
HAL Id: hal-00522623
https://hal.science/hal-00522623v1

Submitted on 1 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ParadisEO-MOEO: A Software Framework for
Evolutionary Multi-Objective Optimization

Arnaud Liefooghe, Laetitia Jourdan, Thomas Legrand, Jérémie Humeau,
El-Ghazali Talbi

To cite this version:
Arnaud Liefooghe, Laetitia Jourdan, Thomas Legrand, Jérémie Humeau, El-Ghazali Talbi.
ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization. Ad-
vances in Multi-Objective Nature Inspired Computing, Springer Berlin / Heidelberg, pp.87-117, 2010,
�10.1007/978-3-642-11218-8_5�. �hal-00522623�

https://hal.science/hal-00522623v1
https://hal.archives-ouvertes.fr


5

ParadisEO-MOEO: A Software Framework for
Evolutionary Multi-Objective Optimization

Arnaud Liefooghe1,2, Laetitia Jourdan1,2, Thomas Legrand2, Jérémie Humeau2,
and El-Ghazali Talbi1,2

1 Laboratoire d’Informatique Fondamentale de Lille (LIFL), UMR CNRS 8022,
Université Lille 1, Bâtiment M3, 59655 Villeneuve d’Ascq cedex, France

2 INRIA Lille-Nord Europe, Parc Scientifique de la Haute Borne,
40 avenue Halley, 59650 Villeneuve d’Ascq, France
Arnaud.Liefooghe@lifl.fr, Laetitia.Jourdan@lifl.fr,
Thomas.Legrand@inria.fr, Jeremie.Humeau@inria.fr,
talbi@lifl.fr

Summary. This chapter presents ParadisEO-MOEO, a white-box object-oriented software
framework dedicated to the flexible design of metaheuristics for multi-objective optimization.
This paradigm-free software proposes a unified view for major evolutionary multi-objective
metaheuristics. It embeds some features and techniques for multi-objective resolution and
aims to provide a set of classes allowing to ease and speed up the development of computa-
tionally efficient programs. It is based on a clear conceptual distinction between the solution
methods and the problems they are intended to solve. This separation confers a maximum
design and code reuse. This general-purpose framework provides a broad range of fitness
assignment strategies, the most common diversity preservation mechanisms, some elitist-
related features as well as statistical tools. Furthermore, a number of state-of-the-art search
methods, including NSGA-II, SPEA2 and IBEA, have been implemented in a user-friendly
way, based on the fine-grained ParadisEO-MOEO components.

5.1 Introduction

A large number of existing real-world optimization problems are characterized by
multiple conflicting objective functions. Evolutionary algorithms are commonly
used to solve these multi-objective problems since they are particularly well-suited
to find a spread set of good-quality solutions. Over the past few years, major contri-
butions have been made in the field of evolutionary multi-objective optimization. In
this work, we propose a new software framework for evolutionary multi-objective
optimization called ParadisEO-MOEO. Its modular implementation follows a gen-
eral purpose model based on a fine-grained decomposition. This model is founded
on a unified view of evolutionary algorithms for multi-objective optimization where
the fundamental issues of fitness assignment, diversity preservation and elitism are

C.A. Coello Coello et al. (Eds.): Adv. in Multi-Obj. Nature Inspired Computing, SCI 272, pp. 87–117.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



88 A. Liefooghe et al.

involved. ParadisEO1 is a free open-source C++ white-box object-oriented frame-
work dedicated to the reusable design of metaheuristics. It attempts to simplify
and accelerate the development process of efficient solver programs while having
a minimal programming effort. It is based on a clear conceptual separation between
the problem-specific and the invariant part of the solution method. This separation
is expressed at the implementation level, which confers a maximum design and
code reuse. ParadisEO is composed of four connected modules: ParadisEO-EO for
population-based metaheuristics, ParadisEO-MO for single solution-based meta-
heuristics, ParadisEO-MOEO for multi-objective metaheuristics and ParadisEO-
PEO for parallel and distributed models for metaheuristics and their hybridization.
Each module has been validated and successfully applied to solve a wide range
of academic and real-world optimization problems of both continuous and com-
binatorial nature. Historically, ParadisEO was especially dedicated to parallel and
distributed metaheuristics and was the result of the PhD work of Sébastien Cahon,
supervised by Nouredine Melab and El-Ghazali Talbi [10]. The initial version al-
ready contained a few number of features related to evolutionary multi-objective
optimization, mainly with regard to elitism. This work has been partially extended
and presented in [33]. But since then, the ParadisEO-MOEO module has been com-
pletely redesigned in order to confer an even more fine-grained decomposition, and
major additional features have been integrated into the framework.

In this chapter, we provide a general presentation of ParadisEO, and a detailed
description of the ParadisEO-MOEO module. First, a unified view of evolution-
ary multi-objective optimization techniques is presented in Sect. 5.2. Then, soft-
ware frameworks are discussed in Sect. 5.3. Sect. 5.4 is devoted to the design and
the implementation of evolutionary multi-objective metaheuristics with ParadisEO-
MOEO. A case study on a bi-objective scheduling problem is given in Sect. 5.5.
Finally, the last section concludes the chapter.

5.2 Evolutionary Multi-Objective Optimization, a Unified View

This section presents some basic concepts about Evolutionary Multi-objective Op-
timization (EMO). Next, a couple of related design issues are briefly discussed and
a unified model for EMO algorithms is proposed.

5.2.1 Evolutionary Multi-Objective Optimization

A Multi-objective Optimization Problem (MOP) can be defined by a set f of n ≥ 2
objective functions f1, f2, . . . , fn, a set X of feasible solutions in the decision space,
and a set Z of feasible points in the objective space. Without loss of generality, we
here assume that Z ⊆ Rn and that all n objective functions are to be minimized. To
each decision vector x ∈ X is assigned an objective vector z ∈ Z on the basis of the
vector function f : X → Z with z = f (x) = f1(x), f2(x), . . . , fn(x).

1 http://paradiseo.gforge.inria.fr

http://paradiseo.gforge.inria.fr


5 ParadisEO-MOEO 89

Definition 1 (Pareto dominance). An objective vector z ∈ Z is said to dominate
another objective vector z′ ∈ Z if ∀i ∈ {1,2, . . . ,n}, zi ≤ z′i and ∃ j ∈ {1,2, . . . ,n}
such as z j < z′j .

Definition 2 (Non-dominated point). An objective vector z ∈ Z is said to be non-
dominated if there does not exist any other objective vector z′ ∈ Z such that z′

dominates z.

By extension, we say that a decision vector x ∈ X dominates a decision vector x′ ∈ X
if f (x) dominates f (x′), and that a decision vector x ∈ X is non-dominated (or effi-
cient, Pareto optimal) if f (x) is non-dominated. Note that other dominance relations
exist in the frame of multi-objective optimization and will be discussed later in the
chapter. A possible MOP resolution method is to find the minimal set of efficient
solutions, i.e. one feasible solution per non-dominated point. However, generating
the entire efficient set is usually infeasible, due to the complexity of the underly-
ing problem or the large number of optima. Therefore, in many approaches, the
overall goal is to identify a good approximation of it. Evolutionary algorithms are
commonly used to this end, as they are particularly well-suited to find multiple effi-
cient solutions in a single simulation run. The reader is referred to [11, 13] for more
details about EMO.

5.2.2 Design Issues

As pointed out by various authors (see e.g. [11, 49]), approximating the efficient set
is itself a bi-objective problem. Indeed, the approximation to be found must have
both good convergence and distribution properties, as its mapping in the objective
space has to be (i) close to, and (ii) well-spread over the (unknown) Pareto optimal
front. As a consequence, the main differences between the design of a single- and a
multi-objective metaheuristic in general, and EA in particular, deal with these two
goals. As noticed by Zitzler et al. [49], in the EMO literature, initial approaches
were mainly focused on moving toward the Pareto front [19, 39]. Afterward, di-
versity preservation mechanisms quickly emerged [18, 26, 41]. Then, at the end of
the twentieth century, the concept of elitism, related to the preservation of non-
dominated solutions, became very popular and is now employed in most recent
EMO methods [50, 51]. The importance of the issues of fitness assignment, diver-
sity preservation and elitism are commonly approved and are also presented under
different names in, for instance, [11, 49]. They are discussed in details below.

Fitness Assignment

In the single-objective case, the fitness value assigned to a given solution is most
often its unidimensional objective value. While dealing with MOPs, fitness assign-
ment aims to guide the search toward Pareto optimal solutions for a better conver-
gence. We propose to classify existing fitness assignment schemes into four different
classes:



90 A. Liefooghe et al.

• Scalar approaches, where the MOP is reduced to a single-objective optimization
problem. A popular example consists in combining the n objective functions
into a single one by means of a weighted-sum aggregation. Other examples are
ε-constraint or achievement function-based methods, see [36].

• Criterion-based approaches, where each objective function is treated separately.
For instance, in VEGA (Vector Evaluated GA) [39], a parallel selection is per-
formed where solutions are discerned according to their values on a single ob-
jective function, independently to the others. In lexicographic methods [19], a
hierarchical order is defined between objective functions.

• Dominance-based approaches, where a dominance relation is used to classify
solutions. Existing strategies are dominance-rank [18], dominance-count [51]
and dominance-depth [21] techniques. And different schemes can also be com-
bined, as for instance in [51]. In the frame of dominance-based approaches, the
most commonly used dominance relation is the Pareto-dominance relation given
in Definition 1. But some recent techniques are based on other dominance oper-
ators such as ε-dominance in [15] or g-dominance in [37].

• Indicator-based approaches, where the fitness values are computed by compar-
ing individuals on the basis of a quality indicator I. The chosen indicator rep-
resents the overall goal of the search process. Generally speaking, no particular
diversity preservation mechanism usually necessary, with regards to the indi-
cator being used. Examples of indicator-based EAs are IBEA (Indicator-Based
EA) [48] and SMS-EMOA (S-Metric Selection EMO Algorithm) [6].

Diversity Preservation

As noticed earlier, aiming at approximating the efficient set is not only a question of
convergence. The final approximation also has to be well spread over the objective
space. However, classical fitness assignment schemes often tend to produce prema-
ture convergence by privileging non-dominated solutions, which does not guarantee
a uniformly sampled output set. In order to prevent that issue, a diversity preserva-
tion mechanism, based on a given distance measure, is usually integrated into the
metaheuristic to uniformly distribute the population over the trade-off surface. In
the frame of EMO, a common distance measure is based on the euclidean distance
between objective vectors. But, this measure can also be defined in the decision
space or can even combine both spaces. Popular examples of diversity preservation
techniques are fitness sharing [22] and crowding [25], respectively used in e.g. Fon-
seca and Fleming’s MOGA (Multi-Objective GA) [18] and Deb et al.’s NSGA-II
(Non-dominated Sorting GA II) [14].

Elitism

Another essential issue about MOP solving is the notion of elitism. It mainly con-
sists in maintaining an external set, the so-called archive, that allows to store either
all or a subset of non-dominated solutions found during the search process. This
secondary population mainly aims at preventing the loss of these solutions during



5 ParadisEO-MOEO 91

the stochastic optimization process. The update of the archive contents with new po-
tential non-dominated solutions is mostly based on the Pareto-dominance criteria.
But, in the literature, other dominance criteria are found and can be used instead of
the Pareto-dominance relation. Examples are weak-dominance, strict-dominance,
ε-dominance [24], etc. When dealing with archiving, one may distinguished four
different techniques depending on the problem properties and on the designed al-
gorithm: (i) no archive, (ii) an unbounded archive, (iii) a bounded archive or (iv) a
fixed-size archive. First, if the approximation set is maintained by, or contained into
the population itself, there can be no archive at all. On the other hand, if an archive
is maintained, it usually comprises the current non-dominated set approximation, as
dominated solutions are removed. Then, an unbounded archive can be used in order
to save the whole set of non-dominated solutions found since the beginning of the
search process. However, as some continuous optimization problems may contain
an infinite number of non-dominated solutions, it is simply not possible to save them
all. Therefore, additional operations must be used to reduce the number of stored so-
lutions. Then, a common strategy is to bound the size of the archive according to
some fitness and/or diversity assignment scheme(s). Finally, another archiving tech-
nique consists of a fixed size storage capacity, where a bounding mechanism is used
when there are too many non-dominated solutions, and some dominated solutions
are integrated into the archive if the non-dominated set is too small. This is done,
for instance, in the frame of SPEA2 [50]. Usually, an archive is used as an external
storage only. However, archive members can also be integrated during the selection
phase of an EMO algorithm [51].

5.2.3 A Unified Model

An Evolutionary Algorithm (EA) [21] is a search method where a population of
solutions is iteratively improved by means of some stochastic operators. EAs be-
long to the class of population-based metaheuristics. Starting from an initial pop-
ulation, each individual is evaluated in the objective space and a selection scheme
is performed to build a so-called parent population. An offspring population is then
created by applying variation operators. Next, a replacement strategy determines
which individuals will survive in the next EA generation. The search process is iter-
ated until a given stopping criterion is satisfied. As noticed earlier in the chapter, in
the frame of EMO, the main expansions deal with the issues of fitness assignment,
diversity preservation and elitism. Fitness and diversity informations are necessary
to discriminate individuals at to the selection and the replacement steps of the EA.
Moreover, the update of the archive contents possibly appears at each EA iteration.
As a consequence, whatever the MOP to be solved, the common concepts for the
design of an EMO algorithm are the following ones.

1. Design a representation.
2. Design a population initialization strategy.
3. Design a way of evaluating a solution.



92 A. Liefooghe et al.

4. Design suitable variation operators.
5. Decide a fitness assignment strategy.
6. Decide a diversity preservation strategy.
7. Decide a selection strategy.
8. Decide a replacement strategy.
9. Decide an archive management strategy.

10. Decide a continuation strategy.

When dealing with any kind of metaheuristics, one may distinguish problem-
specific and generic components. Indeed, the first four common concepts presented
above strongly depend of the MOP at hand, while the six last ones can be considered
as problem-independent, even if some problem-dependent strategies can also be en-
visaged in some particular cases. Note that concepts of representation and evaluation
are shared by any metaheuristic, concepts of population initialization and stopping
criterion are shared by any population-based metaheuristic, concepts of variation
operators, selection and replacement are shared by any EA, whereas concepts of
fitness, diversity and archiving are specific to EMO.

5.3 Software Frameworks for Evolutionary Multi-Objective
Optimization

In this section, the motivations in using a software framework for metaheuristics
are outlined. Next, ParadisEO, a platform dedicated to the reusable design of meta-
heuristics, and ParadisEO-MOEO, its module devoted to EMO are presented. The
main characteristics of ParadisEO are then detailed, and a comparative study of ex-
isting software frameworks for EMO is given.

5.3.1 Motivations

In practice, there exists a large diversity of optimization problems to be solved,
giving rise to a wide number of possible models to be handled, in the context of
a metaheuristic solution method. Moreover, a growing number of general-purpose
search methods are proposed in the literature, with evolving complex mechanisms.
¿From a practitioner’s point of view, there is a popular demand to provide a set
of ready-to-use metaheuristic implementations, allowing a minimum programming
effort. On the other hand, an expert generally wants to be able to design new algo-
rithms, to integrate new components into an existing method, or even to combine
different search mechanisms. As a consequence, an approved approach for the de-
velopment of metaheuristics is the use of frameworks. A framework may be defined
by a set of components based on a strong conceptual separation of the invariant part
and the problem-specific part of metaheuristics. Then, each time a new optimization
problem is tackled, both code and design can directly be reused in order to redo as
little code as possible.



5 ParadisEO-MOEO 93

5.3.2 ParadisEO and ParadisEO-MOEO

ParadisEO2 is a white-box object-oriented software framework dedicated to the
flexible design of metaheuristics for optimization problems of both discrete and
combinatorial nature. Based on EO (Evolving Objects)3 [30], this template-based,
ANSI-C++ compliant computation library is portable across both Unix-like and
Windows systems. Moreover, it tends to be used both by non-specialists and op-
timization experts. ParadisEO is composed of four connected modules that consti-
tute a global framework. Each module is based on a clear conceptual separation
of the solution methods from the problems they are intended to solve. This sep-
aration confers a maximum code and design reuse to the user. The first module,
ParadisEO-EO [30], provides a broad range of components for the development
of population-based metaheuristics, including evolutionary algorithms and particle
swarm optimization techniques. Second, ParadisEO-MO [8] contains a set of tools
for single-solution based metaheuristics, i.e. hill climbing, simulated annealing, tabu
search, iterated local search and variable neighborhood search. Next, ParadisEO-
MOEO is specifically dedicated to the reusable design of metaheuristics for multi-
objective optimization. Finally, ParadisEO-PEO [10] provides a powerful set of
classes for the design of parallel and distributed metaheuristics: parallel evaluation
of solutions, parallel evaluation function, island model and cellular model. In the
frame of this chapter, we will exclusively focus on the module devoted to multi-
objective optimization, namely ParadisEO-MOEO.

ParadisEO-MOEO provides a flexible and modular framework for the design of
metaheuristics for multi-objective optimization. Its implementation is based on the
unified model proposed in the previous section and is conceptually divided into
fine-grained components. On each level of its architecture, a set of abstract classes
is proposed and a wide range of sub-classes, corresponding to different state-of-the-
art strategies, are also provided. Moreover, as the framework aims to be extensible,
flexible and easily adaptable, all its components are generic in order to provide a
modular architecture allowing to quickly and conveniently develop any new scheme
with a minimum of code writing. The underlying goal here is to follow new strate-
gies coming from the literature and, if necessary, to provide any additional com-
ponents required for their implementation. Moreover, ParadisEO-MOEO constantly
evolves and new features might be added to the framework regularly in order to
provide a wide range of efficient and modern concepts and to reflect the most recent
advances of the EMO field.

5.3.3 Main Characteristics

A framework is usually intended to be exploited by a large number of users. Its ex-
ploitation could only be successful if a range of user criteria are satisfied. Therefore,
the main goals of the ParadisEO software framework are the following ones:

2 http://paradiseo.gforge.inria.fr
3 http://eodev.sourceforge.net

http://paradiseo.gforge.inria.fr
http://eodev.sourceforge.net


94 A. Liefooghe et al.

• Maximum design and code reuse. The framework must provide a whole architec-
ture design for the metaheuristic approach to be used. Moreover, the program-
mer should need to redo as little code as possible. This aim requires a clear and
maximal conceptual separation of the solution methods and the problem to be
solved. The user might only write the minimal problem-specific code and the de-
velopment process might be done in an incremental way, what will considerably
simplify the implementation and reduce the development time and cost.

• Flexibility and adaptability. It must be possible to easily add new features or
to modify existing ones without involving other components. Users must have
access to source code and use inheritance or specialization concepts of object-
oriented programming to derive new components from base or abstract classes.
Furthermore, as existing problems evolve and new others arise, the framework
components must be conveniently specialized and adapted.

• Utility. The framework must cover a broad range of metaheuristics, fine-grained
components, problems, parallel and distributed models, hybridization mecha-
nisms, etc.

• Transparent and easy access to performance and robustness. As the optimiza-
tion applications are often time-consuming, the performance issue is crucial.
Parallelism and distribution are two important ways to achieve high performance
execution. Moreover, the execution of the algorithms must be robust in order to
guarantee the reliability and the quality of the results. Hybridization mechanisms
generally allow to obtain robust and better solutions.

• Portability. In order to satisfy a large number of users, the framework must sup-
port many physical architectures (sequential, parallel, distributed) and their as-
sociated operating systems (Windows, Linux, MacOS).

• Usability and efficiency. The framework must be easy to use and must not con-
tain any additional cost in terms of time or space complexity in order to keep the
efficiency of a special-purpose implementation. On the contrary, the framework
is intented to be less error-prone than a specifically developed metaheuristic.

The ParadisEO platform honors all the above-mentioned criteria and aims to be
used by both non-specialists and optimization experts. Furthermore, the ParadisEO-
MOEO module must cover additional goals related to multi-objective optimization.
Thus, in terms of design, it might, for instance, be a commonplace to extend a single-
objective optimization problem to the multi-objective case without modifying the
whole metaheuristic implementation.

5.3.4 Existing Software Frameworks for Evolutionary Multi-Objective
Optimization

Many frameworks dedicated to the design of metaheuristics have been proposed
so far. However, very few are able to handle MOPs, even if some of them provide
components for a few particular EMO strategies, such as ECJ [1], JavaEVA [42]
or Open BEAGLE [20]. Table 5.1 gives a non-exhaustive comparison between a
number of existing software frameworks for multi-objective metaheuristics, includ-
ing jMetal [17], the MOEA toolbox for Matlab [45], MOMHLib++ [2], PISA [7]



5 ParadisEO-MOEO 95

Table 5.1. Main characteristics of some existing frameworks for multi-objective metaheuris-
tics

Framework Problems Statistical tools Hybrid. Parallel Type Lang. License
Cont. Comb. Off-line On-line

jMetal yes yes yes no yes no white java free
MOEA for Matlab yes no no no no yes black matlab free / com.

MOMHLib++ yes yes no no yes no white c++ free
PISA yes yes yes no no no black any free
Shark yes no no no yes no white c++ free

ParadisEO yes yes yes yes yes yes white c++ free

and Shark [3]. Note that other software exists for multi-objective optimization [38],
but some of them cannot be considered as frameworks and others do not deal with
metaheuristics. The frameworks presented in Table 5.1 are distinguished according
to the following criteria: the kind of MOPs they are able to tackle (continuous and/or
combinatorial problems), the availability of statistical tools (including performance
metrics), the availability of hybridization or parallel features, the framework type
(black box or white box), the programming language and the license type (free or
commercial).

First, let us mention that every listed software framework is free of use, except
for the MOEA toolbox, which requires the commercial software Matlab. They can
all handle continuous problems, but only a subset of them are able to deal with
combinatorial MOPs. Moreover, some cannot be considered as white-box frame-
works since their architecture is not decomposed into components. For instance, to
design a new algorithm under PISA, it is necessary to implement it from scratch,
as no existing element can be reused. Similarly, even if Shark can be considered
as a white-box framework, its components are not as fine-grained as the ones of
ParadisEO. On the contrary, ParadisEO is an open platform where anyone can con-
tribute and add his/her own features. Finally, only a few ones are able to deal with
hybrid and parallel metaheuristics at the same time. Hence, in opposition to jMetal
and MOMHLib++, ParadisEO offers easy-to-use model for the design of parallel
and distributed features. Therefore, in comparison to other existing software frame-
works dedicated to multi-objective metaheuristics design, ParadisEO is the only one
that achieves all the aforementioned goals.

5.4 Design and Implementation of Evolutionary
Multi-Objective Metaheuristics with ParadisEO-MOEO

This section gives a detailed description of the base classes provided within the Par-
adisEO framework to design an EMO algorithm.4 The flexibility of the framework
and its modular architecture, based on the three main multi-objective metaheuris-
tic design issues (fitness assignment, diversity preservation and elitism), allows to
implement efficient algorithms in solving a large diversity of MOPs. The granular

4 The classes presented in this paper are described as in version 1.2 of ParadisEO.



96 A. Liefooghe et al.

decomposition of ParadisEO-MOEO is based on the unified model proposed in the
previous section.

As an EMO algorithm differs of a single-objective one only in a number of points,
some ParadisEO-EO components are directly reusable. Therefore, in the following,
note that the names of ParadisEO-EO classes are all prefixed by eo whereas the
names of ParadisEO-MOEO classes are prefixed by moeo. ParadisEO is an object-
oriented platform, so that its components will be specified by the UML standard [4].
But, due to space limitations, only a subset of the UML diagrams is provided, but
the whole inheritance diagram as well as the classes documentation and many ex-
amples of use are available at the ParadisEO website. Moreover, a large part of the
ParadisEO components are based on the notion of template and are defined as class
templates. This concept and many related functions are featured within the C++ pro-
gramming language and allows the classes to handle generic types, so that they can
work with many different data types without having to be rewritten for each one.

In this section, both problem-dependent and problem-independent components
are detailed. First, basic elements (representation, evaluation, initialization and stop-
ping criteria) are outlined. Then comes the EMO-specific (fitness, diversity and
elitism) and EA-related (variation, selection, replacement) components. Finally, the
way to build a whole EMO algorithm is presented and a brief discussion concludes
the section.

5.4.1 Basic Components

In this section, basic components are presented: solution representation, evaluation,
initialization and stopping criteria.

Representation

Solution representation is the starting point for anyone who plans to design any
kind of metaheuristic. Successful applications of metaheuristics strongly requires a
proper solution representation. Various encodings may be used such as binary vari-
ables, real-coded vectors, permutations, discrete vectors, and more complex repre-
sentations. Note that the choice of a representation will considerably influence the
way solutions will be initialized and evaluated in the objective space, and the way
variation operators will be applied. A solution needs to be represented both in the
decision space and in the objective space. While the representation in the objective
space can be seen as problem-independent, the representation in the decision space
must be relevant to the tackled problem. In the single-objective case, a single value
is usually used for the representation in the unidimensional objective space. For
MOPs, where the objective space is multi-dimensional, a tuple of n values, called
objective vector, might be used for such a representation. Using ParadisEO-MOEO,
the first thing to do is to set the number of objectives for the problem under con-
sideration and, for each one, if it has to be minimized or maximized. This can be
done by using the moeoObjectiveVectorTraits static class. Then, a class
templatized with the later one and inheriting of moeoObjectiveVector has to



5 ParadisEO-MOEO 97

be created for the representation of an objective vector, as illustrated in Fig. 5.1.
Since a big majority of MOPs deal with real-coded objective values, a class mod-
elling real-coded objective vectors is already provided within ParadisEO-MOEO.
Note that this class can be used for any MOP without loss of generality.

Fig. 5.1. UML diagram for the representation of a solution in the objective space

The class used to represent a whole solution within ParadisEO-MOEO is then
templatized within a given objective vector type, and must define its represen-
tation in the decision space, which fully depends of the tackled problem. In the
implementation-level, the way to do so is to extend the MOEO class in order to be
used for a specific problem. This modeling is applicable for every kind of problem
with the aim of being as general as possible. Nevertheless, ParadisEO-MOEO also
provides easy-to-use classes for standard vector-based representations and, in par-
ticular, implementations for vectors composed of bits, of integers or of real-coded
values, that can thus directly be used in a ParadisEO-MOEO-designed application.
These classes are summarized in Fig. 5.2.

Fig. 5.2. UML diagram for the representation of a solution

Evaluation

The problem at hand is to optimize a set of objective functions simultaneously over
a given search space. Then, each time a new solution integrates the population,



98 A. Liefooghe et al.

its objective vector must be evaluated, i.e. the value corresponding to each objec-
tive function must be set. ParadisEO-MOEO stores an objective vector within any
MOEO object, and the way it is computed is ensured by components inheriting of
the eoEvalFunc abstract class which is illustrated in Fig. 5.3. It basically takes a
MOEO object and sets its objective vector. Moreover, note that a C++ function can be
embedded into an eoEvalFuncPtr object in order to apply it to the individual and
to set its objective values. Similarly, the eoExternalEvalFunc class provides a
component able to embed an external evaluation function which is then considered
as a black-box function by the problem solver. Finally, the eoEvalFuncCounter
class allows to count the number of evaluations performed until the end of the al-
gorithm. The resulting counter can either serve as a stopping criteria or provide a
statistical resource to the user.

Fig. 5.3. UML diagram for evaluation

Generally speaking, for real-world optimization problems, the evaluation of a
solution in the objective space is by far the most computationally expensive step of
the chosen metaheuristic approach. A possible way to overcome this trouble is the
use of parallel and distributed models, that can largely be simplified in the context of
ParadisEO thanks to the ParadisEO-PEO module of the software library. The reader
is referred to [10] for more information on how to design parallel and distributed
metaheuristics within ParadisEO-PEO.

Initialization

Whatever the algorithmic solution to be designed, a way to initialize a solution (or
a population of solutions) is expected. While dealing with any population-based
metaheuristic, one has to keep in mind that the initial population must be diversi-
fied in order to prevent a premature convergence. This remark is even more true for
MOPs where the goal is to find a well-converged and a well-spread approximation.
The way to initialize a solution is closely related to the problem under considera-
tion and to the representation at hand. In most approaches, the initial population is
generated randomly or according to a given diversity function. A number of initial-
ization schemes already exist in a lot of libraries for standard representations, which
is also the case within ParadisEO. But some situations could require a combination
of many operators or a specific implementation. Indeed, as shown in Fig. 5.4, the
framework provides a range of initializers all inheriting of eoInit, as well as an
easy way to combine them thanks to an eoCombinedInit object.



5 ParadisEO-MOEO 99

Fig. 5.4. UML diagram for initialization

Stopping Criteria, Checkpointing and Statistical Tools

Since an iterative method computes successive approximations, a practical test
is required to determine when the process must stop. As illustrated in Fig. 5.5,
in the frame of ParadisEO, many stopping criteria extending eoContinue are
provided. For instance, the algorithm can stop after a given number of iterations
(eoGenContinue), a given number of evaluations (eoEvalContinue), a given
run time (eoTimeContinue) or in an interactive way, as soon as the user decides
to (eoCtrlCContinue). Moreover, note that different stopping criteria can be
combined thanks to an eoCombinedContinue object, in which case the process
stops once one of the embedded criteria is satisfied.

Fig. 5.5. UML diagram for stopping criteria

In addition, many other procedures may be called at each iteration of the main
algorithm. The eoCheckPoint class allows to perform some systematic actions
at each algorithm iteration in a transparent way by being embedded in the global



100 A. Liefooghe et al.

eoContinue object. The checkpointing engine is particularly helpful for fault tol-
erance mechanisms and to compute statistics. Indeed, some useful statistical tools
are also provided within ParadisEO-MOEO. Then, it is for instance possible to save
the contents of the current approximation set at each iteration, so that the evolu-
tion of the current non-dominated front can be observed or studied using graphi-
cal tools such as Guimoo (Graphical User Interface for Multi-Objective Optimiza-
tion)5. Furthermore, as pointed out in Sect. 5.2, an important issue in the EMO field
relates to the algorithm performance analysis and to set quality metrics [52]. As
shown in Fig. 5.6, a couple of metrics are featured within ParadisEO-MOEO. Unary
metrics are used to quantify the quality of a non-dominated set (or of a single so-
lution), while binary metrics are used for pairwise comparisons (between two non-
dominated sets or solutions). Thus, the hypervolume metric is available both in its
unary [51] and its binary [52] form. Moreover, the entropy metric [5], the contribu-
tion metric [35] as well as the additive and the multiplicative ε-indicators [52] are all
implemented and can thus be used to compare two sets of solutions. Besides, some
implementations for pairwise comparison of solutions (that are then usable within
the binary indicator-based fitness assignment schemes, see Sect. 5.4.2) are also pro-
posed. Of course, other metrics can easily be implemented by inheritance. Another
interesting feature is the possibility to compare the current archive with the archive
of the previous iteration by using a given binary metric, and to print the progression
of this measure iteration after iteration.

Fig. 5.6. UML diagram for metrics

5.4.2 EMO-Related Components

Here, we give a detailed description of EMO-specific components: fitness, diversity
and elitism.

5 http://guimoo.gforge.inria.fr/

http://guimoo.gforge.inria.fr/


5 ParadisEO-MOEO 101

Fitness Assignment Schemes

The most common fitness assignment strategies are implemented within ParadisEO-
MOEO: scalar approaches, dominance-based approaches and indicator-based ap-
proaches. Following the taxonomy introduced in Sect. 5.2, the fitness assignment
schemes are classified into four categories, as illustrated in the UML diagram of
Fig. 5.7:

• Scalar approaches: moeoScalarFitnessAssignment
• Criterion-based approaches: moeoCriterionBasedFitnessAssignment
• Dominance-based approaches: moeoDominanceBasedFitnessAssignment
• Indicator-based approaches: moeoIndicatorBasedFitnessAssignment

A detailed description of existing fitness assignment schemes provided within the
framework are listed below. Moreover, note that there also exists a dummy fitness
assignment strategy in case it would be useful for some specific implementation.

Fig. 5.7. UML diagram for fitness assignment

Achievement Fitness Assignment Scheme

One of the provided fitness assignment schemes is the family of achievement scalar-
izing functions, proposed by Wierzbicki [47]. This scalar approach is based on an
arbitrary reference point R, generally given by a decision maker, and consists in
projecting R onto the set of Pareto optimal solutions.

Dominance-Rank Fitness Assignment Scheme

In this strategy, the fitness value associated to a given solution x corresponds to the
number of population items that dominate x. This scheme has been proposed in [18]



102 A. Liefooghe et al.

and is, for instance, used in the Fonseca and Fleming MOGA (Multi-Objective
GA) [18] and in the Horn et al. NPGA (Niched-Pareto GA) [26].

Dominance-Count Fitness Assignment Scheme

This approach consists in assigning, to a solution x, a fitness value equal to the
number of population items that are dominated by x. For instance, it is combined
to the dominance rank scheme in the frame of SPEA (Strength Pareto EA) [51] and
SPEA2 [50].

Dominance-Depth Fitness Assignment Scheme

Another implemented fitness assignment scheme is the dominance depth approach
proposed by Goldberg [21] and used, for instance, in NSGA (Non-dominated Sort-
ing GA) [41] and NSGA-II [14]. This strategy consists in classifying a set of so-
lutions into several classes (or fronts). A solution that belongs to a class does not
dominate another one from the same class. Then, individuals from the first front all
belong to the best non-dominated set of the population; individuals from the second
front all belong to the second best non-dominated set; and so on.

Dominance Count Ranking Fitness Assignment Scheme

In this strategy, the dominance-count and dominance-rank schemes are combined.
The fitness value of a solution x corresponds to the sum of ranks of all solutions
dominated by x. This technique is used in SPEA2 [50].

Binary Indicator-Based Fitness Assignment Scheme

In this strategy, the fitness values are computed by comparing individuals on the ba-
sis of an arbitrary binary quality indicator I (or binary performance metric). Thereby,
no particular diversity preservation mechanism is generally necessary, with regards
to the indicator being used. The chosen indicator represents the overall goal of the
search process. Thus, the fitness value of a solution reflects its usefulness according
to this goal. As discussed earlier in the chapter (see Sec. 5.4.1), several binary qual-
ity indicators to be used in the frame of this scheme are proposed within ParadisEO-
MOEO.

Diversity Assignment Schemes

As illustrated in the UML diagram of Fig. 5.8, diversity preservation strategies must
inherit of the moeoDiversityAssignment class. In addition to a dummy tech-
nique, a number of other diversity assignment schemes are available and are listed
below.



5 ParadisEO-MOEO 103

Fig. 5.8. UML diagram for diversity assignment

Sharing Diversity Assignment Scheme

The notion of sharing (or fitness sharing) was originally suggested by Goldberg
and Richardson [22] to preserve diversity among solutions in an EA population.
It was first employed by Fonseca and Fleming [18] in the frame of EMO. This
kernel method consists in estimating the distribution density of a solution using a
so-called sharing function that is related to the sum of distances to its neighborhood
solutions. A sharing distance parameter specifies the similarity threshold, i.e. the
size of niches. The distance measure between two solutions can be defined in the
decision space, in the objective space or can combine both. A distance metric partly
or fully defined in the parameter space strongly depends of the tackled problem.
But, standard normalized distance metrics defined in the objective space are already
provided within ParadisEO-MOEO for real-coded objective vectors. Sharing is one
of the most popular technique and is commonly used in a large number of EMO
algorithms such as MOGA [18], NPGA [26], NSGA [41] and more. Note that a
‘front by front’ procedure is also proposed as, in some cases [18, 41], sharing only
occurs between solutions of same rank.

Nearest Neighbor Diversity Assignment Scheme

The nearest neighbor diversity maintaining strategy computes the distance between
a given objective vector and its nearest neighbors in order to estimate the density
of its neighborhood. The density estimator is generally based on the volume of the
hyper-rectangle defined by these nearest neighbors. For instance, the SPEA2 [50]
diversity preservation mechanism is based on this technique.

Crowding Diversity Assignment Scheme

Another diversity assignment scheme is the concept of crowding, firstly suggested
by Holland [25] and used by De Jong [28] to prevent genetic drift [28]. It is
employed by Deb et al. [14] in the NSGA-II. Contrary to the sharing diversity
preservation scheme, this one allows to maintain diversity without specifying any
parameter. It consists in estimating the density of solutions surrounding a particular



104 A. Liefooghe et al.

point of the objective space. As before, a similar mechanism working on sub-classes
of solutions is also provided within ParadisEO-MOEO.

Elitism

As shown in Fig. 5.9, an archive is represented by the moeoArchive abstract class
and is a population using a particular dominance relation to update its contents.
An abstract class for fixed-size archives is given: moeoFixedArchive. But im-
plementations of an unbounded archive (moeoUnboundedArchive), a general-
purpose bounded archive based on a fitness and/or a diversity assignment scheme(s)
(moeoBoundedArchive) as well as the SPEA2 archive (moeoSPEA2Archive)
are provided. Generally speaking, the dominance relation used to update the archive
contents is the Pareto-dominance relation, which is employed by default. But,
other dominance criteria are found in the literature. Therefore, the framework of-
fers the opportunity to use any dominance relation for that purpose by means of
a moeoObjectiveVectorComparator object. As shown in Fig. 5.10, imple-
mented criteria consist of Pareto-dominance, weak-dominance, strict-dominance,
ε-dominance [24], and g-dominance [37]. Usually, an archive is used as an external

Fig. 5.9. UML diagram for archiving

Fig. 5.10. UML diagram for for dominance relation (used for pairwise objective vector
comparison)



5 ParadisEO-MOEO 105

storage only. However, we will see in the next section that archive members can also
be used during the selection phase of an EMO algorithm.

5.4.3 EA-Related Components

EA-related components are presented below: variation operators as well as selection
and replacement mechanisms.

Variation

The purpose of variation operators is to modify the representation of solution in
order to move them in the search space. Generally speaking, while dealing with EAs,
these problem-dependent operators are stochastic. They can be classified according
to the number of arguments they use or modify, i.e.:

• Variation operators involving two individuals are called recombination opera-
tors. They can either modify one parent according to the material of the other
one, or modify both parents. At the implementation level, the former are called
binary operators and the latter quadratic operators.

• Variation operators involving a single individual are mutation operators.

Note that straightforward extensions allow to combine these simple operators. For
instance, in a standard proportional combination, a given operator is selected from
among a set of operators based on some user-defined rates. Furthermore, other vari-
ation operators generating any number of offspring from any number of parents,
called general operators, can also be defined.

Fig. 5.11. UML diagram for variation

As shown in Fig. 5.11, in terms of implementation, all variation operators must
derive from the eoOp base class. Four abstract classes inherit of eoOp, namely
eoMonOp for mutation operators, eoBinOp and eoQuadOp for recombination
operators and eoGenOp for other kinds of variation operators. Various operators of
the same arity can be combined using some helper classes. Note that variation mech-
anisms for some classical (real-coded, vector-based or permutation-based) represen-
tations are already provided in the framework. Moreover, a hybrid mechanism can
easily be designed by using a single-objective local mechanism search as a mutation
operator, as they both inherit from eoMonOp, see ParadisEO-MO [8]. All variation
operators designed for a given problem must be embedded into a eoTranform
object.



106 A. Liefooghe et al.

Fig. 5.12. UML diagram for selection

Selection Schemes

The selection step is one of the main search operators of EAs. It consists in choosing
some solutions that will be used to generate the offspring population. In general, the
better is an individual, the higher is its chance of being selected, so that fitness and/or
the diversity value(s) are normally used. There exists a large number of selection
strategies in the frame of EMO. Four ones are provided within ParadisEO-MOEO
(see Fig. 5.12):

• A random selection (moeoRandomSelectOne), that consists in selecting a
parent randomly among the population members, without taking fitness nor di-
versity information into account.

• A deterministic tournament selection (moeoDetTournamentSelectOne),
that consists in performing a tournament between m randomly chosen population
members and in selecting the best one.

• A stochastic tournament selection (moeoStochTournamentSelectOne),
that consists in performing a binary tournament between randomly chosen pop-
ulation members and in selecting the best one with a probability p or the worst
one with a probability (1− p).

• An elitist selection (moeoSelectOneFromPopAndArch), that consists in
selecting a population member based on some selection scheme with a proba-
bility p, or in selecting an archive member using another selection scheme with
a probability (1− p). So, elite solutions also contribute to the evolution engine
by being used as parents. This scheme has been integrated in various elitist EMO
algorithms including SPEA [51], SPEA2 [50] or PESA [12].

All these selection methods are of the moeoSelectOne type and need to be em-
bedded into an eoSelect object to be properly used. Of course, everything is done
to easily implement a new selection scheme with a minimum programming effort.

Replacement Schemes

Selection pressure is also affected at the replacement step where survivors are
selected from both the current and the offspring population. A large majority



5 ParadisEO-MOEO 107

Fig. 5.13. UML diagram for replacement

of replacement strategies depend on the fitness and/or the diversity value(s) and
are, somehow, EMO-specific. Three replacement schemes are provided within
ParadisEO-MOEO (see Fig. 5.13), but this list is not exhaustive as new ones can
easily be implemented due to the genericity of the framework.

• A generational replacement (moeoGenerationalReplacement), that
consists in keeping the offspring population only, while all parents are deleted.

• An elitist replacement (moeoElitistReplacement), that consists in choos-
ing the N best solutions (where N stands for the population size).

• An environmental replacement (moeoEnvironmentalReplacement), that
consists in deleting one-by-one the worst individuals, and in updating the fitness
and the diversity values of the remaining solutions each time there is a deletion.
The process ends once the required population size is reached.

5.4.4 Evolutionary Multi-Objective Optimization Algorithms

Now that all the basic, EMO-specific and EA-related components are defined, an
EMO algorithm can easily be designed using the fine-grained classes of ParadisEO.
As the implementation is conceptually divided into components, different operators
can be experimented without engendering significant modifications in terms of code
writing. As seen before, a wide range of components are already provided. But,
keep in mind that this list is not exhaustive as the framework perpetually evolves
and offers all that is necessary to develop new ones with a minimum effort. In-
deed, ParadisEO is a white-box framework that tends to be flexible while being as
user-friendly as possible. Fig. 5.14 illustrates the use of the moeoEasyEA class
that allows to define an EMO algorithm in a common fashion, by specifying all the
particular components required for its implementation. All classes use a template
parameter MOEOT (Multi-Objective Evolving Object Type) that defines the rep-
resentation of a solution for the problem under consideration. This representation
might be implemented by inheriting of the MOEO class as described in Sect. 5.4.1.
Note that archive-related components do not appear in the UML diagram, as we
chose to let the use of an archive as optional. The archive update can easily be



108 A. Liefooghe et al.

Fig. 5.14. UML diagram for the design of an EMO algorithm

integrated into the EA by means of the checkpointing process. Similarly, the ini-
tialization process does not appear either, since an instance of moeoEasyEA starts
with an already initialized population.

Easy-to-use EMO Algorithms

In order to satisfy both the common user and the more experimented one, ParadisEO-
MOEO also provides even more easy-to-use EMO algorithms (see Fig. 5.15). These
classes propose different implementations of some state-of-the-art algorithms by
using the fine-grained components of ParadisEO. Hence, MOGA [18], NSGA [41],
NSGA-II [14], SPEA2 [50], IBEA [48] and SEEA [34] are proposed in a way that a
minimum number of problem- or algorithm-specific parameters are required. These
easy-to-use algorithms also tend to be used as references for a fair performance
comparison in the academic world, even if they are also well-suited for a straight
use to solve real-world MOPs. In a close future, other easy-to-use multi-objective
metaheuristics will be proposed while new fined-grained components will be imple-
mented into the frame of ParadisEO-MOEO.

5.4.5 Discussion

ParadisEO-MOEO has been used and experimented to solve a large range of MOPs
from both academic and real-world fields, which evidences its high flexibility. In-
deed, various academic MOPs have been tackled within ParadisEO-MOEO, includ-
ing continuous test functions (like the ZDT and DTLZ functions family defined
in [16]), scheduling problems (permutation flow-shop scheduling problem [32]),
routing problems (multi-objective traveling salesman problem, bi-objective ring star
problem [34]), etc. Moreover, it has been successfully employed to solve real-world
applications in structural biology [9], feature selection in cancer classification [44],
data-mining [29], materials design in chemistry [40], etc. Besides, a detailed doc-
umentation as well as some tutorial lessons and problem-specific implementations
are freely available on the ParadisEO website6. And we expect the number of MOP

6 http://paradiseo.gforge.inria.fr

http://paradiseo.gforge.inria.fr


5 ParadisEO-MOEO 109

Fig. 5.15. UML diagram for easy-to-use EMO algorithms

contributions to largely grow in a near future. Furthermore, note that the imple-
mentation of EMO algorithms is just an aspect of the features provided by Par-
adisEO. Indeed, the whole framework allows to conveniently design hybrid as well
as parallel and distributed metaheuristics, including EMO methods. Hence, hybrid
mechanisms can be exploited in a natural way to make cooperating metaheuristics
belong to the same or to different classes. Moreover, the three main parallel models
are concerned: algorithmic-level, iteration-level and solution-level and are portable
on different types of architecture. For instance, in the frame of ParadisEO, hybrid
EMO algorithms have been experimented in [34], a multi-objective cooperative is-
land model has been designed in [43], and costly evaluation functions have been
parallelized in [9]. The reader is referred to [10] for more information about Par-
adisEO’s hybrid and parallel models.

5.5 Case Study: An EMO Algorithm for a Bi-objective
Scheduling Problem

The Flow-shop Scheduling Problem (FSP) is one of the most well-known schedul-
ing problems and has been widely studied in the literature. The majority of works
dedicated to the FSP considers it on a single-objective form and mainly aim at min-
imizing the makespan (i.e. the total completion time). However, many objective
functions, varying according to the particularities of the tackled problem, may be
considered and some multi-objective approaches have also been proposed. For a
survey, see for instance [31, 46].



110 A. Liefooghe et al.

5.5.1 Problem Definition

Solving the FSP consists in scheduling a set of N jobs J1,J2, . . . ,JN on M ma-
chines M1,M2, . . . ,MM . Machines are critical resources, i.e. one machine cannot
process more than one job at a time. Each job Ji is composed of M consecutive
tasks ti1, ti2, . . . ,tiM , where ti j represents the jth task of the job Ji, requiring the ma-
chine Mj. A processing time pi j is associated to each task ti j; and a due date di is
given to each job Ji (the deadline of the job). In this study, we focus on the per-
mutation FSP, where the operating sequences of the jobs are identical and unidirec-
tional on every machine, as illustrated in Fig. 5.16. Many objective functions may be

Fig. 5.16. An example of solution for a permutation flow-shop problem where
3 jobs (J1,J2,J3) have to be scheduled on 4 machines (M1,M2,M3,M4).

tackled while scheduling tasks on several machines. The FSP that we consider here
aims at minimizing the makespan (Cmax) and the total tardiness (T ). These objec-
tives are among the most widely investigated in the literature. For each task ti j being
scheduled at the time si j, they are computed as follows:

Cmax = max
i∈{1,...,N}

{siM + piM} (5.1)

T =
N

∑
i=1

{
max{0,siM + piM −di}

}
(5.2)

According to the Graham et al. notation [23], the problem under consideration can
be denoted by F/perm,di/(Cmax,T ).

5.5.2 Implementation

In this section, we focus on the implementation of an EMO algorithm to approx-
imate the efficient set for the FSP presented above. First, the design and the im-
plementation of problem-dependent components are discussed. Then, the choice
of problem-independent components is presented. And finally, the implementation
of the EMO algorithm is given. Note that this case study is closely related to a
ParadisEO-MOEO tutorial available on the website, so that detailed source code
can easily be retrieved.



5 ParadisEO-MOEO 111

Problem-Dependent Components Design

Below are presented the problem-dependent components designed for the problem
under consideration: solution representation, evaluation, initialization and variation
operators.

Representation

First of all, let us define the number of objectives for the problem under considera-
tion, and if they are to be minimized or maximized. This is done by specializing the
moeoObjective VectorTraits class. In our case, let denote the specialized
class by fspObjVecTraits. Then, the representation in the objective space can
be defined as a real-coded objective vector:

typedef moeoRealObjectiveVector<fspObjVecTraits> fspObjVec;

Now, for the representation in the decision space, we use a permutation-based en-
coding. So, let us define our solution type FSP by a vector of integer:

typedef moeoIntVector<fspObjVec> FSP;

Evaluation

The evaluation class has to evaluate the values of a given solution for every objec-
tive, i.e. the makespan and the total tardiness for the problem under consideration.
We here define a fspEval class inheriting of eoEvalFunc:

class fspEval : public eoEvalFunc<FSP>
{
public:

void operator() (FSP & _fsp)
{

fspObjVec objVec;
objVec[0] = makespan(_fsp);
objVec[1] = tardiness(_fsp);
_fsp.objectiveVector(objVec);

}
// ...

}

Initialization

ParadisEO already provides an implementation for initializing permutations. There-
fore, let us define a fspInit class of the eoInitPermutation type:

typedef eoInitPermutation<FSP> fspInit;



112 A. Liefooghe et al.

1 8

1 2 3 4 5 6 7 8

6 2 3 4 5 7

Fig. 5.17. Shift mutation.

1 2 4 5 6 7 8

1 82

3

6 5 8 7 1 3 4

6 5 7 3 4

2

Point 1 Point 2

Fig. 5.18. Two-point crossover

Variation

Regarding variation operators, we choose to use a shift mutation and to implement
a two-point crossover as described in [27]. These operators are respectivelly illus-
trated in Fig. 5.17 and Fig. 5.18.

typedef eoShiftMutation<FSP> fspMutation;

class fspCrossover : public eoQuadOP<FSP>
{
public:

bool operator() (FSP & _fsp1, FSP & _fsp2)
{

// ...
}

}

Problem-Independent Components Decision

We arbitrary choose to use the following problem-independent components in the
frame of the EMO algorithm designed in this section. Of course, different operators
can easily be experimented with a very low coding effort.

• Fitness assignment: dominance-rank.
• Diversity assignment: sharing.
• Elitism: unbounded archive.
• Selection: deterministic tournament.
• Replacement: elitist.
• Stopping criteria: maximum number of generations.

EMO Algorithm Design

The source code of the main program file is given below. First, some parameters are
given. Then, problem-dependent and problem-independent components are instan-
tiated. Finally, the algorithm is built and is applied to the initialized population.



5 ParadisEO-MOEO 113

/* parameters */
// population size
int _popSize = 100;
// crossover probability
double _pCross = 0.25;
// mutation probability
double _pMut = 1.0;
// tournament size for selection
int _tourSize = 2;
// maximum number of generations
int _maxGen = 1000;

/* representation-dependent components */
// evaluation
fspEval eval;
// initialization
fspInit init;
// variation operators
fspCrossover cross;
fspMutation mut;
eoSGATransform<FSP> op(cross,_pCross,mut,_pMut);

/* representation-independent components */
// initial population
eoPop<FSP> pop(_popSize,init);
// unbounded archive
moeoUnboundedArchive<FSP> arch;
// fitness assignment
moeoDominanceRankFitnessAssignment<FSP> fitness;
// diversity assignment
moeoSharingDiversityAssignment<FSP> diversity;
// selection
moeoDetTournamentSelect<FSP> select(_tourSize);
// replacement
moeoElitistReplacement<FSP> replace(fitness,diversity);
// stopping criteria
eoGenContinue<FSP> stop(_maxGen);
// checkpoint
eoCheckPoint<FSP> check(stop);
// archive updater
moeoArchiveUpdater<FSP> updater(arch,pop);
check.add(updater);
// algorithm
moeoEasyEA<FSP> algo

(check,eval,select,op,replace,fitness,diversity);

/* apply the algorithm to the population */
algo(pop);



114 A. Liefooghe et al.

5.6 Conclusion

In this chapter, we first presented a unified view of evolutionary algorithms for solv-
ing multi-objective problems of both continuous and combinatorial optimization.
The resulting flexible model, based on the fundamental issues of fitness, diversity
and elitism, has been used as a starting point for the implementation of a general
purpose software framework called ParadisEO-MOEO. Base-class components fol-
low the fine-grained decomposition of the model and allow to design many resolu-
tion methods in a modular way, by combining different strategies at each stage of
its conception, with a minimum programming effort. Many classical strategies for
problem-independent components are already provided. ¿From this set of mecha-
nisms, state-of-the-art algorithms such as NSGA-II, SPEA2 and IBEA have been
implemented and are available. Nevertheless, new components and algorithms will
be integrated in a near future, as we hope the framework to constantly evolve in
order to follow the most recent advances of the literature. Furthermore, a clear con-
ceptual separation of the problem-specific part and problem-independent part of the
metaheuristic is provided, so that the representation, the initialization and the evalu-
ation of a solution as well as variation operators are the only components that must
be specifically implemented for the problem to be solved. However, the framework
also proposes standard techniques for the most common representation encodings,
in which case the user only has to implement the objective functions associated to
his/her problem. In addition, the platform also includes the most well-known paral-
lel and distributed models for metaheuristics and their hybridization.

A large part of components involved in evolutionary multi-objective optimization
are shared by many other search methods. Hence, we plan to generalize the unified
view presented in this chapter to additional population-based multi-objective meta-
heuristics, including local search, scatter search and particle swarm optimization
approaches. Afterward, the resulting general purpose model will be implemented in
a modular way in order to be integrated into the ParadisEO-MOEO software frame-
work. As well, there is a growing need in the MCDM community to provide a pow-
erful tool devoted to interactive multi-objective optimization. And we believe that
such a strong and reliable framework like ParadisEO-MOEO is the ideal platform
to provide base-class components to an higher level software where metaheuristics
would be involved. Another interesting extension would be to add components to
deal with stochastic and dynamic multi-objective optimization problems.

Acknowledgement. This work was supported by the ANR DOCK project. The authors would
like to gratefully acknowledge Sébastien Cahon and Nouredine Melab for their work on the
preliminary version of ParadisEO-MOEO, as well as Abdel-Hakim Deneche for his precious
contribution on the implementation of some components presented in this chapter.

References

1. http://cs.gmu.edu/˜eclab/projects/ecj/
2. http://home.gna.org/momh/
3. http://shark-project.sourceforge.net/

http://cs.gmu.edu/~eclab/projects/ecj/
http://home.gna.org/momh/
http://shark-project.sourceforge.net/


5 ParadisEO-MOEO 115

4. OMG unified modeling language specification. Object Management Group (2000)
5. Basseur, M., Seynhaeve, F., Talbi, E.G.: Design of multi-objective evolutionary algo-

rithms: Application to the flow-shop scheduling problem. In: Congress on Evolutionary
Computation (CEC 2002), Honolulu, Hawai, USA, vol. 2, pp. 1151–1156 (2002)

6. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on
dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669
(2007)

7. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA — a platform and program-
ming language independent interface for search algorithms. In: Fonseca, C.M., Fleming,
P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508.
Springer, Heidelberg (2003)

8. Boisson, J.C., Jourdan, L., Talbi, E.G.: ParadisEO-MO. Tech. rep. (2008)
9. Boisson, J.C., Jourdan, L., Talbi, E.G., Horvath, D.: Parallel multi-objective algorithms

for the molecular docking problem. In: IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology (CIBCB 2008), Sun Valley Resort, Idaho,
USA (2008)

10. Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: A framework for the reusable design of
parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

11. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for
Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

12. Corne, D., Knowles, J.D., Oates, M.J.: The pareto envelope-based selection algorithm for
multi-objective optimisation. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoe-
nauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848.
Springer, Heidelberg (2000)

13. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &
Sons, Chichester (2001)

14. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

15. Deb, K., Mohan, M., Mishra, S.: Evaluating the ε-domination based multi-objective evo-
lutionary algorithm for a quick computation of pareto-optimal solutions. Evolutionary
Computation 13(4), 501–525 (2005)

16. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary
multi-objective optimization. In: Abraham, A., Jain, R., Goldberg, R. (eds.) Evolutionary
Multiobjective Optimization: Theoretical Advances and Applications, ch. 6, pp. 105–
145. Springer, Heidelberg (2005)

17. Durillo, J.J., Nebro, A.J., Luna, F., Dorrosoro, B., Alba, E.: jMetal: A java framework for
developing multi-objective optimization metaheuristics. Tech. Rep. ITI-2006-10, Univer-
sity of Málaga (2006)

18. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: For-
mulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the 5th Inter-
national Conference on Genetic Algorithms (ICGA 1993), pp. 416–423. Morgan Kauf-
mann, Urbana-Champaign (1993)

19. Fourman, M.P.: Compaction of symbolic layout using genetic algorithms. In:
Grefensette, J.J. (ed.) Proceedings of the 1st International Conference on Genetic Al-
gorithms (ICGA 1985), pp. 141–153. Lawrence Erlbaum Associates, Pittsburgh (1985)

20. Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools: Princi-
ples and case study. International Journal on Artificial Intelligence Tools 15(2), 173–194
(2006)



116 A. Liefooghe et al.

21. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Boston (1989)

22. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal func-
tion optimization. In: Second International Conference on Genetic Algorithms and their
application, pp. 41–49. Lawrence Erlbaum Associates, Inc., Mahwah (1987)

23. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and ap-
proximation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics 5, 287–326 (1979)

24. Helbig, S., Pateva, D.: On several concepts for ε-efficiency. OR Spektrum 16(3), 179–
186 (1994)

25. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Abor (1975)

26. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multiob-
jective optimization. In: IEEE Congress on Evolutionary Computation (CEC 1994), pp.
82–87. IEEE Press, Piscataway (1994)

27. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its appli-
cation to flowshop scheduling. IEEE Transactions on Systems, Man and Cybernetics 28,
392–403 (1998)

28. Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D
thesis, Ann Arbor, University of Michigan (1975)

29. Jourdan, L., Khabzaoui, M., Dhaenens, C., Talbi, E.G.: A hybrid evolutionary algorithm
for knowledge discovery in microarray experiments. In: Olariu, S., Zomaya, A.Y. (eds.)
Handbook of Bioinspired Algorithms and Applications, ch. 28, pp. 489–505. CRC Press,
Boca Raton (2005)

30. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: A general pur-
pose evolutionary computation library. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E.,
Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 231–244. Springer, Heidelberg
(2002)

31. Landa Silva, J.D., Burke, E., Petrovic, S.: An introduction to multiobjective metaheuris-
tics for scheduling and timetabling. In: Gandibleux, X., Sevaux, M., Sörensen, K.,
T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. LNEMS, vol. 535, pp.
91–129. Springer, Berlin (2004)

32. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.G.: Combinatorial optimization of
stochastic multi-objective problems: an application to the flow-shop scheduling prob-
lem. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007.
LNCS, vol. 4403, pp. 457–471. Springer, Heidelberg (2007)

33. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.G.: ParadisEO-MOEO: A framework
for evolutionary multi-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hi-
royasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 386–400. Springer, Hei-
delberg (2007)

34. Liefooghe, A., Jourdan, L., Talbi, E.G.: Metaheuristics and their hybridization to solve
the bi-objective ring star problem: a comparative study. Tech. Rep. RR-6515, Institut
National de Recherche en Informatique et Automatique, INRIA (2008)

35. Meunier, H., Talbi, E.G., Reininger, P.: A multiobjective genetic algorithm for radio net-
work optimization. In: IEEE Congress on Evolutionary Computation (CEC 2000), pp.
317–324. IEEE Press, San Diego (2000)

36. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Opera-
tions Research and Management Science, vol. 12. Kluwer Academic Publishers, Boston
(1999)



5 ParadisEO-MOEO 117

37. Molina, J., Santana, L.V., Hernández-Dı́az, A.G., Coello Coello, C.A., Caballero, R.:
g-dominance: Reference point based dominance for multiobjective metaheuristics. Eu-
ropean Journal of Operational Research 197(2), 685–692 (2009)

38. Poles, S., Vassileva, M., Sasaki, D.: Multiobjective optimization software. In: Branke,
J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS,
vol. 5252, pp. 329–348. Springer, Heidelberg (2008)

39. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms.
In: Grefensette, J.J. (ed.) Proceedings of the 1st International Conference on Genetic
Algorithms (ICGA 1985), pp. 93–100. Lawrence Erlbaum Associates, Pittsburgh (1985)

40. Schuetze, O., Jourdan, L., Legrand, T., Talbi, E.G., Wojkiewicz, J.L.: New analysis of
the optimization of electromagnetic shielding properties using conducting polymers and
a multi-objective approach. Polymers for Advanced Technologies 19(7), 762–769 (2008)

41. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic
algorithms. Evolutionary Computation 2(3), 221–248 (1994)

42. Streichert, F., Ulmer, H.: JavaEvA: a java based framework for evolutionary algorithms.
Tech. Rep. WSI-2005-06, Centre for Bioinformatics Tübingen (ZBIT) of the Eberhard-
Karls-University, Tübingen (2005)

43. Talbi, E.G., Cahon, S., Melab, N.: Designing cellular networks using a parallel hybrid
metaheuristic on the computational grid. Computer Communications 30(4), 698–713
(2007)

44. Talbi, E.G., Jourdan, L., Garcia-Nieto, J., Alba, E.: Comparison of population based
metaheuristics for feature selection: Application to microarray data classification.
In: IEEE/ACS International Conference on Computer Systems and Applications
(AICCSA 2008), pp. 45–52. IEEE, Los Alamitos (2008)

45. Tan, K.C., Lee, T.H., Khoo, D., Khor, E.F.: A multi-objective evolutionary algorithm
toolbox for computer-aided multi-objective optimization. IEEE Transactions on Sys-
tems, Man and Cybernetics: Part B (Cybernetics) 31(4), 537–556 (2001)

46. T’Kindt, V., Billaut, J.C.: Multicriteria Scheduling: Theory, Models and Algorithms.
Springer, Berlin (2002)

47. Wierzbicki, A.: The use of reference objectives in multiobjective optimization. In: Fan-
del, G., Gal, T. (eds.) Multiple Objective Decision Making, Theory and Application.
LNEMS, vol. 177, pp. 468–486. Springer, Heidelberg (1980)

48. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X.,
Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E.,
Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842.
Springer, Heidelberg (2004)

49. Zitzler, E., Laumanns, M., Bleuler, S.: A tutorial on evolutionary multiobjective opti-
mization. In: Gandibleux, X., Sevaux, M., Swrensen, K. (eds.) Metaheuristics for Multi-
objective Optimisation. LNEMS, vol. 535, pp. 3–38. Springer, Heidelberg (2004)

50. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolution-
ary algorithm. Tech. Rep. 103, Computer Engineering and Networks Lab (TIK), Swiss
Federal Institute of Technology (ETH), Zurich, Switzerland (2001)

51. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study
and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4),
257–271 (1999)

52. Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.: Perfor-
mance assessment of multiobjective optimizers: An analysis and review. IEEE Transac-
tions on Evolutionary Computation 7(2), 117–132 (2003)


	ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization
	Introduction
	Evolutionary Multi-Objective Optimization, a Unified View
	Evolutionary Multi-Objective Optimization
	Design Issues
	A Unified Model

	Software Frameworks for Evolutionary Multi-Objective Optimization
	Motivations
	ParadisEO and ParadisEO-MOEO
	Main Characteristics
	Existing Software Frameworks for Evolutionary Multi-Objective Optimization

	Design and Implementation of Evolutionary Multi-Objective Metaheuristics with ParadisEO-MOEO
	Basic Components
	EMO-Related Components
	EA-Related Components
	Evolutionary Multi-Objective Optimization Algorithms
	Discussion

	Case Study: An EMO Algorithm for a Bi-objective Scheduling Problem
	Problem Definition
	Implementation

	Conclusion
	References


