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Abstract

This note presents a new method of direct forcing to deal with obstacles in incompressible flows. It mixes projection

schemes and velocity L
2 penalty schemes. The penalized direct forcing term is distributed in the velocity prediction

and the correction equations. It leads to a natural treatment in the correction equation of the boundary conditions

in pressure around obstacles. A numerical experiment provided an illustration of the method. To cite this article:
M. Belliard, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Méthode de Forçage Direct Pénalisé et Schémas de Projection pour Navier-Stokes. Cette note

présente une nouvelle méthode de forçage directe pour prendre en compte des obstacles dans un écoulement

incompressible. Elle mélange méthodes de projection et de pénalisation L
2 des vitesses. La ventilation du terme

de forçage direct pénalisé dans les équations de prédiction et de correction conduit à un traitement naturel des

conditions aux limites pour la correction de pression aux bords des obstacles. Une expérience numérique est

présentée à titre d’illustration. Pour citer cet article : M. Belliard, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. Introduction

The well-known incompressible Navier-Stokes equations allow the description of the behavior of incom-
pressible flows (div u = 0 with u the fluid velocity). Mass and momentum balance equations in the fluid
domain Ωf read as (with Dirichlet boundary conditions -BC -, u = uD on ∂Ωf ):
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



∂tu + u ⊗∇u + ρ−1∇p − div (ν∇u) = f in Ωf

div u = 0 in Ωf

(1)

with p the pressure, ρ the (constant) density, ν the cinematic viscosity and f the volume force.
The projection method (or fractional step method) for an incompressible fluid was introduced by Chorin
and Temam in 1968 [2,10]. The incremental projection scheme of Shen [9] reads as follow. 1 First, a non
divergence free velocity ũ is predicted using the previous time step pressure. For example, a linearized
implicit Euler time discretization 2 , with un,∗ given by an Adam-Bashforth scheme, leads to:

ũ − un

∆t
+ un,∗ ⊗∇ũ + ρ−1∇pn − div (ν∇ũ) = fn+1 in Ωf and ũ = uD on ∂Ωf . (2)

Second, with the hypothesis div (ν∇ũ) ∼ div (ν∇un+1) and un,∗ ⊗ ∇ũ ∼ un,∗ ⊗ ∇un+1, a correction
stage is performed to recover the divergence free velocity un+1:






un+1 − ũ

∆t
= −ρ−1

∇φn+1 in Ωf and un+1 = uD on ∂Ωf

div un+1 = 0 in Ωf

(3)

with φn+1 = pn+1 − pn the pressure correction. Considering the divergence free condition, we are able to
compute φn+1 and so on the divergence free velocity un+1 and the new pressure pn+1 by:

div ∇φn+1 =
ρ

∆t
div ũ in Ωf and ∇φn+1 · n = 0 on ∂Ωf . (4)

2. Direct Forcing

In the context of the Fictitious Domain methods, the Immersed Boundary Method was introduced by
Peskin at the beginning of 1970 [8]. Considering obstacles in a flow, the fluid domain Ωf is extended to
Ω including the obstacle domain Ωs: Ω = Ωf ∪ Ωs. A body force is added to the momentum equation to
take into account the obstacle. In 1997 Mohd-Yusof introduces the Direct Forcing method [7]:

un+1 − un

∆t
= Tn,n+1 + Fn,n+1 in Ω (5)

with here Tn,n+1 = fn+1 − un,∗ ⊗∇un+1 − ρ−1∇pn+1 + div (ν ∇un+1). The forcing term is defined as:

Fn,n+1 = χs[
(vn+1

s − un)

∆t
− Tn,n+1] (6)

with vs the imposed fluid velocity around/inside the obstacle and χs : R3 → R the discrete characteristic
function or the volume ratio function of the obstacle, see [3].
Remark 1 The imposed velocity vs needs to be interpolated from the fluid velocity field ũ and the boundary
condition to improve the accuracy (vs = ε̄ũ, see Fadlun et al. [3]).
Remark 2 The direct forcing should be taken into account into the projection equation (4) through the
interpolation matrix ε̄ (div ε̄∇φ = ρ

∆t
divũ) to get a free divergence velocity respecting the boundary

conditions (consistent scheme, see Ikeno et al. [5]).

1 Projection schemes for dilatable or barotropic fluid can be found in [4,6].
2 Using the Crank-Nicholson time scheme should be worth, but it isn’t the goal of this Note.
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3. Penalized Direct Forcing

In this new method, the following forcing term is added to the right hand side of Navier-Stokes equa-
tions:

Fn+1 =
χs

η∆t
(vn+1

s − un+1) with 0 < η ≪ 1. (7)

It can be viewed as an implicit forcing term c χs

∆t
(vs − u) as well as a velocity L2 penalty term cχs

η
(vs −

u) [1]. As for the Direct Forcing, interpolations can be used to determine the imposed velocity vs. In the
following, un+1 is the solution of penalized Navier-Stokes. Lets define un+1

η := lim
η→0

un+1. Then, we have

un+1
η ∼ vn+1

s . Following Angot et al. [1], un+1
η converges toward the N.-S. body fitted solution in L2(Ωs)

norm with order ≤ 3/4 in η. The new feature of our algorithm is that the forcing term (7) is distributed
in the prediction and the correction stages of the projection leading to a natural consistent scheme:





ũ − un

∆t
+ un,∗ ⊗∇ũ + ρ−1∇pn − div ν∇ũ = fn+1 +

χs

η∆t
(vn+1

s − ũ) in Ω

un+1 − ũ

∆t
= −ρ−1∇φn+1 +

χs

η∆t
(ũ − un+1) in Ω

(8)

The first equation of (8) leads to the penalized predicted velocity: ũη := lim
η→0

ũ ∼ vn+1
s in Ωs. Hence

the Dirichlet boundary conditions of (2) are locally enforced on ∂Ωf ∩ ∂Ωs. The second equation of (8)
suggests:

un+1 − ũ

∆t
= −ρ̌−1∇φn+1 in Ω with suitable BC on ∂Ω. (9)

This equation is similar to the first one of (3) with ρ̌ := ρ(1 + χs

η
) justifying the introduction of the term

∆t in (7). For χs = 0, we have ρ̌ = ρ and lim
η→0

ρ̌(η) ≈ O(η−1) for χs > 0. Using div un+1 = 0 in Ωf and

div un+1 = div vs in Ωs, instead of the second equation of (3), we get a slightly modification of the first
equation of (4):

div
η

η + χs

∇φn+1 =
ρ

∆t
(div ũ − χsdiv vn+1

s ) in Ω with suitable BC on ∂Ω. (10)

Lets remark that, in case of solid rotations and/or translations, div vs = 0 in Ωs. For χs = 1, we have an
effective diffusion coefficient η

1+η
≈ O(η) ≪ 1. Then, the homogeneous Neumann boundary conditions

of (4) are locally enforced on ∂Ωf ∩ ∂Ωs in a natural way. Finally, the correction equation (9) allows the
computation of un+1. We have un+1

η ∼ ũη ∼ vn+1
s in Ωs

Remark 3 In Ωs, all the diffusion coefficients may vanish leading to numerical problems solving (10).
Then, adding a pressure L2 penalty term can be a cure, leading to a different formulation of the pressure
correction equation (where φ0 is a prescribed pressure correction):

div O(η)∇φn+1 +
1

η
(φn+1 − φ0) =

ρ

∆t
(div ũ − div vn+1

s ) in Ωs. (11)

4. Numerical experiments

Fig. 1, left, shows a 2D Poiseuille flow in a square channel rotated of 45̊ with regard to the Cartesian
mesh. Immersed Boundaries define the solid walls (black lines). Imposed near-wall velocities are linearly
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Figure 1. Poiseuille Flow: Direct Forcing and Penalized Direct Forcing. Left: Velocity and pressure fields (linearly interpolated
Penalized Direct Forcing). Right: Velocity profiles (no interpolation or linear interpolation, no consistent or consistent
scheme).

interpolated from the nearest free fluid velocities and the boundary conditions vn+1
s = ε̄un. Computations

are done using the CEA CFD code Trio U [11]. The value of the penalty coefficient η is 10−12. Velocity
profiles, obtained by the linearly interpolated Penalized Direct Forcing method, compare very well to
the theoretical ones, see Fig. 1, right. Without consistent schemes the theoretical velocities are missed
whatever the interpolation is. Moreover, the numerical order of the method remains about 2 in L2 norm
when using a second order discretization for the spatial operators.
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