤ 1 and 1 ≤ p, q ≤ ∞, the space Bs

p,q(G) ∩ L∞(G) is an
algebra under pointwise multiplication.

The next theorem deals with the higher order case, and is restricted
to the case of nilpotent groups.

Theorem 2. Let G be a nilpotent Lie group. For every s > 1 and
1 < p, q <∞, the space Bs

p,q(G)∩L∞(G) is an algebra under pointwise
multiplication.

Remark 1.1. Notice in Theorem 2 the limitation on the range of p
and q. Such a restriction (on the index p) is also present in [14]. Note
that we shall also prove a generalization of Theorems 1 and 2 to the
case when L∞(G) is replaced by Lr(G) (see Proposition 3.3).

In the context of Carnot groups, one can define homogeneous Besov
spaces (see Section 2). We have the following corollary of Theorems 1
and 2 (recall that Carnot groups are nilpotent).

Corollary 1.2. Let G be a Carnot group.

(1) For every 0 < s ≤ 1 (resp. 0 < s < Q/p) and 1 ≤ p, q ≤ ∞, the
space Bs

p,q(G) ∩ L∞(G) (resp. Ḃs
p,q(G) ∩ L∞(G)) is an algebra

under pointwise multiplication.
(2) For every s > 1 and 1 < p, q <∞, the spaces Bs

p,q(G) ∩L∞(G)

and Ḃs
p,q(G)∩L∞(G) (for s < Q/p) are algebras under pointwise

multiplication.

Finally, in the context of H-type groups, thanks to paraproduct tech-
niques, one can enlarge the range of admissible p and q and prove the
following result.

Theorem 3. Let G be an H-type group. For every s > 0 and for
every 1 ≤ p, q ≤ ∞, the space Bs

p,q(G)∩L∞(G) (resp. Ḃs
p,q(G)∩L∞(G)

if 0 < s < Q/p) is an algebra under pointwise multiplication.

Besov spaces are defined in the coming section, and Theorems 1 and 2
as well as Corollary 1.2 are proved in Section 3. We present the proof
of Theorem 3 in Section 4, by paraproduct techniques, and we also
provide a few direct applications in the spirit of [5]. Actually Section 4
develops not only paraproduct techniques, but also gives definitions and
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the main properties of a pseudodifferential calculus on H-type groups,
following results of [4] for the special case of the Heisenberg group.

In the following we shall write A . B if there is a universal con-
stant C such that A ≤ CB. Similarly we shall write A ∼ B if A . B
and B . A.

Remark 1.3. It has to be noticed that a careful look at the construction
in [18] shows that one could provide the same arguments in the con-
text of Riemannian manifolds with doubling measure and Ricci tensor
bounded from below. This would allow to define Besov spaces in such
a context and prove an analogous algebra property.

2. Littlewood-Paley decomposition on groups of

polynomial growth, and Besov spaces

This section is devoted to a presentation of the Littlewood-Paley
decomposition on groups of polynomial growth, together with some
standard applications. A general approach to the Littlewood-Paley
decomposition on Lie groups with polynomial growth is investigated
in [18]. We also refer to [7] or [5] for the case of the Heisenberg group.
We recall here the construction of the homogeneous and inhomogeneous
decompositions. For details and proofs of the results presented in this
section we refer to [11], [18] and [22].

2.1. Littlewood-Paley decomposition. We first review the dyadic
decomposition constructed in [18]. Let χ ∈ C∞(R) be an even func-
tion such that 0 ≤ χ ≤ 1 and χ = 1 on [0, 1/4], χ = 0 on [1,∞[.
Define ψ(x) = χ(x/4) − χ(x), so that the support of ψ is included
in [1/4, 4]. The following holds:

∀τ ∈ R
∗,

∑

j∈Z

ψ(2−2jτ) = 1 and χ(τ)+
∑

j≥0

ψ(2−2jτ) = 1, ∀τ ∈ R.

Let us introduce the spectral decomposition of the hypo-elliptic Lapla-
cian

−∆G =

∫ ∞

0

λdEλ.

Then we have

χ(−∆G) =

∫ ∞

0

χ(λ)dEλ and ψ(−2−2j∆G) =

∫ ∞

0

ψ(2−2jλ)dEλ.

We then define for j ∈ N the operators

S0f = χ(−∆G)f and ∆jf = ψ(−2−2j∆G)f.
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The homogeneous Littlewood-Paley decomposition of f in S ′(G) is then
given by

f =
∑

j∈Z

∆jf,

while the inhomogeneous one is given by

f = S0f +
∞∑

j=0

∆jf.

Furioli et al (see [18]) proved the following theorem.

Theorem 4 ([18]). Let G be a Lie group with polynomial growth.

Then u belongs to Lp(G) if and only if S0u and
√∑∞

j=0 |∆ju|2 belong

to Lp(G). Moreover, we have

‖u‖Lp(G) ∼ ‖S0u‖Lp(G) +
∥∥∥
( ∞∑

j=0

|∆ju|2
) 1

2

∥∥∥
Lp(G)

.

In the following we shall denote by Ψj the kernel of the opera-
tor ψ(2−2j∆G). One can show that Ψj is mean free (see Corollary 5.1
of [10] for Carnot groups, and Theorem 7.1.2 of [11] for an extension
to groups of polynomial growth). In the context of Carnot groups, Ψj

satisfies the dilation property

Ψj(x) = 2QjΨ0(2
jx).

In the more general context of groups of polynomial growth, this does
not hold but one has nevertheless the following important estimates:

let α ∈ N be given, as well as I ∈
⋃

β∈N

{1, . . . , k}β and p ∈ [1,∞]. The

following result is due to [18]:

(2.1) ∀j ≥ 0, ‖(1 + | · |)αXIΨj‖Lp(G) . 2
j( d

p′
+|I|)

,

where 1/p+ 1/p′ = 1. We have denoted XI = Xi1 . . .Xiβ and |I| = β.
Moreover as proved in [11], Theorem 7.1.2,

(2.2) ∀j ∈ Z, ‖XiΨj‖L1(G) . 2j.

Finally putting together classical estimates on the heat kernel (see [14]
or [29] for instance) and the methods of [18] allows to write that for
any α ≥ 0,

(2.3) ∀j ∈ Z,
∥∥| · |αΨj

∥∥
L1(G)

. 2jα.
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2.2. Besov spaces. As a standard application of the Littlewood-Paley
decomposition, one can define Besov spaces on Lie groups with polyno-
mial volume growth in the following way : let s ∈ R and 1 ≤ p, q ≤ +∞,
then

Bs
p,q(G) =

{
f ∈ S ′(G), ‖S0f‖Lp(G) +

( ∞∑

j=0

(2js‖∆jf‖Lp(G))
q
)1/q

<∞
}

with the obvious adaptation if q = ∞. When p = q = 2 one recovers
the usual Sobolev spaces (see for instance [5] for a proof in the case of
the Heisenberg group). We define

‖f‖Bs
p,q(G) = ‖S0f‖Lp(G) +

( ∞∑

j=0

(2js‖∆jf‖Lp(G))
q
)1/q

.

Note that when s > 0 one sees easily that ‖S0f‖Lp(G) may be replaced
by ‖f‖Lp(G). One can also define the homogeneous counterpart

‖f‖Ḃs
p,q(G) =

(∑

j∈Z

(2js‖∆jf‖Lp(G))
q
)1/q

but proving that this does provide a norm is not an easy matter, and
is actually not true in general if s is too large. In the context of Carnot
group, the homogeneous space Ḃs

p,q(G) can be defined as the set of
functions in S ′(G) such that the above norm is finite, and this provides
a Banach space if s < Q/p (we refer for instance to [2] for a proof in
the euclidean case, or to [5] for the Heisenberg group).

Actually Besov spaces are often rather defined using the heat flow
(the advantage being that it does not require the Littlewood-Paley
machinery). In [18], the authors prove that if s ∈ R, then u ∈ Bs

p,q(G)

is equivalent to: for all t > 0, the function et∆Gu belongs to Lp(G) and
(∫ 1

0

t−sq/2‖(t(−∆G))
m/2et∆Gf‖qLp(G)

dt

t

)1/q
<∞

for m ≥ 0 greater than s. Moreover one can similarly prove (see The-
orem 4 of [6] in the case of the Heisenberg group) that

‖f‖Ḃs
p,q(G) ∼

(∫ ∞

0

t−sq/2‖(t(−∆G))
m/2et∆Gf‖qLp(G)

dt

t

)1/q
.

3. Proofs of Theorems 1, 2 and Corollary 1.2

3.1. Proof of Theorem 1 and Corollary 1.2(1). To prove the re-
sults, we use an idea already present in [14] and which consists in
representing the norm on Besov spaces by suitable functionals. More
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precisely, we introduce the following functionals (note that they differ
from those used in [14]):

Ssf(w) =
‖τ−wf − f‖Lp(G)

|w|s and Df(w) = ‖τ−wf + τwf − 2f‖Lp(G)

|w|
where τ−wf(w

′) = f(w′w). We prove the following theorem.

Theorem 5. Let G be a Lie group with polynomial growth. Then for
any s ∈]0, 1[ and p, q ∈ [1,+∞], we have

‖f‖Bs
p,q(G) ∼ ‖f‖Lp + ‖Ssf‖

Lq(G,
1|y|≤1dy

V (|y|)
)

and if s = 1

‖f‖B1
p,q(G) ∼ ‖f‖Lp + ‖Df‖

Lq(G,
1|y|≤1dy

V (|y|)
)
.

Remark 3.1. By the same arguments one can prove that

‖f‖Ḃs
p,q(G) ∼ ‖Ssf‖Lq(G, dy

V (|y|)
)

and

‖f‖Ḃ1
p,q(G) ∼ ‖Df‖Lq(G, dy

V (|y|)
).

Once Theorem 5 is proved, the algebra property follows immediately.
Indeed, let f, g belong to the space (Bs

p,q ∩L∞)(G) for s 6= 1. It is easy
to see that

(3.1) Ss(fg) ≤ ‖f‖L∞ Ssg + ‖g‖L∞ Ssf,

hence the result using the equivalence in Theorem 5. The case s = 1 is
similar. Theorem 5 and Remark 3.1 therefore provide Theorem 1 and
the first part of Corollary 1.2. �

Remark 3.2. Actually (3.1) can easily be extended to

‖Ss(fg)‖Lp ≤ ‖f‖La1‖Ssg‖Lb1 + ‖g‖La2‖Ssf‖Lb2

with 1/ai + 1/bi = 1/p.

We now prove Theorem 5. We need to prove that for s ∈]0, 1[
∑

j∈N

(2js‖∆jf‖Lp(G))
q ∼

∫

G

1|w|≤1

‖τ−wf − f‖qLp(G)

V (|w|)|w|sq dw

and for s = 1

∑

j∈N

(2j‖∆jf‖Lp(G))
q ∼

∫

G

1|w|≤1

‖τ−wf + τwf − 2f‖qLp(G)

V (|w|)|w|q dw,
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with the obvious modification if q = ∞. We shall only detail the proof
of the s 6= 1 case, and leave the other one to the reader. The proof is
very much inspired by the euclidean case (see for instance [2]), although
one is missing the usual dilation property, which will be replaced by
estimate (2.1). The classical proof also uses a Taylor expansion at order
one, which we must adapt to our context in order to use only horizontal
vector fields (which alone appear in (2.1)).
Let us start by bounding the quantity ‖τ−w∆jf −∆jf‖Lp(G). Recall-

ing that ∆j =
∑

|j′−j|≤1

∆j∆j′ , we have

τ−w∆jf −∆jf =
∑

|j′−j|≤1

∆j′f ⋆
(
τ−wΨj −Ψj

)
,

where Ψj is the kernel associated with ψ(2−2j∆G). It follows by Young’s
inequality that

‖τ−w∆jf −∆jf‖Lp(G) ≤
∑

|j′−j|≤1

‖∆j′f‖Lp‖τ−wΨj −Ψj‖L1.

Now let us estimate ‖τ−wΨj −Ψj‖L1. We have

τ−wΨj(x)−Ψj(x) =

∫ 1

0

d

ds
Ψj(xϕ(s)) ds

=

k∑

ℓ=1

∫ 1

0

cℓ(s)(Xℓ(xϕ(s))Ψj)(xϕ(s)) ds,

where ϕ is an admissible path linking e to w. It follows that

‖τ−wΨj −Ψj‖L1 ≤
∫

G

k∑

ℓ=1

∫ 1

0

|cℓ(s)|
∣∣(Xℓ(xϕ(s))Ψj)(xϕ(s))

∣∣ dsdx

≤
k∑

ℓ=1

∫ 1

0

|cℓ(s)| ds ‖XℓΨj‖L1

by the Fubini theorem and a change of variables. Using (2.2) we get

∀j ∈ N, ‖τ−wΨj −Ψj‖L1 . 2j
k∑

ℓ=1

∫ 1

0

|cℓ(s)| ds

so by definition of |w| and by the Cauchy-Schwarz inequality we find

∀j ∈ N, ‖τ−wΨj −Ψj‖L1 . 2j|w|.
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This implies that there is a sequence (cj) in the unit ball of ℓq such
that

(3.2) ∀j ∈ N, ‖τ−w∆jf −∆jf‖Lp(G) . cj |w|2j(1−s)‖f‖Bs
p,q(G).

On the other hand one has of course

(3.3) ‖τ−w∆jf −∆jf‖Lp(G) . cj2
−js‖f‖Bs

p,q(G).

Now let us define jw such that 1
|w|

≤ 2jw ≤ 2
|w|

(which is possible

since |w| ≤ 1). Then using (3.2) for low frequencies and (3.3) for high
frequencies allows to write

‖τ−wf − f‖Lp(G) . ‖f‖Bs
p,q(G)

(
∑

j≤jw

cj2
j(1−s)|w|+

∑

j>jw

cj2
−js

)
.

Let us first consider the case q = ∞. Then one finds directly that

‖τ−wf − f‖Lp(G) . |w|s‖f‖Bs
p,q(G)

which proves one side of the equivalence. The case q < ∞ is slightly
more technical but is very close to the euclidean case. We include it
here for sake of completeness (see [2]). We have that

∥∥∥
‖τ−wf − f‖Lp

|w|s
∥∥∥
q

Lq(G,
1|w|≤1
V (|w|)

)
. 2q‖f‖q

Ḃs
p,q

(I1 + I2)

where

I1 =

∫

G

1|w|≤1

(∑

j≤jw

cj2
j(1−s)

)q |w|q(1−s)dw

V (|w|)

and

I2 =

∫

G

1|w|≤1

(∑

j>jw

cj2
−js
)q |w|−qsdw

V (|w|) ·

Hölder’s inequality with the weight 2j(1−s) and the definition of jw imply
that (∑

j≤jw

cj2
j(1−s)

)q
. |w|−(1−s)(q−1)

∑

j≤jw

crj2
j(1−s).

By Fubini’s theorem, we deduce that

I1 .
∑

j∈N

∫

B(0,2−j+1)

|w|1−s dw

V (|w|)2
j(1−s)cqj . 1,

since ‖(cj)‖ℓq = 1. The estimate on I2 is very similar. Note that it is
crucial here that s ∈]0, 1[.
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The converse inequality is easy to prove and only depends on the
fact that the mean value of Ψj is zero. We write indeed

∆jf(w) =

∫
τvf(w)Ψj(v) dv

=

∫
(τvf(w)− f(w))Ψj(v) dv

so that

2js‖∆jf‖Lp ≤ sup
v∈G

‖τvf − f‖Lp

|v|s
∫

2js|v|s|Ψj(v)| dv.

So the case q = ∞ simply follows from (2.3), while the case q < ∞ is
similar though a little more technical, as above. We leave the details
to the reader. This proves Theorem 5. �

Using Remark 3.2, the same proof provides the following result,
which will be useful in the next section.

Proposition 3.3. Let G be a Lie group with polynomial volume growth.
For every 0 < s ≤ 1 and 1 ≤ p, q ≤ ∞ one has

‖fg‖Bs
p,q

≤ ‖f‖La1‖g‖Bs
b1,q

+ ‖g‖La2‖f‖Bs
b2,q
,

where 1/p = 1/ai + 1/bi.

3.2. Proof of Theorem 2 and Corollary 1.2(2). We now deal with
the case s ≥ 1. To do so, we need the following proposition, which is
new to our knowledge, even in the context of the Heisenberg group (see
Section 4.2 below).

Proposition 3.4. Let G be a nilpotent Lie group and let s > 0 and p ∈
]1,∞[ be given. Then f ∈ Bs+1

p,q (G) if and only if f ∈ Bs
p,q(G) and for

all i = 1, ..., k, we have Xif ∈ Bs
p,q(G).

Remark 3.5. As in the case of Remark 3.1, one has a similar result
for homogeneous quantities (when defined):

‖f‖Ḃs+1
p,q (G) <∞ ⇐⇒ ‖Xif‖Ḃs

p,q(G) <∞, ∀i = 1, ..., k.

Proof. On the one hand we need to prove that for all i = 1, . . . , k and
all j ∈ N,

‖∆jXkf‖Lp . 2j‖∆jf‖Lp.

Since [∆j ,∆G] = 0, Bernstein’s lemma (see Proposition 4.3 of [18])
implies that

(3.4) ‖∆j(−∆G)
1
2 f‖Lp . 2j‖∆jf‖Lp.
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By density of polynomials in the space of continuous functions it is
then actually enough to prove that for all integers m,

(3.5) ‖(−∆G)
m
2 (−∆G)

− 1
2Xkf‖Lp . ‖(−∆G)

m
2 f‖Lp.

Indeed if (3.5) holds, then one also has

‖(−22j∆G)
m
2 (−∆G)

− 1
2Xkf‖Lp . ‖(−22j∆G)

m
2 f‖Lp

so for smooth compactly supported function ϕ,

(3.6) ‖ϕ(−22j∆G)(−∆G)
− 1

2Xkf‖Lp . ‖ϕ(22j∆G)f‖Lp

hence

‖∆jXkf‖Lp = ‖(−∆G)
1
2ϕ(−22j∆G)(−∆G)

− 1
2Xkf‖Lp

. 2j‖∆jf‖Lp

due to (3.4) and (3.6). So let us prove (3.5). Actually according to [26]

the operator Lm = (−∆G)
m−1

2 Xk(−∆G)
−m

2 is bounded over Lp(G)
for 1 < p < ∞ (it is here that the assumption that G is nilpotent
is used, as if not that property is false, see for instance [1]). So writing

(−∆G)
m
2 (−∆G)

− 1
2Xkf = (−∆G)

m
2 (−∆G)

− 1
2Xk(−∆G)

−m
2 (−∆G)

m
2 f

= Lm(−∆G)
m
2 f,

the result follows.

On the other hand, using again the fact that polynomials are dense
in the space of continuous functions, we also need to check that

‖(−∆G)
m+1

2 f‖Lp . ‖(−∆G)
m
2 Xkf‖Lp.

To prove that we notice that we have just seen that

‖(−∆G)
m
2 Xkf‖Lp . ‖(−∆G)

m+1
2 f‖Lp,

so we need to prove the converse inequality: this is actually obtained
in a classical way by duality (see for instance [8], pages 36-37), so we
omit the proof. Proposition 3.4 is proved. �

Proposition 3.4 allows to obtain rather easily Theorem 2 (as well
as Corollary 1.2(2)), using also Proposition 3.3. We follow the lines
of [14], by writing, thanks to Proposition 3.4,

‖fg‖Bs+1
p,q

∼ ‖fg‖Bs
p,q

+

k∑

i=1

‖Xi(fg)‖Bs
p,q

and by arguing by induction.
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On the one hand by Proposition 3.3 and the induction assumption
we have

‖fg‖Bs
p,q

. ‖f‖La1‖g‖Bs
b1,q

+ ‖g‖La2‖f‖Bs
b2,q

so
‖fg‖Bs

p,q
. ‖f‖La1‖g‖Bs+1

b1,q
+ ‖g‖La2‖f‖Bs+1

b2,q
,

where
1

p
=

1

ai
+

1

bi
for i ∈ {1, 2}.

Then we write, by the Leibniz rule,

‖Xi(fg)‖Bs
p,q

≤ ‖fXig‖Bs
p,q

+ ‖gXif‖Bs
p,q

and we have, by the induction hypothesis again,

‖fXig‖Bs
p,q

. ‖f‖Bs
b3,q

‖Xig‖La3 + ‖f‖La1‖Xig‖Bs
b1,q
.

The parameters have been chosen as follows:

1

b3
=

s

(s+ 1)b2
+

1

(s+ 1)a1
and

1

a3
=

s

(s+ 1)a2
+

1

(s+ 1)b1
·

Notice that the requirement 1/p = 1/b3+1/a3 holds. Then we use the
classical interpolation estimate

‖f‖Bs
b3,q

≤ ‖f‖
s

s+1

Bs+1
b2,q

‖f‖
1

s+1

La1

as well as (using again the continuity of Riesz transforms)

‖Xig‖La3 ≤ ‖g‖
1

s+1

Bs+1
b1,q

‖g‖
s

s+1

La2 ,

which allows to conclude the proof of Theorem 2 and its corollary. �

4. Paradifferential and pseudodifferential calculus on

H-type groups, and applications

In this section, we describe several topics related to harmonic analysis
on H-type groups, which we recall are particular cases of Carnot groups
where it turns out that an explicit Fourier transform is available (see
Section 1.3 in the introduction for definitions).

4.1. Fourier transforms. In order to construct para-differential and
pseudo-differential calculus on H-type groups, one needs to introduce a
suitable Fourier transform. This is classically done through the infinite-
dimensional unitary irreducible representations on a suitable Hilbert
space since H-type groups are non commutative. Two representations
are available: the Bargmann representation (see [23] for instance) and
the Schrödinger representation (see [13] for instance).
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4.1.1. General definitions. Let us define generally what a Fourier trans-
form is on non commutative groups. Consider a Hilbert space Hλ(K

ℓ)
of functions defined on K. The irreducible unitary representations

πλ : G → Hλ(K
ℓ)

are parametrized by λ ∈ Rn\ {0} . We have then the following defini-
tion.

Definition 4.1. We define the Fourier transform on G by the follow-
ing formula: let f ∈ L1(G). Then the Fourier transform of f is the
operator on Hλ(K

ℓ) parametrized by λ ∈ Rn\ {0} defined by

F(f)(λ) =

∫

G

f(z, t)πλ(z, t) dz dt.

Note that one has F(f ⋆ g)(λ) = F(f)(λ) ◦ F(g)(λ).

Let Fα,λ, α ∈ Nℓ be a Hilbert basis of Hλ(K
ℓ). We recall that an

operator A(λ) of Hλ such that
∑

α∈Nℓ

|(A(λ)Fα,λ, Fα,λ)Hλ
| < +∞

is said to be of trace-class. One then sets

tr (A(λ)) =
∑

α∈Nℓ

(A(λ)Fα,λ, Fα,λ)Hλ
,

and the following inversion theorem holds.

Theorem 6. If a function f satisfies
∑

α∈Nd

∫

Rn

‖F(f)(λ)Fα,λ‖Hλ
|λ|ℓdλ <∞

then we have for almost every w,

f(w) =
2ℓ−1

πℓ+1

∫

Rn

tr
(
πλ(w

−1)F(f)(λ)
)
|λ|ℓdλ.

Following [30], the representation πλ on G determines a representa-
tion π∗

λ on its Lie algebra G on the space of C∞ vectors. The represen-
tation π∗

λ is defined by

π∗
λ(X)f =

( d
dt
πλ(exp(tX))f

)
|t=0

for every X in the Lie algebra G. We can extend π∗
λ to the universal

enveloping algebra of left-invariant differential operators on G. Let K
be a left-invariant operator on G, then we have

K(πλf, g) = (πλπ
∗
λ(K)f, g)
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where (·, ·) stands for the Hλ inner product.

4.1.2. Bargmann representations on H-type groups. Given λ ∈ Rn\ {0},
consider the Hilbert space (called the Fock space) Hλ(C

ℓ) of all entire
holomorphic functions F on Cℓ such that

‖F‖2Hλ
=
(2|λ|
π

)ℓ ∫

Cℓ

|F (ξ)|2e−|λ||ξ|2dξ <∞.

The corresponding irreducible unitary representation πλ of the groupG

is realized on Hλ(C
ℓ) by (recall that t ∈ Rn and z, ξ ∈ Cℓ) (see [15])

(πλ(z, t)F )(ξ) = F (ξ − z)ei〈λ,t〉−|λ|(|z|2+〈z,ξ〉).

It is a well-known fact that the Fock space admits an orthonormal
basis given by the monomials

Fα,λ(ξ) =
(
√

2|λ| ξ)√
α !

α

, α ∈ N
ℓ.

A very important property for us is the following diagonalization
result.

Proposition 4.2. Let FB be the group Fourier transform associated to
the Bargmann representation π.The following diagonalization property
holds: for every f ∈ S(G),

FB(∆Gf)(λ)Fα,λ = −4|λ|(2|α|+ ℓ)FB(f)(λ)Fα,λ.

This allows to define the following formula, for every ρ ∈ R:

FB((−∆G)
ρf)(λ)Fα,λ = (4|λ|(2|α|+ ℓ))ρFB(f)(λ)Fα,λ.

4.1.3. The L2 representation on H-type groups. Another useful repre-
sentation is the so-called Schrödinger, or L2 representation. In this
case, the unitary irreducible representations are given on L2(Rℓ) by,
for λ ∈ Rn (and writing z = (x, y))

(π̃λ(z, t)F )(ξ) = ei〈λ,t〉+|λ|i(
∑ℓ

j=1 xjξj+
1
2
xjyj)F (ξ + y).

The intertwining operator between the Bargmann and the L2 rep-
resentations is the Hermite-Weber transform Kλ : Hλ → L2(Rℓ) given
by

(4.1) (Kλφ)(ξ) = Cℓ|λ|ℓ/4e|λ|
|ξ|2

2 φ

(
− 1

2|λ|
∂

∂ξ

)
e−|λ| |ξ|2,

which is unitary and satisfies Kλπλ(z, t) = π̃λ(z, t)Kλ. Following [30]
and the previous description, we have

π̃∗
λ(Xj) = i|λ|ξj and π̃∗

λ(Yj) =
∂

∂ξj
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for j = 1, ..., ℓ, and similarly for k = 1, ..., n

(4.2) π̃∗
λ(∂tk) = iλk.

Therefore, we have

(4.3) π̃∗
λ(−∆G) = −

n∑

j=1

∂2

∂ξ2j
+ |λ|2|ξ|2.

Notice that this is a Hermite operator and the eigenfunctions of π∗
λ(−∆G)

are
Φλ

α(ξ) = |λ|n/4Φα(
√
|λ|ξ), α = (α1, ..., αℓ)

where Φα(ξ) is the product ψα1(ξ1)...ψαℓ
(ξℓ) and ψαj

(ξj) is the eigen-

function of− ∂2

∂ξ2j
+ξ2j with eigenvalue 2αj+1. This leads to the following

formula, where |α| = α1 + ... + αℓ :

π̃∗
λ(−∆G)Φ

λ
α = (2|α|+ ℓ)|λ|Φλ

α.

As a consequence, one has the following lemma.

Lemma 4.3. Let FS be the group Fourier transform associated to
the Schrödinger representation π̃.The following diagonalization prop-
erty holds: for every f ∈ S(G)

FS((−∆G)f)Φ
λ
α = (2|α|+ ℓ)|λ|FS(f)Φ

λ
α.

Proof. We have by definition

FS((−∆G)f)Φ
λ
α =

∫

G

(−∆G)f(z, t)π̃λ(z, t)Φ
λ
α

=

∫

G

f(z, t)(−∆G)π̃λ(z, t)Φ
λ
α.

Using the definition of the dual representation, we have

FS((−∆G)f)Φ
λ
α =

∫

G

f(z, t)πλ(z, t)π
∗
λ(−∆G)Φ

λ
α

and using the properties of the Hermite operator, this yields to the
desired result. �

4.2. A localization lemma. As in [5], one can prove a localization
lemma (also called Bernstein Lemma), which we choose to state here
in the context of the Bargmann representation. The proof is omitted
as it is identical to the Heisenberg situation treated in [5]. Note that
with the result given in Proposition 3.4, the equivalence provided in
the last statement of the lemma could be extended to iterated vector
fields XI . We do not write the estimate here as it is not needed in the
sequel.
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Lemma 4.4. Let p and q be two elements of [1,∞], with p ≤ q, and
let u ∈ S(G) satisfy for all α ∈ Nℓ,

(4.4) FB(u)(λ)Fα,λ = 1λ∈(2|α|+ℓ)−122jB0
FB(u)(λ)Fα,λ.

The we have, with the notation (1.2)

∀k ∈ N, sup
β=k

‖X βu‖Lq(G) ≤ Ck2
Nj( 1

p
− 1

q
)+kj‖u‖Lp(G).

On the other hand, if

(4.5) FB(u)(λ)Fα,λ = 1λ∈(2|α|+ℓ)−122jC0 ,

then for all ρ ∈ R,

C−1
ρ 2−jρ‖(−∆G)

ρ
2u‖Lp(G) ≤ ‖u‖Lp(G) ≤ Cρ2

−jρ‖(−∆G)
ρ
2u‖Lp(G).

Remark 4.5. The same result holds under less restrictive assumptions
than u ∈ S(G), but in that case (4.4) should be replaced by the assump-
tion that u ∗ f = 0 for every radial function f ∈ S(G) satisfying for
all α ∈ Nℓ,

FB(f)(λ)Fα,λ = 0 for λ ∈ (2|α|+ ℓ)−122jB0.

Similarly (4.5) should be replaced by the assumption that u ∗ g = 0 for
every radial function g ∈ S(G) satisfying for every α ∈ Nℓ,

FB(g)(λ)Fα,λ = 0 for λ ∈ (2|α|+ ℓ)−122jC0.
We refer to [5] for more details.

4.3. Paraproduct on H-type groups. In order to develop a para-
product on H-type groups, one has to prove that the product of two
functions is localized in frequencies whenever the functions are local-
ized. This is the object of the next lemma, which is an extension of
Proposition 4.2 of [5].

Lemma 4.6. There is a constantM1 ∈ N such that the following holds.
Consider f and g two functions of S(G) such that

FB(f)(λ)Fα,λ = 1λ∈(2|α|+ℓ)22mC(λ)FB(f)(λ)Fα,λ and

FB(g)(λ)Fα,λ = 1λ∈(2|α|+ℓ)22m′C(λ)FB(g)(λ)Fα,λ

for some integers m and m′. If m′−m > M1, then there exists a ring C̃
such that

FB(fg)(λ)Fα,λ = 1λ∈(2|α|+ℓ)22m′ C̃(λ)FB(fg)(λ)Fα,λ.

On the other hand, if |m′ − m| ≤ M1, then there exists a ball B̃ such
that

FB(fg)(λ)Fα,λ = 1λ∈(2|α|+ℓ)22m′ B̃(λ)FB(fg)(λ)Fα,λ.
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Remark 4.7. As pointed out in Remark 4.5, it is actually not necessary
to assume as much smoothness on f and g, but the result is slightly
more complicated to state in that case.

We are now in position to introduce the following definition.

Definition 4.8. We shall call paraproduct of v by u and shall denote
by Tuv the following bilinear operator:

Tuv =
∑

j

Sj−1u∆jv.

We shall call remainder of u and v and shall denote by R(u, v) the
following bilinear operator:

R(u, v) =
∑

|j−j′|≤1

∆ju∆j′v.

Remark 4.9. Just by looking at the definition, it is clear that formally

uv = Tuv + Tvu+R(u, v).

According to Lemma 4.6, Sj−1u∆jv is frequency localized, in the
sense of (4.5), in a ring of size 2j . But, for terms of the kind ∆ju∆j′v
with |j− j′| ≤ 1, we have an accumulation of frequencies at the origin.
Such terms are frequency localized, in the sense of (4.4), in a ball of
size 2j .

One of the immediate consequences of Lemma 4.6 is the following
result on the product of functions in Besov spaces.

Corollary 4.10. Let ρ > 0 and (p, r) ∈ [1,+∞]2 be three real numbers.
If f and g belong to L∞ ∩Bρ

p,r(G), then

‖fg‖Bρ
p,r(G) ≤ C(‖f‖L∞‖g‖Bρ

p,r(G) + ‖g‖L∞‖f‖Bρ
p,r(G)).

If ρ1+ρ2 > 0 and if p1 is such that ρ1 < Q/p1, then for all (p2, r2) ∈
[1,+∞]2 and for all f and g in Bρ1

p1,∞
∩Bρ2

p2,r2
(G),

‖fg‖Bρ
p2,r2

(G) ≤ C(‖f‖Bρ1
p1,∞

‖g‖Bρ2
p2,r2

+ ‖g‖Bρ1
p1,∞

‖f‖Bρ2
p2,r2

),

where ρ = ρ1 + ρ2 −Q/p1.

Moreover, if ρ1 + ρ2 ≥ 0, ρ1 < Q/p1 and
1

r1
+

1

r2
= 1, then for f

and g in Bρ1
p1,r1

∩ Bρ2
p2,r2

(G), one has

‖fg‖Bρ
p,∞(G) ≤ C(‖f‖Bρ1

p1,r1
‖g‖Bρ2

p2,r2
+ ‖g‖Bρ1

p1,r1
‖f‖Bρ2

p2,r2
).

Finally if ρ1 + ρ2 > 0, ρj < Q/pj and p ≥ max(p1, p2), then for
all (r1, r2),

‖fg‖Bρ12
p,r (G) ≤ C‖f‖Bρ1

p1,r1
‖g‖Bρ2

p2,r2
,
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with ρ12 = ρ1+ρ2−Q(
1

p1
+

1

p2
− 1

p
) and r = max(r1, r2), and if ρ1+ρ2 ≥

0, with ρj < Q/pj and with
1

r1
+

1

r2
= 1, then for all p ≥ max(p1, p2),

‖fg‖Bρ12
p,∞(G) ≤ C‖f‖Bρ1

p1,r1
‖g‖Bρ2

p2,r2
.

Note that the same results hold in the case of homogeneous Besov
spaces, up to obvious modifications.

4.4. Applications: Refined Hardy and Sobolev estimates. One
interest of frequency localization is that it allows to prove rather simply
Sobolev and Hardy inequalities, and actually even refined versions of
those inequalities. This approach is presented here.

Theorem 7. Let s be any real number in ]0, Q/2[. Then the following

inequality holds, with
1

r
=

1

2
− s

Q

‖f‖Lr(G) ≤ C‖f‖
2s
Q

Ḃ
s−

Q
2

∞,∞ (G)

‖f‖1−
2s
Q

Ḣs(G)
.

Moreover, let p and q be two real numbers in [1,∞] such that 2 ≤
q <

2Q

Q− 2s
< p ≤ ∞. Then the following inequality holds, with α =

pq

p− q

(1
q
− 1

2
+
s

Q

)

(∫

G

|u(w)|2
|w|2s dw

)1
2

≤ C‖u‖α
Ḃ

s−Q( 1
2− 1

p)
p,2 (G)

‖u‖1−α

Ḃ
s−Q( 1

2− 1
q )

q,2 (G)

.

The first result (which should be understood as a refined Sobolev
inequality) was first proved in the euclidian case by P. Gérard, Y.
Meyer and F. Oru in [19] following the proof of Sobolev embeddings
of J.-Y. Chemin and C.-J. Xu in [12], and in [5] in the Heisenberg
case. The second result is a refined Hardy inequality, proved in [3]. We
refer to [10] for recent extensions. Let us explain why they should be
considered ”refined”: this is due to the following proposition, whose
proof is identical to [3], up to obvious modifications.

Proposition 4.11. Let θ be a function in S(G), p in [1,∞], σ in ]−
Q(1 − 1/p),+∞[ and ε0 a positive real number. A constant C exists
such that the oscillatory function fε(y) = θ(y)eiy1/ε satisfies

(4.6) ∀ε ≤ ε0 , ‖fε‖Ḃσ
p,1(G) ≤ Cε−σ.
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Then one can construct a family (fε)ε>0 of smooth functions on G

such that, for any s in ]0, Q/2[ and any β < 2s/Q,

lim
ε→0

‖fε‖
L

2Q
Q−2s

‖fε‖β
Ḃ

s−
Q
2

∞,∞

‖fε‖1−β

Ḣs

= +∞ and

lim
ε→0

1

‖fε‖β
Ḃ

s−
Q
2

∞,∞

‖fε‖1−β

Ḣs

∫
f 2
ε

|w|2sdw = +∞.

Now let us turn to the proof of Theorem 7. The first estimate actually
only relies on the localization lemma (Lemma 4.4), and the proof fol-
lows exactly the lines of [5]. As to the proof of the Hardy inequality,
it relies on the paraproduct algorithm recalled in the previous section.
The idea indeed consists simply in noticing that

∫

G

|u(w)|2
|w|2s dw = 〈ρ−2s, u2〉

so it is enough to prove that ρ−2s and u2 belongs to a pair of spaces in
duality. One proves easily that | · |−2s belongs to the space ḂQ−2s

1,∞ and
using product laws of Corollary 4.10 we conclude directly that

(∫

G

|u(w)|2
|w|2s dw

)1
2

≤ C‖u‖Ḣs(G).

The precised Hardy inequality is then obtained by studying more pre-
cisely each term of the paraproduct algorithm, and is derived exactly
as in the case of the Heisenberg group or the euclidian case (see [3]).

4.5. Pseudodifferential calculus.

4.5.1. Introduction. Once paradifferential operators have been constru-
cted, with similar properties to the euclidian case, it is natural to ad-
dress the question of the construction of pseudodifferential operators.
It is out of the scope of this article to review the history of pseudo-
differential operators in the euclidian setting (we refer the interested
reader for instance to [21] or [28]), but let us simply point out that the
study of such operators allowed spectacular progress in the study of
linear and nonlinear PDEs in the last forty years. In this section we
shall see how such a theory may be developed in the context of H-type
groups. Actually this project was undertaken in [4] in the case of the
Heisenberg group, and it is quite easy to adapt that work to our more
general setting. We shall therefore not go through all the details of the
construction and the proofs of the main properties, which turned out
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in [4] to be quite technical, but rather explain the general principles
and refer to [4] for details.

4.5.2. Definitions. In order to motivate the next definition, let us recall
that according to (4.3), the sublaplacian is naturally associated with
the Harmonic oscillator. It is therefore natural to construct symbols
on a H-type group G by using the Weyl-Hörmander calculus associ-
ated with the Harmonic oscillator. However this is not sufficient, since
as noted in (4.2), functions of λ alone should also be considered as
symbols. This motivates the following definition of symbols on a H-
type group, and the next one giving pseudodifferential operators. As
pointed out in [4] it is possible to consider low regularity symbols (in
the G variable): that regularity is measured by a positive index ρ which
is arbitrary and is fixed from now on.

Definition 1. A smooth function a defined on G×Rn×R2ℓ is a symbol
if there is a real number µ such that for all N ∈ N, the following semi
norm is finite:

‖a‖N ;SG(µ) = sup
λ6=0

Θ∈R2ℓ

sup
|β|+|k|≤N

|λ|−
|β|
2

(
1 + |λ|(1 + Θ2)

) |β|−µ

2

× ‖(λ∂λ)k∂βΘa(·, λ,Θ)‖Cρ(G).

Besides, one additionally requires that the function

(w, λ, ξ, η) 7→ σ(a)(w, λ, ξ, η) = a

(
w, λ, sgn(λ)

ξ√
|λ|
,

η√
|λ|

)

is smooth close to λ = 0 for any (w, ξ, η) ∈ G × R2ℓ. In that case we
shall write a ∈ SG(µ).

Before giving the definition of a pseudodifferential operator associ-
ated with such a symbol, let us introduce the scaling operator

∀f ∈ L2(Rd), Tλf(ξ) = |λ|−d/4f(|λ|−1/2ξ),

as well as the operator Jλ = TλKλ, where Kλ is the intertwining oper-
ator defined in (4.1).

Definition 2. To a symbol a of order µ in the sense of Definition 1, we
associate the pseudodifferential operator on G defined in the following
way: for any f ∈ S(G) and any w ∈ G,

Op(a)f(w) =
2ℓ−1

πℓ+1

∫

Rn

tr
(
πλ(w

−1)FB(f)(λ)Aλ(w)
)
|λ|ℓ dλ,
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where
Aλ(w) = J∗

λop
w(a(w, λ, ξ, η))Jλ.

4.5.3. Examples. It is easy to see, using the formulas of the Section 4.1,
that the following result hold for 1 ≤ j ≤ ℓ:

Xj = Op(2i sgn(λ)
√
|λ|ηj), Yj = −Op(2i

√
|λ|ξj),

∂tk = Op(iλk), and−∆G = 4Op
(
|λ|(η2 + ξ2)

)
.

4.5.4. Some results. The proofs of the following results are easy adap-
tations of the proofs of [4]. Due to their rather high technicality we
choose here not to go through the proofs in this more general context.

Theorem 8. If a is a symbol in SG(µ) with ρ = +∞, then Op(a) maps
continuously S(G) into itself.
Moreover, consider Op(a) and Op(b) two pseudodifferential operators

of order µ and ν respectively.

• If ρ > 2(2ℓ+ n) + |µ|, then the operator Op(a)∗ is a pseudodif-
ferential operator of order µ.

• If ρ > 2(2ℓ+ n) + |µ|+ |ν|, then the operator Op(a) ◦Op(b) is
a pseudodifferential operator of order less or equal to µ+ ν.

Note that precise formulas for the symbols of Op(a)∗ and Op(a) ◦
Op(b) may be derived, as in [4].
Now let us consider the action of pseudodifferential operators on

Sobolev spaces.

Theorem 9. Let µ be a real number, and ρ > 2(2ℓ+n) be a noninteger
real number. Consider a symbol a in SG(µ) in the sense of Definition 1.
Then the operator Op(a) is bounded from Hs(G) into Hs−µ(G), for any
real number s such that |s− µ| < ρ. More precisely there exists n ∈ N

such that
‖Op(a)‖L(Hs(G),Hs−µ(G)) ≤ Cn‖a‖N ;SG(µ).

If ρ > 0, then the result holds for 0 < s− µ < ρ.
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