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Abstract

This paper presents and investigates different approaches to solve a new bi-
objective routing problem called the ring star problem. It consists of locating
a simple cycle through a subset of nodes of a graph while optimizing two
kinds of cost. The first objective is the minimization of a ring cost that is
related to the length of the cycle. The second one is the minimization of
an assignment cost from non-visited nodes to visited ones. In spite of its
obvious bi-objective formulation, this problem has always been investigated
in a single-objective way. To tackle the bi-objective ring star problem, we
first investigate different stand-alone search methods. Then, we propose two
cooperative strategies that combine two multi-objective metaheuristics: an
elitist evolutionary algorithm and a population-based local search. We apply
these new hybrid approaches to well-known benchmark test instances and
demonstrate their effectiveness in comparison to non-hybrid algorithms and
to state-of-the-art methods.

Key words: Ring star problem, Multi-objective optimization,
Metaheuristic, Cooperative approach

1. Introduction

The Bi-objective Ring Star Problem (B-RSP) aims at locating a simple
cycle through a subset of nodes of a graph. The first objective consists in
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minimizing a ring cost related to the cycle length. The second objective
is to minimize an assignment cost from non-visited nodes to visited ones.
Two conflicting costs are then considered here, which naturally leads to a
bi-objective formulation. But this problem has always been addressed in a
single-objective way; either where both costs are combined [1], or where the
assignment cost is treated as a constraint [2]. However, from a practitioner
point of view, it is often necessary to take multiple objectives into account
simultaneously, and the problem investigated in this paper is a good illus-
tration of what can typically be found in the industry. Indeed, as pointed
out in [3], a large number of routing problems can be formulated as multi-
objective optimization problems, and according to the same paper, the prob-
lem at hand is a generalization of the single-objective problems introduced
in [1, 2]. Besides, the B-RSP is highly combinatorial as, once is decided
which nodes are to be visited, a standard traveling salesman problem is still
to be solved. Therefore, in practice, large-scale problem instances generally
cannot be solved exactly. This is the reason why heuristic search methods
are considered in this paper. Note that the current work extends preliminary
results presented during the EvoCOP 2008 conference [4]. Nevertheless, a
deeper analysis, extra stand-alone methods and novel hybrid approaches are
additionally provided in the actual paper.

The main contribution of this work is twofold and can be summarized as
follows. First, a set of multi-objective search methods are proposed for a new
bi-objective problem, the B-RSP. Second, this paper introduces new general-
purpose cooperative schemes for multi-objective combinatorial optimization,
and their features and efficiency are investigated and rather discussed on
solving the problem at hand. Thus, as an initial step, we investigate four
metaheuristics to approximate the set of efficient solutions for the problem
under consideration. Hence, IBMOLS, a population-based local search re-
cently proposed in [5], is fitted for the B-RSP resolution. Next, we present
slight variations of two well-known multi-objective search methods, namely
IBEA [6] and NSGA-II [7]. At last, we propose a general-purpose multi-
objective metaheuristic called SEEA and presented in this paper for the first
time. We compare all these methods to each other on state-of-the-art bench-
mark test instances and discuss their respective behaviors. As a second step,
we propose two cooperative approaches combining the local search method
and SEEA. These methods are based either on a periodic or on an adap-
tive strategy, each one trying to benefit of the advantages of each algorithm
it is compound of. Experiments validate the contribution of these hybrid
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schemes over non-hybrid approaches by achieving a strict improvement of
the generated set of non-dominated solutions.

The remainder of the paper is organized as follows. Section 2 is devoted
to the B-RSP. Then, four metaheuristics for multi-objective optimization are
introduced in Section 3. A general presentation of these methods and their
application to the B-RSP is followed by a comparative study. In Section 4,
we propose new cooperation schemes to solve multi-objective combinatorial
optimization problems. We experiment the resulting search methods on the
B-RSP and we compare the obtained computational results to the previous
ones. At last, conclusions and perspectives are drawn in the last section.

2. The Bi-objective Ring Star Problem

In this section, we first present some basic concepts, notation and defini-
tions related to multi-objective optimization. Next, we provide a formulation
of the ring star problem as a bi-objective problem. Finally, we briefly sur-
vey the literature related to the problem at hand and discuss its industrial
concerns.

2.1. Multi-objective Optimization

A Multi-objective Optimization Problem (MOP) aims of optimizing a set
of n ≥ 2 objective functions f1, f2, . . . , fn simultaneously. Each objective
function can be either minimized or maximized. Let X denote the set of
feasible solutions in the decision space, and Z the set of feasible points in
the objective space. Without loss of generality, we here assume that Z ⊆ ℜn

and that all n objective functions are to be minimized. To each decision
vector x ∈ X is assigned exactly one objective vector z ∈ Z on the basis of
a vector function f : X → Z with z = f(x) = (f1(x), f2(x), . . . , fn(x)). We
will assume, throughout the paper, that objective values are normalized1.
Therefore, a MOP can be formulated as follows:

(MOP ) =

{

‘min’ f(x) = (f1(x), f2(x), . . . , fn(x))
subject to x ∈ X

(1)

1To achieve this, the minimum and the maximum value of each objective function are
used in order to adaptively replace each objective function by its corresponding normalized
function, so that its values lie in the interval [0, 1].
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Definition 1. An objective vector z ∈ Z weakly dominates another objective

vector z′ ∈ Z if and only if ∀i ∈ {1, 2, . . . , n}, zi ≤ z′i.

Definition 2. An objective vector z ∈ Z dominates2 another objective vector

z′ ∈ Z if and only if ∀i ∈ {1, 2, . . . , n}, zi ≤ z′i and ∃j ∈ {1, 2, . . . , n} such

as zj < z′j.

Definition 3. An objective vector z ∈ Z is non-dominated if and only if

there does not exist another objective vector z′ ∈ Z such that z′ dominates z.

A solution x ∈ X is said to be efficient (or Pareto optimal, non-dominated)
if its mapping in the objective space results in a non-dominated point. The
set of all efficient solutions is the efficient (or Pareto optimal) set, denoted
by XE. The set of all non-dominated vectors is the non-dominated front (or
the trade-off surface), denoted by ZN . A possible approach in MOP solving
is to find the minimal set of efficient solutions, i.e. one solution x ∈ XE

for each non-dominated vector z ∈ ZN such as f(x) = z (in case multiple
solutions map to the same non-dominated point). But, generating the entire
set of Pareto optimal solutions is usually infeasible due to the complexity
of the underlying problem or to the large number of optima. Therefore,
the overall goal is often to identify a good approximation of it. Population-
based metaheuristics are commonly used to this end as they naturally find
multiple and well-spread non-dominated solutions in a single simulation run.
The reader could refer to [8, 9] for more details about evolutionary multi-
objective optimization and to [10] for more details about multi-objective
combinatorial optimization.

2.2. Problem Definition

The Ring Star Problem (RSP) can be described as follows. Let G =
(V,E,A) be a complete mixed graph where V = {v1, v2, . . . , vn} is a set of ver-
tices, E = {[vi, vj]|vi, vj ∈ V, i < j} is a set of edges, and A = {(vi, vj)|vi, vj ∈
V } is a set of arcs. Vertex v1 is the depot. To each edge [vi, vj] ∈ E we as-
sign a non-negative ring cost cij, and to each arc (vi, vj) ∈ A we assign a
non-negative assignment cost dij. The B-RSP consists of locating a simple
cycle through a subset of nodes V ′ ⊂ V (with v1 ∈ V ′) while (i) minimizing

2We will also say that a decision vector x ∈ X dominates a decision vector x′ ∈ X

if f(x) dominates f(x′).
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the sum of the ring costs related to all edges that belong to the cycle, and
(ii) minimizing the sum of the assignment costs of arcs directed from every
non-visited node to a visited one so that the associated cost is minimum. An
example of solution is given in Figure 1, where solid lines represent edges
that belong to the ring and dashed lines represent arcs of the assignments.

Figure 1: An example of solution for the ring star problem.

The first objective is called the ring cost and is defined as:

∑

[vi,vj ]∈E

cijbij (2)

where bij is a binary variable equal to 1 if and only if the edge [vi, vj] belongs
to the cycle. The second objective, the assignment cost, can be computed as
follows:

∑

vi∈V \V ′

min
vj∈V ′

dij (3)

Let us remark that these objective functions are comparable only if we assume
that the ring cost and the assignment cost are proportional one to another.
But this is rarely the case in practice. Moreover, the fact of privileging a cost
compared to the other is closely related to the decision-maker preferences,
whereas we deal here with a posteriori optimization. However, the B-RSP is
a NP -hard combinatorial problem because the particular case of visiting the
whole set of nodes is equivalent to a traditional traveling salesman problem.

2.3. Related Works

The RSP belongs to the class of location-allocation problems aiming at
locating structures in a graph (see [11] for a review). It has initially been
formulated by Labbé et al. [12] in two different ways. In the first formulation
(denoted MCP1 in [12] and more often called ‘ring star problem’), a weighted
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sum of both objective functions is to be optimized. In the second formula-
tion (MCP2 [12], usually called ‘median cycle problem’), the ring cost is to
be minimized while the assignment cost is bounded by a prefixed value. Even
if it was not explicitly noticed by the original authors, these two formulations
are commonly employed to convert a MOP into a single-objective problem
by using scalar approaches. They are respectively denoted by aggregation

and epsilon-constraint methods in the multi-objective optimization litera-
ture [13]. The first formulation of the problem has been more widely studied
in [1]. The authors used a branch-and-bound method and successfully solved
TSPLIB and randomly generated instances involving up to 200 nodes in less
than two hours. In [2], the same authors solved the second formulation of the
problem by a similar method. Finally, one or both versions of the problem
have been heuristically tackled by a variable neighborhood tabu search [14],
an evolutionary algorithm [15], a multi-start greedy add heuristic [15], and
a variable neighborhood tabu search hybridized with a greedy randomized
adaptive search procedure [16].

As shown in the survey of Jozefowiez et al. [3], an increasing number of
multi-objective routing problems appeared in the literature in recent years.
However, in spite of its numerous industrial applications (see Subsection 2.4),
the RSP has never been explicitly investigated in a multi-objective fashion.
Nevertheless, Current and Schilling [17] defined two multi-objective variants
of a very similar problem: the median tour problem and the maximal covering

tour problem. In both versions, one objective is the minimization of the
total length of the tour, while another one is the maximization of the access
to the tour for non-visited nodes. To tackle these problems, the authors
used a kind of lexicographic method, where a hierarchy is defined between
objective functions. Additionally, Dorner et al. [18] recently formulated a
three-objective optimization problem of tour planning for mobile health care
facilities, closely related to the Single Vehicle Routing-Allocation Problem

introduced in [19]. A mobile facility has to visit a subset of nodes. Non-
visited nodes are then assigned to their closest tour stop or are regarded as
unable to reach a tour stop (within a predefined maximum distance). The
considered objectives are (i) the minimization of the ratio between medical
working time and total working time, (ii) the minimization of the average
distance to the nearest tour stops and (iii) the maximization of a coverage
criterion. To do so, a Pareto ant colony optimization algorithm as well as
two genetic algorithms (namely VEGA [20] and MOGA [21]) were designed
to solve real-world instances.
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2.4. Real-world Applications and Industrial Concerns

The RSP has a wide range of industrial interests, especially in telecom-
munications and vehicle routing. Of course, practical real-world applications
may contain additional constraints. For instance, as noticed by Labbé et
al. [1, 2], a ring-based network is designed to interconnect a set of hubs in the
case of digital data services [22]. Some concentrators are installed on a subset
of locations and are interconnected on a ring network (the Internet) while the
remaining locations are assigned to this concentrators (the Intranet). Closely
related problems arise in rapid transit systems planning [1] or while design-
ing optical networks [23]. In addition, other kinds of applications appear in
the postal collection or delivery routes design, where the distance between a
customer and a collection point has to be reasonable. For instance, post-box
location while taking both the collection cost and the user inconvenience into
account has been studied in [24]. Besides, other applications closely related
to the RSP are the location of circular shaped transportation infrastructure
(such as metro lines or motorways), the location of recyclable garbage collec-
tion bins, and school bus routing. Finally, the routing of essential health care
services, already investigated in [18, 25] among other authors, consists of a
mobile clinic servicing an area without being able to visit every population
nodes. Then, unvisited ones have to reach the nearest tour stop by their own
to be medically treated.

3. Metaheuristics for the Bi-objective Ring Star Problem

In this section, four population-based metaheuristics are proposed to solve
the bi-objective RSP. First is an iterative local search method called IB-
MOLS [5]. Next, three evolutionary algorithms are designed. They consist
of slight variations of IBEA [6] and NSGA-II [7] and of a general-purpose
search method called SEEA and introduced in this paper for the first time.
IBMOLS and IBEA are both recent indicator-based metaheuristics, whereas
NSGA-II can be considered as a state-of-the-art multi-objective resolution
approach. A presentation of these metaheuristics is given below, and is fol-
lowed by a detailed description of problem-specific components.

3.1. A Multi-objective Local Search

Since they are easily adaptable to the multi-objective context, many
search methods proposed to tackle MOPs are evolutionary algorithms. How-
ever, local search algorithms are known to be effective metaheuristics for
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solving real-world applications [26, 27]. Several multi-objective neighbor-
hood search methods have been proposed in the literature, see [10, 28] for
a survey. Most of them are based on a set of aggregations of the objective
functions. Dominance-based local search algorithms are more rare. However,
an Indicator-Based Multi-Objective Local Search (IBMOLS for short) has re-
cently been proposed in [5]. IBMOLS can be seen as a local search variant
of IBEA [6], as the same strategy is used for fitness assignment. IBMOLS is
a generic population-based multi-objective local search dealing with a fixed
population size. This allows to obtain a set of efficient solutions in a sin-
gle simulation run without specifying any mechanism to control the number
of solutions during the search process. Moreover, IBMOLS presents an al-
ternative to aggregation- and dominance-based multi-objective local search
algorithms. Indeed, as proposed in [6], it is assumed that the optimization
goal is given in terms of a binary quality indicator I [29] that can be regarded
as an extension of the Pareto dominance relation. A value I(A,B) quantifies
the difference in quality between two approximated efficient sets A and B.
So, if R denotes a reference set (that can be the Pareto-optimal set XE or
any other set), the overall optimization goal can be formulated as:

arg minA∈Ω I(A,R) , (4)

where Ω denotes the space of all efficient set approximations. As noted in [6],
R does not have to be known in advance, it is just required in the formaliza-
tion of the optimization goal. Since R is fixed, I actually represents a unary
function that assigns a real number reflecting the quality of any approxima-
tion set according to the optimization goal. If I is dominance preserving [6],
I(A,R) is minimum for A = R. One of the main advantages of indicator-
based optimization is that no additional diversity preservation mechanism is
generally required, according to the indicator being used. Indeed, diversity
information is usually included into the indicator, since it may quantify the
quality of a set both in terms of convergence and diversity.

Principle. The IBMOLS algorithm maintains a population P of size N .
Then, it generates the neighborhood of a solution contained in P until an
improving solution is found (i.e. one that is better than at least one solution
of P in terms of the indicator being used), or until all its neighbors have
been explored. If an improving solution is found, it replaces the worst solu-
tion of P . This corresponds to a ‘first improving’ strategy. By iterating this
simple principle to every solution of P , we obtain a local search step. The
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whole local search procedure stops when the archive of potentially efficient
solutions has not received any new item during a complete local search step.
Hence, the IBMOLS method provides a natural stopping criterion.

Quality Indicator. Several quality indicators can be used in the frame of IB-
MOLS. Some examples can be found in [29]. One of them is the binary addi-
tive ǫ-indicator (Iǫ+) [6, 29], inspired by the concept of ǫ-dominance [30]. This
indicator appears to be particularly well-suited to indicator-based search.
And its efficiency has been experimentally proven to approximate the effi-
cient set of different kinds of problems, see for instance [5, 6]. Iǫ+ computes
the minimum value by which a solution x ∈ X has to or can be translated
in the objective space to weakly dominate another solution x′ ∈ X. For a
minimization problem, it is defined as follows:

Iǫ+(x, x′) = max
i∈{1,...,n}

(fi(x)− fi(x
′)) , (5)

where n stands for the number of objective functions. Furthermore, to eval-
uate the quality of a solution x ∈ X according to a whole population P ,
and then to compute the fitness value of x, different approaches exist. As
proposed in [6], we will here consider an additive technique that amplifies the
influence of dominating solutions over dominated ones. It can be outlined as
follows:

fitness(x) =
∑

x⋆∈P\{x}

−e−I(x⋆,x)/κ , (6)

where κ > 0 is a fitness scaling factor, see [6] for more details. However, the
initial experiments were not satisfactory because the algorithm was not able
to find the extreme points of the trade-off surface. As pointed out in [31], this
is known to be one of the drawbacks of the ǫ-dominance relation, apparently
due to the high convexity of the front. Indeed, the authors illustrate that
a limitation of ǫ-dominance is that extreme points of the Pareto front are
usually lost. To tackle this problem, we add a simple condition preventing
the deletion of solutions corresponding to the extreme non-dominated vectors
during the replacement step of IBMOLS.

Iterative Version. Firstly, let us remind that IBMOLS handles a natural stop-
ping condition. However, it is commonly known that iteratively repeating a
local search algorithm can lead to very high performances and can signifi-
cantly improve the results. In the frame of single-objective optimization, two
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main iterative strategies are generally distinguished, that is random restart

and perturbation techniques [32]. Random restart is the simplest possibility,
and a well-designed perturbation technique generally achieves better results.
Furthermore, within IBMOLS, we now have to deal with a population of
solutions that needs to be re-initialized between each local search phase. As
proposed in [5], we decide to perturb a set of solutions from the archive to
obtain the restarting population. The choice of such a strategy has been
motivated by preliminary experiments as well as conclusive results obtained
in [5] for another problem. Then, the population re-initialization scheme is
based on random noise, such as in a basic simulated annealing [26]. This
noise consists of multiple mutations applied to N different randomly chosen
solutions contained in the elite set. If the size of the archive is less than N ,
the population is filled with random solutions, just like in random restart.

More details about IBMOLS and I-IBMOLS as well as algorithm pseudo-
codes can be found in [5].

3.2. Multi-objective Evolutionary Algorithms

The first two multi-objective evolutionary algorithms designed to tackle
the bi-objective RSP are small variations of two state-of-the-art search meth-
ods, namely IBEA [6] and NSGA-II [7]. Some minor modifications have been
carried out in order to save the whole set of non-dominated solutions found
during the search process. Finally, a general-purpose approach for MOP solv-
ing, called SEEA, is proposed in this paper for the first time and is presented
in details.

3.2.1. IBEA

Introduced by Zitzler and Künzli [6], the Indicator-Based Evolutionary

Algorithm (IBEA) is, like IBMOLS, an indicator-based metaheuristic. The
fitness assignment scheme of this evolutionary algorithm is based on a pair-
wise comparison of solutions contained in a population by using a binary
quality indicator. The selection scheme for reproduction is a binary tourna-
ment between randomly chosen individuals. The replacement is based on an
iterative elitist strategy that consists in deleting, one-by-one, the worst in-
dividuals, and in updating the fitness values of the remaining solutions each
time there is a deletion; this is continued until the required population size is
reached. Moreover, an archive stores solutions mapping to potentially non-
dominated points in order to prevent their loss during the stochastic search
process. However, in our case, and in contrast to the IBEA defined in [6], this
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archive is updated at each generation since the beginning of the evolutionary
algorithm, so that the output size is not necessarily less than or equal to
the population size. Just like for the IBMOLS algorithm, the indicator used
within IBEA is the additive ǫ-indicator; and the same mechanism has been
used to prevent the loss of the extreme points on the trade-off surface. More
information about this algorithm can be found in [6].

3.2.2. NSGA-II

At each generation of NSGA-II (the Non-dominated Sorting Genetic Al-

gorithm II introduced by Deb et al. in [7]), the solutions contained in the
population are ranked into several classes. Individuals mapping to vectors
from the first front all belong to the best efficient set; individuals mapping to
vectors from the second front all belong to the second best efficient set; and
so on. Two values are computed for every solution of the population. The
first one corresponds to the rank the corresponding solution belongs to, and
represents the quality of the solution in terms of convergence. The second
one, the crowding distance, consists in estimating the density of solutions sur-
rounding a particular point of the objective space, and represents the quality
of the solution in terms of diversity. A solution is said to be better than
another solution if it has a best rank value, or in case of equality, if it has
the best crowding distance. The selection strategy is a deterministic tour-
nament between two random solutions. At the replacement step, only the
best individuals survive, with respect to the population size. Similarly, an
external population is added to NSGA-II in order to store every potentially
efficient solution found during the search. The reader is referred to [7] for
more details about NSGA-II.

3.2.3. SEEA

If evaluating a solution in the objective space is not too much time con-
suming (which is the case for our problem), computing fitness and diver-
sity information is generally the most computationally expensive step of a
multi-objective evolutionary algorithm. Based on this observation, we here
propose a simple search method for which none of these phases is required.
The resulting evolutionary algorithm, called Simple Elitist Evolutionary Al-

gorithm (SEEA for short), is detailed in Algorithm 1. An archive of poten-
tially efficient solutions is updated at each generation, and the individuals
contained in the main population are generated by applying variation op-
erators to randomly chosen archive members. The replacement step is a

11



Algorithm 1 Simple Elitist Evolutionary Algorithm (SEEA)

Input: P Initial population
Output: A Efficient set approximation

Step 1: Initialization. A← non-dominated solutions of P ; N ← |P |; P ′ ← ∅.

Step 2: Selection. Repeat until |P ′| = N : randomly select an individual from A and
add it to the offspring population P ′.

Step 3: Variation. Apply crossover and mutation operators to individuals of the off-
spring population P ′.

Step 4: Replacement. P ← P ′; P ′ ← ∅.

Step 5: Elitism. A← non-dominated solutions of A ∪ P .

Step 6: Termination. If a stopping criteria is satisfied return A, else go to Step 2.

generational one, i.e. the parent population is replaced by the offspring one.
Note that the initial population can, for instance, be filled with random solu-
tions. Thus, as proposed in [33] among other authors, the archive is not only
used as an external storage, but it is integrated into the optimization pro-
cess during the selection phase of the evolutionary algorithm; that is called
elitism. Elitism is an important issue in the field of evolutionary multi-
objective optimization [34] and SEEA is in somehow related to other elitist
evolutionary algorithms such as SPEA [33], PESA [35] or SEAMO [36]. But,
contrary to other approaches, no strategy to preserve diversity or to manage
the size of the archive is involved here, as solutions are selected randomly
and the archive is unbounded. Note that to be used for solving optimization
problems where an exponential number of efficient solutions are involved, an
additional mechanism should be designed to bound the archive size, see [37].
The biggest advantage of this evolutionary algorithm is that the popula-
tion (or the population size if solutions are randomly initialized) is the only
problem-independent parameter. If non-dominated solutions are relatively
close to each other in the decision space and if the archive is not too small
compared to the main population, we believe that SEEA may convergence
to a good approximation of the efficient set in a very short runtime.

3.3. Application to the Bi-objective Ring Star Problem

This section presents the problem-specific components that are necessary
to instantiate the metaheuristics introduced above for the resolution of our bi-
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objective RSP. Hence, the encoding mechanism, the population initialization
as well as the neighborhood, the mutation and the recombination operators,
are described in details below.

3.3.1. Solution Encoding

The representation of a RSP solution is based on the random keys mech-
anism proposed by Bean [38]. Such an encoding mechanism has already been
successfully applied for solving a single-objective version of the RSP in [15].
A random key ki ∈ [0, 1[ is assigned to every node vi that belongs to the
ring, with k1 = 0. A special value is assigned to unvisited nodes. Thus, the
ring route associated to a solution corresponds to the nodes read according
to their random keys in the increasing order; i.e. if ki < kj, then vj comes
after vi. A possible representation for the cycle (v1,v7,v4,v9,v2,v6) is given in
Figure 2. Nodes v3,v5,v8 and v10 are assigned to a visited node in such a way
that the associated assignment cost is minimum.

Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Random key 0 0.7 - 0.3 - 0.8 0.2 - 0.5 -

Figure 2: A RSP solution represented by random keys.

3.3.2. Population Initialization

For each search method, the initial population has been generated ran-
domly. Each node has a probability p = 0.5 to be visited or not, and to each
visited vertex vi we associate a random key ki uniformly generated in [0, 1[.

3.3.3. Neighborhood and Mutation Operators

As the RSP is both a routing and an assignment problem, different move
and mutation operators have to be designed. For this kind of problems, usual
operators consists in removing or adding a node to the cycle. Here we also
consider an operator specifically dedicated to the ring improvement by means
of a 2-opt move. The resulting three operators are the following:

• remove operator : selects a visited node vi ∈ V ′ at random and removes
it from the ring

• insert operator : selects an unvisited node vi ∈ V \ V ′ at random and
adds it to the cycle, the position to insert vi is chosen so that the
increment on the ring cost is minimum
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• 2-opt exchange operator : selects two visited nodes vi ∈ V ′ and vj ∈ V ′

at random and applies a 2-opt move between vi and vj, so that the
sequence of visited nodes located between vi and vj is reversed.

Note that it is not necessary to re-evaluate a solution each time a neighbor-
hood or a mutation operator is applied. Thus, after a remove operator, we
just have to re-assign the unvisited nodes previously assigned to the one that
has been removed. After an insert operator, we just have to re-assign unvis-
ited nodes in order to minimize the assignment cost. Finally, after a 2-opt
exchange operator, we just have to recompute the ring cost, the assignment
cost being unchanged. For the local search method, the neighbors of a given
solution are randomly explored, without considering any order between these
three operators. And each neighbor is at most visited once during a search
step.

3.3.4. Recombination Operator

The recombination operator is a one-point crossover closely related to
the one proposed in [15]. Two randomly selected solutions x1 and x2 are
first divided according to a random position. Then, the first part of x1 is
combined with the second part of x2 to build a first offspring, and the first
part of x2 is combined with the second part of x1 to build a second offspring.
Every node retains its random key so that it enables an easy reconstruction of
the new individuals. Due to the random keys encoding mechanism, solutions
having different ring sizes can easily be recombined, even if the initial ring
structures are generally broken in the offspring solutions. Figure 3 illustrates
a recombination between two solutions (v1,v7,v4,v9,v2,v6) and (v1,v8,v4,v3,v5)
after vertex v6, which gives rise to a couple of new solutions (v1,v8,v4,v2,v6)
and (v1,v7,v9,v4,v3,v5).

Another recombination operator preserving a bigger part of the initial
ring structures, has been experimented. But it was tending to reduce the
number of nodes belonging to the cycle and then was causing a premature
convergence with solutions having a small number of visited nodes.

3.4. Experiments

All the metaheuristics presented in this paper have been implemented
using the ParadisEO-MOEO software framework3 [39]. ParadisEO-MOEO

3ParadisEO is available at http://paradiseo.gforge.inria.fr.
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Parent 1
Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Random key 0 0.7 - 0.3 - 0.8 0.2 - 0.5 -

Parent 2
Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Random key 0 - 0.8 0.7 0.9 - - 0.2 - -

Offspring 1
Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Random key 0 0.7 - 0.3 - 0.8 - 0.2 - -

Offspring 2
Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Random key 0 - 0.8 0.7 0.9 - 0.2 - 0.5 -

Figure 3: Recombination operator.

is a C++ white-box object-oriented framework dedicated to the reusable de-
sign of metaheuristics for multi-objective optimization. All the algorithms
share the same base components for a fair comparison between them. Com-
putational runs were performed on an Intel Core 2 Duo 6600 (2× 2.40 GHz)
machine, with 2 GB RAM.

3.4.1. Experimental Protocol

Benchmark Test Instances. Experiments were conducted on a set of eight
benchmark instances taken from the TSPLIB4 [40]. These instances contain
between 51 and 299 nodes. The number at the end of an instance name
represents the number of nodes involved for the instance under consideration.
Let lij denote the distance between two nodes vi and vj of a TSPLIB file.
The ring cost cij and the assignment cost dij have both been set to lij for
every pair of nodes vi and vj.

Stopping Conditions. From our point of view, there does not exist a standard
approach to define an unquestionable condition for stopping a multi-objective
metaheuristic. Common strategies are quite basic and generally consist of
an arbitrary user-given number of iterations or evaluations. However, in the
frame of this paper, an evolutionary algorithm iteration has nothing to do
with a local search iteration. Moreover, computing the number of evalua-
tions performed from the beginning of the search process does not make any
sense here, as mutated or neighbor solutions are not fully, but incrementally

4http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
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evaluated. Therefore, in this study, the search process simply stops after a
fixed amount of runtime. Indeed, all methods share the same base compo-
nents and their respective implementations can then be compared in term of
computational time. But, as small instances are supposedly easier to solve
than large ones, this stopping criteria has been arbitrary set according to the
size of the instance under consideration, as shown in Table 1. Note that the
maximum runtime available stands for a single simulation run per instance
and per algorithm.

Table 1: Stopping criteria: runtime per simulation run.
Instance Runtime
eil51 20”
st70 1’
kroA100 2’
bier127 5’

Instance Runtime
kroA150 10’
kroA200 20’
pr264 30’
pr299 50’

Performance Assessment. In the frame of multi-objective optimization, the
performance assessment of a number of algorithms in solving the same prob-
lem is a key issue. In this study, a set of 20 runs per instance, with different
initial populations, has been performed for each search method. In order
to evaluate the quality of the non-dominated front approximations for every
instance we experimented, we follow the protocol given by Knowles et al.
in [41]. For a given instance, let Zall denote the union of the outputs we ob-
tained during all our experiments. Note that this set probably contains both
dominated and non-dominated points, as a given approximation may con-
tain vectors dominating the ones of another approximation, and vice versa.
We first compute a reference set Z⋆

N containing all the non-dominated points
of Zall. Second, we define zmax = (zmax

1 , zmax
2 ), where zmax

1 (respectively
zmax
2 ) denotes the upper bound of the first (respectively second) objective

for all the points contained in Zall.
Now, to measure the quality of an output set A in comparison to Z⋆

N , we
compute the difference between these two sets by using the unary hypervol-
ume metric [33], zmax being the reference point. As illustrated in Figure 4,
the hypervolume difference indicator (I−H) computes the portion of the objec-
tive space that is weakly dominated by Z⋆

N and not by A, cf. Definition 1;
the closer this measure to 0, the better the approximation A. Furthermore,
we also consider the additive ǫ-indicator proposed in [29]. Contrary to the
one proposed in Equation 5, this indicator is used to compare non-dominated
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Figure 4: Illustration of the hypervolume difference (I−
H

) between a reference set Z⋆

N
and

a non-dominated front approximation S (shaded area).

set approximations, and not solutions. The unary additive ǫ-indicator (I1ǫ+)
gives the minimum factor by which an approximation A has to be translated
in the objective space to weakly dominate the reference set Z⋆

N . I1ǫ+ can then
be defined as follows:

I1
ǫ+(A) = min

ǫ
{∀z ∈ Z⋆

N ,∃z′ ∈ A : z′i − ǫ ≤ zi,∀1 ≤ i ≤ n} . (7)

As a consequence, for each test instance, we obtain 20 I−H measures and
20 Iǫ+ measures, corresponding to the 20 runs, per algorithm. As suggested
by Knowles et al. [41], once all these values are computed, we perform a
statistical analysis for a pairwise comparison of methods. To this end, we
use the Wilcoxon signed rank test. Such a non-parametric statistical test is
motivated by the fact that the samples collected here can be considered as
matched samples. Indeed, for a given run, both the initial population and
the random seed are identical for all algorithms, so that the final indicator
values can be taken as pairs. Details for this statistical testing procedure
are given in [41]. Hence, for a given test instance, and according to the
p-value and to the metric under consideration, this statistical test reveals
if the sample of approximation sets obtained by a given search method is
significantly better than the ones of another search method, or if there is no
significant difference between both. Note that all the performance assessment
procedures have been achieved using the performance assessment tool suite
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provided in PISA5 [42].

3.4.2. Parameter Setting

A preliminary experimental phase has been performed to determine the
following parameters, see [43] for more details. Hence, as no general trend has
been identified for some algorithms, the population size were fixed according
to the instance under consideration, as shown in Table 2. The noise rate
for I-IBMOLS has been set to a fixed percentage of the number of nodes
involved in the problem at hand. Next, following [6], the scaling factor κ of
Equation 6 has been set to 0.05 for indicator-based metaheuristics, i.e. IBEA
and I-IBMOLS. The remainder parameters are shared by all evolutionary
algorithms and consist of a crossover probability of 0.25, and of a mutation
probability of 1.00, with rates of 0.25, 0.25 and 0.50 for the remove, the insert

and the 2-opt exchange operator, respectively.

Table 2: Parameter setting.
I-IBMOLS IBEA NSGA-II SEEA

Instance pop. size noise rate pop. size pop. size pop.size
eil51 20 10% 100 100 100
st70 20 10% 50 100 100

kroA100 30 10% 100 200 100
bier127 30 10% 100 200 100

kroA150 30 10% 200 200 100
kroA200 30 10% 200 200 100

pr264 30 20% 50 200 100
pr299 50 10% 50 200 100

3.4.3. Computational Results

Table 3 and Table 4 provide a comparison of SEEA, NSGA-II, IBEA and
I-IBMOLS with respect to the I−H metric and to the I1ǫ+ metric, respectively.

According to the experimental protocol used in the paper, I-IBMOLS is
never statistically outperformed by any other algorithm with respect to both
metrics. The only exceptions are for the st70 and the pr264 instances, where
SEEA obtained better results with respect to the I1ǫ+ metric. About NSGA-
II, it is outperformed by all the other algorithms on every test instances,
except for pr264 where there is no significant difference between its results

5The package is available at http://www.tik.ee.ethz.ch/pisa/assessment.html.
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Table 3: Algorithms comparison with respect to the I−
H

metric. The number in brackets
denotes the average metric value for the algorithm and the instance under consideration
(multiplied by 10−3). For each instance, either the algorithm located at a specific row
significantly dominates the algorithm located at a specific column (≻ or � for a p-value
less or equal to 0.01 or to 0.05, respectively), either it is significantly dominated (≺ or
� for a p-value less or equal to 0.01 or to 0.05, respectively), or there is no significant
difference between both (≡).

I-IBMOLS IBEA NSGA-II SEEA
eil51 I-IBMOLS (4.456) - ≻ ≻ ≡

IBEA (6.710) ≺ - ≻ ≺
NSGA-II (12.573) ≺ ≺ - ≺
SEEA (4.957) ≡ ≻ ≻ -

st70 I-IBMOLS (3.143) - ≻ ≻ ≻
IBEA (4.037) ≺ - ≻ ≡
NSGA-II (8.920) ≺ ≺ - ≺
SEEA (3.718) ≺ ≡ ≻ -

kroA100 I-IBMOLS (4.251) - � ≻ ≻
IBEA (5.273) � - ≻ ≡
NSGA-II (12.370) ≺ ≺ - ≺
SEEA (5.015) ≺ ≡ ≻ -

bier127 I-IBMOLS (3.219) - ≻ ≻ ≻
IBEA (4.236) ≺ - ≻ ≻
NSGA-II (9.606) ≺ ≺ - ≺
SEEA (6.751) ≺ ≺ ≻ -

kroA150 I-IBMOLS (3.959) - ≻ ≻ ≻
IBEA (4.562) ≺ - ≻ ≡
NSGA-II (8.973) ≺ ≺ - ≺
SEEA (4.747) ≺ ≡ ≻ -

kroA200 I-IBMOLS (2.875) - ≡ ≻ ≻
IBEA (2.980) ≡ - ≻ ≻
NSGA-II (8.515) ≺ ≺ - ≺
SEEA (3.822) ≺ ≺ ≻ -

pr264 I-IBMOLS (1.535) - ≻ ≻ ≡
IBEA (1.912) ≺ - ≻ ≺
NSGA-II (3.663) ≺ ≺ - ≺
SEEA (1.520) ≡ ≻ ≻ -

pr299 I-IBMOLS (1.303) - ≻ ≻ ≻
IBEA (1.964) ≺ - ≻ ≡
NSGA-II (4.185) ≺ ≺ - ≺
SEEA (2.179) ≺ ≡ ≻ -
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Table 4: Algorithms comparison with respect to the I1
ǫ+ metric. The number in brackets

denotes the average metric value for the algorithm and the instance under consideration
(multiplied by 10−3). For each instance, either the algorithm located at a specific row
significantly dominates the algorithm located at a specific column (≻ or � for a p-value
less or equal to 0.01 or to 0.05, respectively), either it is significantly dominated (≺ or
� for a p-value less or equal to 0.01 or to 0.05, respectively), or there is no significant
difference between both (≡).

I-IBMOLS IBEA NSGA-II SEEA
eil51 I-IBMOLS (9.307) - ≻ ≻ ≡

IBEA (12.094) ≺ - ≻ ≺
NSGA-II (19.165) ≺ ≺ - ≺
SEEA (9.613) ≡ ≻ ≻ -

st70 I-IBMOLS (7.321) - ≻ ≻ �
IBEA (10.334) ≺ - ≻ ≺
NSGA-II (13.639) ≺ ≺ - ≺
SEEA (6.298) � ≻ ≻ -

kroA100 I-IBMOLS (9.833) - � ≻ ≡
IBEA (11.771) � - ≻ �
NSGA-II (17.718) ≺ ≺ - ≺
SEEA (9.606) ≡ � ≻ -

bier127 I-IBMOLS (8.421) - ≻ ≻ ≻
IBEA (11.993) ≺ - ≻ ≻
NSGA-II (21.522) ≺ ≺ - �
SEEA (19.377) ≺ ≺ � -

kroA150 I-IBMOLS (7.853) - ≻ ≻ ≻
IBEA (10.708) ≺ - ≻ ≺
NSGA-II (13.383) ≺ ≺ - ≺
SEEA (9.056) ≺ ≻ ≻ -

kroA200 I-IBMOLS (7.829) - ≡ ≻ ≡
IBEA (7.288) ≡ - ≻ ≻
NSGA-II (14.473) ≺ ≺ - ≺
SEEA (8.204) ≡ ≺ ≻ -

pr264 I-IBMOLS (5.259) - ≻ ≻ ≺
IBEA (9.055) ≺ - ≡ ≺
NSGA-II (8.403) ≺ ≡ - ≺
SEEA (4.343) ≻ ≻ ≻ -

pr299 I-IBMOLS (4.023) - ≻ ≻ ≻
IBEA (8.993) ≺ - � ≺
NSGA-II (10.403) ≺ � - ≺
SEEA (5.768) ≺ ≻ ≻ -
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and the ones of IBEA according to the I1ǫ+ metric. At last, with respect to the
I−H metric, the results of IBEA and SEEA are quite heterogeneous, so that
no general trend can be identified. However, according to the I1ǫ+ metric, it
seems that SEEA is more efficient that IBEA on most test instances.

3.5. Discussion

We can conclude that the iterative version of IBMOLS is globally signif-
icantly better than all the evolutionary algorithms we investigated. Never-
theless, the behavior of such a simple search method as SEEA in comparison
to state-of-art algorithms like IBEA and NSGA-II is very encouraging with
regard to combinatorial problem solving. One of the main characteristics of
the problem under consideration seems to be the high number of points lo-
cated in the trade-off surface. Then, after a couple of iterations, a large part
of the population involved in I-IBMOLS, IBEA and NSGA-II might map
to non-dominated points. That could explain the low efficiency of NSGA-
II. Indeed, since the same fitness value is assigned to the major part of the
population, only the crowding distance is used to compare solutions. The
indicator-based fitness assignment scheme of I-IBMOLS and IBEA is obvi-
ously much more suited to discriminate potentially efficient solutions than the
single crowding distance. Note that this is not the case within SEEA because
all non-dominated solutions contained in the archive can potentially take part
in the evolution engine. However, the good performance of I-IBMOLS might
also depend on how close are solutions mapping to non-dominated points in
the decision space. If these solutions are close to each other according to the
neighborhood operators, a local search method is known to be particularly
well-suited to find additional interesting solutions. As a next step, it could
then be interesting to design a cooperation scheme between two different
search methods in order to benefit of their individual features.

4. Cooperative Approaches for the Bi-objective Ring Star Problem

This section presents a general-purpose cooperative approach combining
SEEA and the non-iterative version of IBMOLS for multi-objective combina-
torial optimization. Two variants are proposed: a periodic one that operates
a systematic cooperation and an adaptive one that decides on-line when the
cooperation must occur. These hybrid models are next experimented on the
bi-objective RSP investigated in this paper.
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4.1. Motivations

Designing metaheuristics for solving combinatorial optimization problems
is generally a matter of intensification and diversification. This is even more
pronounced for MOPs where the goal is to find a well-converged and well-
diversified efficient set approximation. However, local search methods are
known to be particularly efficient as intensifying methods whereas evolution-
ary algorithms are clearly powerful to explore the decision space thanks to
their variation operators. Instead of trying to improve one method in term
of diversification or the other in term of intensification, a common approach
is to hybridize both in order to make them cooperate and then to benefit
of their respective behaviors. Thus, hybrid metaheuristics have shown their
efficiency to solve different optimization problems [44], including MOPs [45].

In the previous section, we saw that SEEA and I-IBMOLS were the overall
more efficient method to approximate the efficient set for the problem under
consideration. Moreover, these two methods are quite different to each other
and do not explore the search space in the same way. Indeed, SEEA has been
conceived in order to find a rough approximation of the Pareto set in a very
short amount of time whereas the non-iterative version of IBMOLS is able
to improve an approximated set in a very efficient way. It could then be in-
teresting to design a cooperation scheme between these two algorithms. The
resulting hybrid metaheuristic could be particularly efficient for solving large
size problems. Furthermore, both methods maintain a secondary population
(the archive) in parallel of the main population to store non-dominated so-
lutions. This archive is not only used as an external storage, but also takes
part in the evolution engine as it serves to build new solutions to explore.
Thus, each method can manage its own population and therefore use the
archive as a single shared memory.

4.2. Cooperative Schemes

The general idea of our hybridization scheme is to run SEEA and to
launch IBMOLS regularly by using a subset of archive items as an initial
population. Since the non-iterative version of IBMOLS naturally stops when
its own archive does not receive any new efficient solution anymore, we can
restart the SEEA process until the next step of the hybrid algorithm. A step
can, for instance, be defined by a certain amount of time or by a certain
number of generations. Besides, as SEEA uses the non-dominated solutions
found by IBMOLS to create new ones and vice versa, the global archive is
the only memory shared by the two search agents to exchange information.

22



Resulting from this, we can imagine two versions of the hybrid algorithm:
(i) a periodic version, in which IBMOLS is launched at each step, and (ii) an
adaptive version, in which IBMOLS is launched at a specific step only if
a condition is verified. These two approaches will be denoted by PCS (for
Periodic Cooperative Search) and ACS (for Adaptive Cooperative Search) in
the remainder of the paper, and are respectively illustrated in Figure 5 and
Figure 6.

SEEA

IBMOLS

Archive step t
end of the

search
process

Figure 5: Illustration of the Periodic Coop-
erative Search (PCS).

SEEA

IBMOLS

Archive

step t

no

yes

cond.
end of the

search
process

Figure 6: Illustration of the Adaptive Coop-
erative Search (ACS).

The ACS method decides by itself, and on-line, if it is interesting to launch
IBMOLS at a given step of the search process. The condition outlined here
is that the archive of potentially efficient solutions does not improve enough
with regards to the optimization scenario. A possibility is to measure the
quality of the current archive At in comparison to the one of the previous
step At−1. Different metrics exist to evaluate the convergence properties of
an approximated efficient set in comparison to another. For instance, the
hypervolume metric could have been envisaged, but its computation has the
drawback of being time consuming. Thus, let us introduce the contribution

metric C proposed by Meunier et al. [46]. This metric gives an idea of the
quality of an approximated efficient set in comparison to another one in term
of convergence, and can be computed in a reasonable runtime. In our case, at
each step t of the ACS, we compute the contribution of the current archive At

on the archive of the previous step At−1. Thus, as non-dominated solutions
are not lost between two steps, At is at least as good as At+1 , so that we know
that C(At, At−1) ∈ [0.5, 1] due to the contribution metric properties; see [46].
Assuming that the archive does not improve enough if the contribution of At

on At−1 is less than a user-given threshold δ ∈ [0.5, 1], we choose to launch
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IBMOLS only if C(At, At−1) ≤ δ. Let us remark that an ACS with a δ = 0.5
is equivalent to SEEA, and that an ACS with a δ = 1.0 is equivalent to PCS,
the time spent in calculating the different contribution values in less.

Thus, thanks to the definition of a step t and to the δ parameter, it is
possible to intentionally bias the balance between evolutionary search and
local search within both PCS and ACS. This issue was pointed out in [47] for
hybrid multi-objective metaheuristics. For instance, the higher the δ value,
the more often the local search will be launched in the frame of the ACS
method. Hence, the proposed hybrid algorithm can directly handle different
specifications of the evolutionary-local search balance, i.e. from almost pure
SEEA (δ = 0.5) to almost pure IBMOLS (δ = 1.0).

4.3. Related Works

Different schemes exist on how two search methods can be combined.
According to the taxonomy proposed in [44], the hybrid metaheuristic in-
vestigated in this paper can be classified on the High-level Teamwork Hybrid

(HTH) class, and can then be denoted by HTH(SEEA+IBMOLS). In their
survey on hybrid metaheuristics to solve combinatorial MOPs [45], Ehrgott
and Gandibleux identify three categories of methods hybridizing an evolu-
tionary algorithm with a neighborhood search algorithm: (i) an hybridization
to make a method more aggressive, (ii) an hybridization to drive a method
and (iii) an hybridization for exploiting complementary strengths. The last
one consists of alternating between both search methods, which is the case
within our hybridization. But, most existing approaches occur in a pipeline
way: first the evolutionary algorithm, then the local search. The few team-
work hybridization techniques from the literature are most often compound
of the same metaheuristic, like in the island model. Moreover, this class of
hybrid methods often uses a neighborhood search method combining a set of
scalarizing functions. The originality of the approach proposed in this paper
is that search agents are based on different types of metaheuristics, are hy-
bridized in a teamwork mode, and do not use any scalar approach to convert
the multi-objective vector function into a single-objective one. Furthermore,
one of the variants we propose, the adaptive one, automatically detects when
to start the local search according to the optimization scenario.

4.4. Experiments

In order to experiment the efficiency of our two cooperative approaches,
we compare them to SEEA and to the iterative version of IBMOLS by using
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the same experimental protocol as the one defined in Section 3.4.1. The
parameter setting for each hybrid method is followed by some computational
results and by a discussion on the contribution of the hybridization for the
resolution of the RSP as a bi-objective problem. Finally, we give an idea
of the behavior of our approaches in comparison to the state-of-art single-
objective approach proposed in [1] for the problem under study.

4.4.1. Parameter Setting

For both cooperative search methods, the population size managed by
SEEA is set to 100, and the population size managed by IBMOLS is set
according to the instance under consideration. These sizes have been set
on the same way that for the stand-alone iterative version of IBMOLS on
the previous section, see Table 2. But, for large-size instances, initial ex-
periments were not satisfying since the hybrid algorithms were generally not
able to launch IBMOLS more than once during the search process, as it was
too much time consuming. For this reason, we bounded the IBMOLS pop-
ulation size to 30. Then, a IBMOLS population of 20 individuals has been
set for instances with less than 100 nodes, and a IBMOLS population of 30
individuals has been set for instances with 100 nodes and more. Moreover,
note that in addition to the benchmark test instances we investigated pre-
viously, we experimented two larger TSPLIB problems, namely pr439 and
pr1002. Following the general trend identified in the previous section, we set
the instance-specific parameters for I-IBMOLS as follows: a population of 70
and 100 individuals respectively, and a noise rate of 10%. The other param-
eters were set in the same way than for other instances. The step t of the
hybrid algorithms has been set to 0.5% of the maximum runtime available for
the instance under consideration. In [43], we investigated different δ-values
for the ACS method: 0.6, 0.7, 0.8 and 0.9. As pointed out above, an ACS
with a δ-value of 0.5 and 1.0 is similar to PCS and SEEA, respectively. This
has lead to an effective δ-value of 0.8 for the stopping criterion we adopted.

Table 5: Stopping criteria for additional test instances. For other instances, see Table 1.
Instance Runtime
pr439 50’
pr1002 50’
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4.4.2. Computational Results

Table 6 and Table 7 give a comparison between the results obtained by
SEEA, I-IBMOLS, PCS and ACS according to the I−H and I1ǫ+ metric, re-
spectively. Firstly, except for the eil51 instance, PCS and ACS both always
statistically outperform SEEA with respect to, at least, one metric. In com-
parison to I-IBMOLS, PCS and ACS often obtain better results, in particular
for instances with 150 nodes and more. However, in any case, both hybrid
metaheuristics are never statistically outperformed by a stand-alone search
method. Thus, the benefit of the cooperation scheme appears relevant in
most large-size instances, but the addition of an adaptive mechanism does
not seem to have a big influence on the results. Indeed, for almost every
test instance, the outcome measures did not return a statistically significant
difference between PCS and ACS. The few exceptions to notice are for the
bier127 and the pr439 instances where PCS obtain better results with regard
to one or both metrics, and for the pr1002 instance where ACS outperforms
PCS with respect to I−H . However, during our experiments, we observed that
the difference between the average number of times that IBMOLS is launched
during the search process of PCS and ACS is relatively thin. This can be ex-
plained by the fact that (i) IBMOLS takes more time to find non-dominated
solutions by starting with a population of poorer quality, that is the case
in PCS comparing to ACS (at least for the first launch), and (ii) a part of
the runtime allocated to the algorithm is used to compute a contribution
value at every step of ACS, whereas PCS devotes all of its runtime to the
search process. These two aspects lead to the fact that the number of times
that IBMOLS is launched is in the end, more or less balanced between both
cooperative methods.

Comparison with Exact Single-objective Results. As a last step, we provide a
comparison between the results found for the bi-objective RSP investigated
in this paper and the ones of the single-objective RSP investigated in [1],
where both costs are summed up6. In order to provide optimal solutions
visiting approximately 25, 50, 75 and 100% of the total number of nodes, the
authors set the ring cost cij and the assignment cost dij between two nodes
vi and vj in the following way: cij = ⌈αlij⌉ and dij = ⌈(10 − α)lij⌉ with

6Note that it was not possible to compare our results to the ones of the other formulation
of a single-objective RSP investigated in [2, 14, 15], where the assignment cost is subject
to a constraint, due to the way the bound has been fixed.

26



Table 6: Algorithms comparison with respect to the I−
H

metric. The number in brackets
denotes the average metric value for the algorithm and the instance under consideration
(multiplied by 10−3). For each instance, either the algorithm located at a specific row
significantly dominates the algorithm located at a specific column (≻ or � for a p-value
less or equal to 0.01 or to 0.05, respectively), either it is significantly dominated (≺ or
� for a p-value less or equal to 0.01 or to 0.05, respectively), or there is no significant
difference between both (≡).

I-IBMOLS SEEA PCS ACS
eil51 PCS (4.751) ≡ ≡ - ≡

ACS (4.482) ≡ ≡ ≡ -
st70 PCS (2.691) � ≻ - ≡

ACS (2.865) ≡ ≻ ≡ -
kroA100 PCS (3.738) ≡ ≻ - ≡

ACS (3.326) � ≻ ≡ -
bier127 PCS (3.071) ≡ ≻ - ≻

ACS (3.693) ≡ ≻ ≺ -
kroA150 PCS (2.792) ≻ ≻ - ≡

ACS (2.624) ≻ ≻ ≡ -
kroA200 PCS (2.247) ≻ ≻ - ≡

ACS (2.260) ≻ ≻ ≡ -
pr264 PCS (1.342) ≻ ≻ - ≡

ACS (1.404) � ≻ ≡ -
pr299 PCS (1.277) ≡ ≻ - ≡

ACS (1.293) ≡ ≻ ≡ -
pr439 PCS (0.348) ≻ ≻ - ≻

ACS (0.733) ≻ ≡ ≺ -
pr1002 PCS (2.449) ≻ ≻ - ≺

ACS (0.707) ≻ ≻ ≻ -
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Table 7: Algorithms comparison with respect to the I1
ǫ+ metric. The number in brackets

denotes the average metric value for the algorithm and the instance under consideration
(multiplied by 10−3). For each instance, either the algorithm located at a specific row
significantly dominates the algorithm located at a specific column (≻ or � for a p-value
less or equal to 0.01 or to 0.05, respectively), either it is significantly dominated (≺ or
� for a p-value less or equal to 0.01 or to 0.05, respectively), or there is no significant
difference between both (≡).

I-IBMOLS SEEA PCS ACS
eil51 PCS (9.561) ≡ ≡ - ≡

ACS (9.363) ≡ ≡ ≡ -
st70 PCS (6.328) � ≡ - ≡

ACS (7.064) ≡ ≡ ≡ -
kroA100 PCS (8.963) ≡ ≡ - ≡

ACS (7.533) ≻ ≻ ≡ -
bier127 PCS (8.114) ≡ ≻ - ≻

ACS (9.818) ≡ ≻ ≺ -
kroA150 PCS (5.450) ≻ ≻ - ≡

ACS (5.587) ≻ ≻ ≡ -
kroA200 PCS (5.057) ≻ ≻ - ≡

ACS (5.702) ≻ ≻ ≡ -
pr264 PCS (4.242) ≻ ≡ - ≡

ACS (4.317) ≻ ≡ ≡ -
pr299 PCS (4.501) ≡ ≻ - ≡

ACS (4.048) ≡ ≻ ≡ -
pr439 PCS (2.760) ≻ ≻ - ≻

ACS (5.553) � ≻ ≺ -
pr1002 PCS (5.391) ≻ ≻ - ≡

ACS (4.309) ≻ ≻ ≡ -

28



α ∈ {3, 5, 7, 9}, where lij denotes the distance between vi and vj given in the
TSPLIB files. In order to give a rough idea of the results we obtained, we
compare the best found scalar value as detailed above to the optimum7 found
in [1]. Additionally, we compare the best solution visiting every node we have
found with the optimal TSP solution available on the TSPLIB website8.
Table 8 gives the error ratio between the best known value and the best one
we have found for every identified (single) objective and every benchmark
test instance. In comparison to [1], this ratio is always under 1.5%, and is
mostly below 1% for every instance. The optimum is even found for the
kroA100 and the kroA150 instances with an α = 9, and a better solution is
found for the kroA200 instances with an α = 3 and an α = 9. As regards
to optimal TSP solutions, our results are quite close for instances with 200
nodes or less. For larger instances, they are not quite as good, especially for
the pr1002 instance, where the error ratio is close to 15%. To summarize,
in comparison to single-objective optimal or near optimal results, the search
methods we proposed in this paper to solve the B-RSP are quite promising
with regard to the relatively small computational time available and to the
size of the problem instances to be solved. Nevertheless, let us remind that
the comparison is here done with the best results we obtained during the
whole set of experiments we performed, and may not be as good for a single
simulation run.

4.5. Discussion

Two general-purpose cooperative schemes combining SEEA and the non-
iterative version of IBMOLS have been designed in this section for multi-
objective combinatorial optimization: a periodic one (PCS), and an adaptive
one (ACS). Indeed, ACS evolves adaptively according to the search scenario
and decides by itself, and on-line, when the cooperation must occur. An-
other benefit of ACS is the possibility of deliberately orienting the balance
between evolutionary search and local search. In comparison to stand-alone
metaheuristics, these two hybrid search methods statistically improve the
results on a large number of RSP instances, and particularly on large-size
ones. However, the efficiency difference between PCS and ACS is almost

7In fact, the authors imposed a time limit for their experiments. They report the best
solution found so far for the instances exceeding this time limit, which is the case for the
kroA200 instance with an α = 3, 5 and 9 in Table 8.

8http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
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Table 8: Error ratio between the cost value of the best known TSP solution and the best
single-objective ring cost value found in [1] in comparison to the best value found during
our experiments.

Instance Optimal TSP solution Optimal RSP solution [1]
α = 3 α = 5 α = 7 α = 9

eil51 0.67% 0.67% 0.75% 0.37% 0.69%
st70 0.31% 0.31% 0.49% 0.56% 0.42%

kroA100 0.08% 0.08% 0.05% 0.12% 0.00%

bier127 0.64% 0.64% 0.34% 0.52% 0.01%
kroA150 1.38% 1.01% 1.04% 0.17% 0.00%

kroA200 1.22% -4.82% 1.05% 0.69% -1.55%

pr264 2.26% - - - -
pr299 1.72% - - - -
pr439 4.63% - - - -

pr1002 14.51% - - - -

negligible. This can be explained by the fact that ACS spends, at each step,
a significant time to compute whether the cooperation should occur or not.
This is not the case in the frame of PCS, so that the latter devotes all of
its computational time to the search process. Moreover, in comparison to
single-objective approaches from the literature, the algorithms proposed in
this paper for the bi-objective RSP seem to provide good-quality solutions.

5. Further Comments

A new multi-objective routing problem, the bi-objective ring star prob-
lem, has been investigated in this paper for the first time. It aims at locating
a cycle through a subset of nodes of a graph while minimizing a ring cost,
related to the length of the cycle, and an assignment cost, from non-visited
nodes to visited ones. In spite of its clear bi-objective nature, this problem
has always been addressed in a single-objective way, either where both costs
are combined [1], or where one cost is regarded as a constraint [2, 15]. As
a first step, we proposed a set of four population-based metaheuristics to
approximate the efficient set for the problem under consideration, namely
I-IBMOLS [5], IBEA [6], NSGA-II [7], and SEEA, proposed here for the
first time. We concluded that I-IBMOLS was the overall most competi-
tive method, and that SEEA was a solid competitor. As a second step, we
designed two general-purpose cooperative schemes between SEEA and the
non-iterative version of IBMOLS for multi-objective combinatorial optimiza-

30



tion problems. And we illustrated the contribution of these hybridization
mechanisms to improve the performance of stand-alone methods.

Although the approaches proposed in this paper are already promising, a
few research directions are still open. First is the possibility to improve the
population initialization strategy used within every search method. Second,
we pointed out that the recombination operator designed for the problem
under study has a tendency to break the parent ring structures in the off-
spring individuals. Then, as proposed in [15], we could employ a traveling
salesman problem heuristic to improve the ring cost of newly generated so-
lutions. Third, given the number of mutation operators designed within the
evolutionary algorithms, it would be interesting to determine the appropri-
ate rate for each one of them in an adaptive way, such as in [48]. Note that
the last two points could largely improve the efficiency of evolutionary algo-
rithms, and then would be beneficial for the hybrid methods as well. Finally,
we found out that SEEA was a good alternative to state-of-the-art multi-
objective evolutionary algorithms when a given, relatively small, amount of
computational time is available. In the future, we plan to tackle other kinds
of combinatorial problems within SEEA to verify if our observations are still
valid, especially for problems where more than two objectives are involved.
The same remark can also be done with regard to the cooperative approaches
proposed in this paper.
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Montréal (1999).

32



[13] K. Miettinen, Nonlinear Multiobjective Optimization, Vol. 12, Kluwer
Academic Publishers, Boston, MA, USA, 1999.
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