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This note presents a new method of direct forcing to deal with obstacles in incompressible flows. It mixes projection schemes and velocity L 2 penalty schemes. The penalized direct forcing term is distributed in the velocity prediction and the correction equations. It leads to a natural treatment in the correction equation of the boundary conditions in pressure around obstacles. A numerical experiment provided an illustration of the method.

Introduction

The well-known incompressible Navier-Stokes equations allow the description of the behavior of incompressible flows (div u = 0 with u the fluid velocity). Mass and momentum balance equations in the fluid domain Ω f read as (with Dirichlet boundary conditions -BC -, u = u D on ∂Ω f ):
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   ∂ t u + u ⊗ ∇u + ρ -1 ∇p -div (ν∇u) = f in Ω f div u = 0 in Ω f (1) 
with p the pressure, ρ the (constant) density, ν the cinematic viscosity and f the volume force. The projection method (or fractional step method) for an incompressible fluid was introduced by Chorin and Temam in 1968 [START_REF] Chorin | Numerical Solution of the Navier-Stokes Equations[END_REF][START_REF] Temam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires[END_REF]. The incremental projection scheme of Shen [START_REF] Shen | On Error Estimates of some Higher Order Projection and Penalty-Projection Methods for Navier-Stokes Equations[END_REF] reads as follow. 1 First, a non divergence free velocity u is predicted using the previous time step pressure. For example, a linearized implicit Euler time discretization2 , with u n, * given by an Adam-Bashforth scheme, leads to:

u -u n ∆t + u n, * ⊗ ∇ u + ρ -1 ∇p n -div (ν∇ u) = f n+1 in Ω f and u = u D on ∂Ω f . (2) 
Second, with the hypothesis div (ν∇ u) ∼ div (ν∇u n+1 ) and u n, * ⊗ ∇ u ∼ u n, * ⊗ ∇u n+1 , a correction stage is performed to recover the divergence free velocity u n+1 :

   u n+1 -u ∆t = -ρ -1 ∇φ n+1 in Ω f and u n+1 = u D on ∂Ω f div u n+1 = 0 in Ω f (3) 
with φ n+1 = p n+1 -p n the pressure correction. Considering the divergence free condition, we are able to compute φ n+1 and so on the divergence free velocity u n+1 and the new pressure p n+1 by:

div ∇φ n+1 = ρ ∆t div u in Ω f and ∇φ n+1 • n = 0 on ∂Ω f . (4) 

Direct Forcing

In the context of the Fictitious Domain methods, the Immersed Boundary Method was introduced by Peskin at the beginning of 1970 [START_REF] Peskin | Numerical Analysis of blood flow in heart[END_REF]. Considering obstacles in a flow, the fluid domain Ω f is extended to Ω including the obstacle domain Ω s : Ω = Ω f ∪ Ω s . A body force is added to the momentum equation to take into account the obstacle. In 1997 Mohd-Yusof introduces the Direct Forcing method [START_REF] Mohd-Yusof | Combined Immersed Boundaries/B-Splines Methods for Simulations of Flows in Complex Geometries[END_REF]:

u n+1 -u n ∆t = T n,n+1 + F n,n+1 in Ω (5) 
with here T n,n+1 = f n+1u n, * ⊗ ∇u n+1 -ρ -1 ∇p n+1 + div (ν ∇u n+1 ). The forcing term is defined as:

F n,n+1 = χ s [ (v n+1 s -u n ) ∆t -T n,n+1 ] (6) 
with v s the imposed fluid velocity around/inside the obstacle and χ s : R 3 → R the discrete characteristic function or the volume ratio function of the obstacle, see [START_REF] Fadlun | Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations[END_REF]. Remark 1 The imposed velocity v s needs to be interpolated from the fluid velocity field u and the boundary condition to improve the accuracy (v s = ε u, see Fadlun et al. [START_REF] Fadlun | Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations[END_REF]). Remark 2 The direct forcing should be taken into account into the projection equation ( 4) through the interpolation matrix ε (div ε∇φ = ρ ∆t div u) to get a free divergence velocity respecting the boundary conditions (consistent scheme, see Ikeno et al. [START_REF] Ikeno | Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations[END_REF]).

Penalized Direct Forcing

In this new method, the following forcing term is added to the right hand side of Navier-Stokes equations:

F n+1 = χ s η∆t (v n+1 s -u n+1 ) with 0 < η ≪ 1. (7) 
It can be viewed as an implicit forcing term c χs ∆t (v su) as well as a velocity L 2 penalty term c χs η (v su) [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF]. As for the Direct Forcing, interpolations can be used to determine the imposed velocity v s . In the following, u n+1 is the solution of penalized Navier-Stokes. Lets define u n+1 η := lim η→0 u n+1 . Then, we have

u n+1 η ∼ v n+1 s
. Following Angot et al. [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF], u n+1 η converges toward the N.-S. body fitted solution in L 2 (Ω s ) norm with order ≤ 3/4 in η. The new feature of our algorithm is that the forcing term ( 7) is distributed in the prediction and the correction stages of the projection leading to a natural consistent scheme:

       u -u n ∆t + u n, * ⊗ ∇ u + ρ -1 ∇p n -div ν∇ u = f n+1 + χ s η∆t (v n+1 s -u) in Ω u n+1 -u ∆t = -ρ -1 ∇φ n+1 + χ s η∆t ( u -u n+1 ) in Ω (8) 
The first equation of ( 8) leads to the penalized predicted velocity:

u η := lim η→0 u ∼ v n+1 s in Ω s . Hence
the Dirichlet boundary conditions of ( 2) are locally enforced on ∂Ω f ∩ ∂Ω s . The second equation of ( 8) suggests:

u n+1 -u ∆t = -ρ-1 ∇φ n+1 in Ω with suitable BC on ∂Ω. ( 9 
)
This equation is similar to the first one of (3) with ρ := ρ(1 + χs η ) justifying the introduction of the term ∆t in [START_REF] Mohd-Yusof | Combined Immersed Boundaries/B-Splines Methods for Simulations of Flows in Complex Geometries[END_REF]. For χ s = 0, we have ρ = ρ and lim η→0 ρ(η) ≈ O(η -1 ) for χ s > 0. Using div u n+1 = 0 in Ω f and div u n+1 = div v s in Ω s , instead of the second equation of (3), we get a slightly modification of the first equation of (4):

div η η + χ s ∇φ n+1 = ρ ∆t (div u -χ s div v n+1 s
) in Ω with suitable BC on ∂Ω.

Lets remark that, in case of solid rotations and/or translations, div v s = 0 in Ω s . For χ s = 1, we have an effective diffusion coefficient η 1+η ≈ O(η) ≪ 1. Then, the homogeneous Neumann boundary conditions of (4) are locally enforced on ∂Ω f ∩ ∂Ω s in a natural way. Finally, the correction equation ( 9) allows the computation of u n+1 . We have

u n+1 η ∼ u η ∼ v n+1 s in Ω s Remark 3
In Ω s , all the diffusion coefficients may vanish leading to numerical problems solving [START_REF] Temam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires[END_REF]. Then, adding a pressure L 2 penalty term can be a cure, leading to a different formulation of the pressure correction equation (where φ 0 is a prescribed pressure correction): . The value of the penalty coefficient η is 10 -12 . Velocity profiles, obtained by the linearly interpolated Penalized Direct Forcing method, compare very well to the theoretical ones, see Fig. 1, right. Without consistent schemes the theoretical velocities are missed whatever the interpolation is. Moreover, the numerical order of the method remains about 2 in L 2 norm when using a second order discretization for the spatial operators.

div O(η)∇φ n+1 + 1 η (φ n+1 -φ 0 ) = ρ ∆t (div u -div v n+1 s ) in Ω s . (11) 

Numerical experiments

Fig. 1 ,Figure 1 .

 11 Fig. 1, left, shows a 2D Poiseuille flow in a square channel rotated of 45˚with regard to the Cartesian mesh. Immersed Boundaries define the solid walls (black lines). Imposed near-wall velocities are linearly

Projection schemes for dilatable or barotropic fluid can be found in[START_REF] Th | An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF].

Using the Crank-Nicholson time scheme should be worth, but it isn't the goal of this Note.