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Abstract

This paper presents a multiple reference point approach for multi-objective
optimization problems of discrete and combinatorial nature. When approx-
imating the Pareto Frontier, multiple reference points can be used instead
of traditional techniques. These multiple reference points can easily be im-
plemented in a parallel algorithmic framework. The reference points can be
uniformly distributed within a region that covers the Pareto Frontier. An
evolutionary algorithm is based on an achievement scalarizing function that
does not impose any restrictions with respect to the location of the reference
points in the objective space. Computational experiments are performed on
a bi-objective flow-shop scheduling problem. Results, quality measures as
well as a statistical analysis are reported in the paper.
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1. Introduction

Multi-objective Optimization (MO) is one of most challenging areas in the
field of Multiple Criteria Decision Analysis (MCDA). Over the last decades,
a large number of papers were published in this field comprising both theo-
retical and applied works. The most challenging problems in MO are related
to the identification of the Pareto Frontier (PF), or an approximation of it
(PFA) for large-size and rather difficult MO problems. For such a purpose,
evolutionary algorithms seem more adequate than exact methods. How-
ever, the identification of the whole set or of an approximation of the PF is
frequently not necessary, an approximation of some specific regions suffices.
Indeed, when some preference information is provided by the Decision-Maker
(DM), diverse methods can guide, in an interactive manner, the search of the
potentially best compromise solution(s) (which is an efficient solution) in a
particular region of interest. Reference point methods are particularly ade-
quate to deal with this kind of situations; the preference information needed
by them has mainly the form of reference point(s) (or also any other informa-
tion that can be translated into reference point(s)). Reference point-based
methods use then an achievement scalarizing function to make projection of
the reference points onto the PF.

Contrary to the single-objective case, typically there is no unique opti-
mal solution for a MO problem. Instead, a set of solutions, called Pareto
solutions, efficient solutions, etc, represent the PF when transformed into
the objective space. A fundamental issue while trying to solve MO problems
is related to the cooperation between the DM and a computerized Decision
Support System (DSS). In general, the DSS includes a mathematical model
of the problem being solved along with a data base, an optimization solver,
and an interactive solution procedure. There are several approaches to the
roles that the DM could play in a decision-making process. Firstly, the
a priori approaches, where the DM is supposed to provide some knowledge
or preferences about the problem to be solved in order to help the DSS in
its search; practical experience shows that such methods are seldom effec-
tive. Separately, the a posteriori approaches, where the DSS aims at finding,
or approximating the whole set of efficient solutions; the DM then has to
choose his/her most preferred one. Finally, in interactive approaches, there
is a progressive direct interaction/cooperation between the DM and the DSS.

Over the last two decades, most of MO resolution methods proposed in
the literature were rather the a posteriori ones. A large part of them consist
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of approximating the set of efficient solutions and the corresponding PF using
an evolutionary algorithm. On the one hand, this is based on the belief that
the computing power of modern computers is unlimited, we can use them for
any complex problems and solution methods. This belief, however, is con-
tradicted by computational experience of solving complex problems: even
the most powerful computer of any generation can be easily saturated, due
to the non-linear dependencies of computational complexity on the amount
of data processed. Thus, a reasonable use of the existing computing power,
even if this power is tremendous due to the possibilities of parallel use of
computers in the network, still remains and will probably always remain a
fundamental problem. On the other hand, many interactive approaches are
based on the reference point method using achievement scalarizing functions
as proposed by Wierzbicki (1980) and developed by many other researchers;
see, for example, Wierzbicki et al. (2000). The reference point method re-
sults in projecting a given reference point (or a pair of them, usually called
reservation and aspiration points), that represents the objective, criteria or
outcome values desired by the DM, onto the set of efficient solutions. There
are diverse interaction protocols within the framework of reference point ap-
proaches, starting with just fully sovereign change of reference points by the
DM, through using additional trade-off information, up to visual interfaces
based on fuzzy specification of reference values. However, the result is fo-
cusing on a specific region of the objective space, thus avoiding the loss of
computational resources for searching solutions that may not interest the
DM at the end.

In this paper, we propose a new method combining the use of reference
points while trying to approximate the whole set of efficient solutions, or
a selected part of it. Instead of using a single reference point, the idea of
this a posteriori approach is to automatically define a set of points in such
a way that the objective space is uniformly divided, but entirely covered.
Each point gives rise to a corresponding achievement scalarizing function
that concentrates on a specific sub-region of the objective space. Thus, the
set of efficient solutions can be rebuilt by combining the output of all solvers.
Notice that the solvers can be launched in parallel since the problems of
optimizing a given achievement function can all be solved independently.
The proposed parallel multiple reference point approach can be used to solve
difficult real-world optimization problems, and it is here applied to a bi-
objective combinatorial scheduling problem.

The outline of the paper is as follows. Section 2 introduces some funda-
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mental concepts related to MO. Section 3 is devoted to the multiple reference
point approach proposed in the paper; the key issues being widely detailed.
Section 4 presents the parallel model and the implementation of the method.
Section 5 formulates a bi-objective Flowshop Scheduling Problem (FSP).
Section 6 shows the effectiveness of our approach by conducting experiments
on the FSP. Finally, the last section concludes the paper and draws some
perspectives.

2. Multi-objective Optimization (MO)

Many areas of the industry as, for example, telecommunications, trans-
portation, aeronautics, chemistry, mechanical, and environment, deal with
MO, where various conflicting objectives have to be considered simultane-
ously. This section briefly presents some basic concepts, definitions, and
notation for MO. The interested reader is referred to Miettinen (1999); Deb
(2001); Coello Coello et al. (2002) for more details about this field.

2.1. Basic Concepts

A general MO problem consists of optimizing a set of n ≥ 2 objective func-
tions f1(x), f2(x), . . . , fn(x). Each objective function can be either minimized
or maximized; or even stabilized, kept close to a given target level (Wierzbicki
et al., 2000). Here we assume, without loss of generality, that all are to be
minimized. A decision vector x = (x1, x2, . . . , xk) is represented by a vector
of k decision variables. Let X denote the set of feasible solutions in the deci-
sion space Rk

0 (X ⊆ Rk
0). To each decision vector x ∈ X is assigned exactly

one objective vector, z ∈ Z, on the basis of a vector function f : X → Z
with z = (z1, z2, . . . , zn) = f(x) = (f1(x), f2(x), . . . , fn(x)), where Z = f(X)
denotes the set of feasible points in the objective (or criterion) space Rn

(Z ⊆ Rn). Therefore, a MO problem can be formulated as follows:

“ min ” f(x) =
(
f1(x), f2(x), . . . , fn(x)

)

subject to: x ∈ X
(1)

Whereas solving a single-objective optimization problem generally results in
a unique optimal solution, a MO problem obtains rather a set of solutions
known as Pareto optimal. A fundamental concept is the one of dominance
that can be defined as follows.
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Definition 1 (Dominance). A solution x1 ∈ X dominates another so-
lution x2 ∈ X if and only if ∀i ∈ {1, . . . , n}, fi(x1) ≤ fi(x2) and ∃j ∈
{1, . . . , n} such that fj(x1) < fj(x2).

The following two concepts depend on the dominance concept.

Definition 2 (Efficiency). A solution x∗ ∈ X is efficient if and only if
there is not another solution x ∈ X such that x dominates x∗.

The whole set of efficient solutions is the Pareto optimal set, and is denoted
by XP . The image of a Pareto optimal solution in the objective space results
in a non-dominated outcome vector.

Definition 3 (Non-dominated outcome vector). A point z ∈ Z is a
non-dominated outcome vector if there exists at least one efficient solution
x ∈ XP such that z = f(x).

The set of all non-dominated outcome vectors is the Pareto Frontier (PF).
One of the possible approaches for solving MO problems consists of finding
PF or an approximation PFA. This depends on the practical computational
complexity of the problem, because finding a representation of PF is practi-
cally possible only if the resulting computational complexity is rather low.

Now, suppose that the optimum is known for each objective function,
then we can define the concept of ideal vector :

Definition 4 (Ideal vector). The ideal vector z∗ = (z∗1 , z
∗
2 , . . . , z

∗
n) is the

vector that optimizes each objective function individually

z∗i = min
x∈X

fi(x)

Of course, this ideal vector optimizing each objective function is rarely feasi-
ble as the objectives are often in conflict. Besides, the upper bounds for all
objectives of the PF can be represented by the nadir point zn. This nadir
point is much more difficult or impossible to compute (Miettinen, 1999),
especially when the number of objectives is more than two. A rough approx-
imation of the nadir point can be provided by recording the maximal values
of all objective functions obtained from their separate minimization, while
determining the ideal point.
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2.2. Achievement Scalarizing Functions
The achievement scalarizing function approach, proposed by Wierzbicki

(1980), is frequently used to solve MO problems. This technique is partic-
ularly well suited to work with reference points. A reference point gives
desirable or acceptable values for each one of the objective functions. These
objective values are called aspiration levels and the resulting objective vector
is called a reference point and can be defined either in the feasible or in the
infeasible region of the objective space. One of the families of achievement
functions can be stated as follows:

σ(z, z0,λ, ρ) = max
i=1,2,...,n

{
λi(zi − z0

i )
}

+ ρ
n∑

i=1

λi(zi − z0
i ) (2)

where σ is a mapping from Z onto R, z = (z1, z2, . . . , zn) is an objective
vector, z0 = (z0

1 , z
0
2 , . . . , z

0
n) is a reference point vector, λ = (λ1,λ2, . . . ,λn)

is a scaling coefficients vector (weighting coefficients), and ρ is an arbitrary
small positive number (0 < ρ) 1). The word family is used here to state that
several functions can be built according to the variability of the weighting
coefficients and the reference points.

Now, the following achievement problem can be built:

min σ(z, z0,λ, ρ)
subject to: x ∈ X

(3)

For a given reference point z0, two properties can be proved (Steuer, 1986):

i) if x! = arg minx∈X σ(z, z0,λ, ρ), then x! is an efficient solution;

ii) if x! is an efficient solution, then there exists a function σ(z, z0,λ, ρ)
such that x! is a (global) optimal solution of the achievement problem
given in (3).

Note that the weighting vectors can be normalized, and the set of all feasible
normalized weighting vectors can be represented as follows:

Λ =
{
λ = (λ1,λ2, . . . ,λn) |

n∑

i=1

λi = 1, λi > 0, i = 1, 2, . . . , n
}

Using different λ vectors for the same reference point z0 can lead to different
optimal solutions for the achievement problem defined in (3). This aspect
can be used to design a parallel algorithm dealing with the same reference
point and different weighting vectors.
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3. A Multiple Reference Point Approach

The goal of the proposed approach in this paper is to approximate the
whole PF by using multiple reference points. Using several reference points
is particularly well-suited to parallel computing since the resulting problems
can all be solved independently. The general principle of the algorithm con-
sists of generating a given number of reference points. These points are
generated according to, either a rough approximation of the bounds of the
PFA, or by reasonable upper and lower bounds provided by the DM. For
each reference point, a solver is assigned to it. This solver aims at finding
or approximating the efficient set corresponding to the pre-defined reference
point (and some weighting coefficients). The reference point solvers are all
launched in a parallel way and a master process preserves and then merges
the approximated efficient set found by these subprocesses.

In this section, the multiple reference point approach is described after
having introduced some essential issues relating to its design.

3.1. Fundamental Issues

This subsection introduces some fundamental aspects for the design of
the multiple reference point method. Firstly, a way of estimating the bounds
of the PFA is given. Secondly, a description of how to generate multiple
reference points is detailed. Finally, a single reference point solver is proposed
to be used as a subroutine of the main algorithm.

3.1.1. Estimating the Bounds of the Pareto Frontier
As pointed out in Subsection 2.1, computing the nadir point zn is rather

a hard task, and even more difficult for discrete MO problems of large-size.
Furthermore, computing the exact ideal point z∗ is usually unfeasible as
soon as we deal with large-size instances. However, in the work established
in this paper, they are required to generate the initial set of reference points
to be used by the algorithm. We should then find only a sufficiently good
approximation of these two points. These approximations will be denoted by
z∗

A
and znA

, respectively.
Let us consider two legitimate options for performing such a task. On the

one hand, if the DM is able to provide reasonable upper and lower bounds
for each objective function, ideal and nadir computations or approximations
rely then upon such an initial scaling information. From our experience, it
is always conceivable to ask the DM to give some pieces of initial preference
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information or knowledge about the problem to be solved. Furthermore,
let us notice that metaheuristic algorithms can, in general, not run fully
automatically without some initial information. At least, for instance, the
starting solution or population, even if provided by some random number
generator, usually needs some initial scaling.

On the other hand, if the DM is not able to provide any piece of pref-
erence information, another option is to approximate these points by means
of a related search method to be performed over a relatively small number
of iterations. Generally speaking, evolutionary multi-objective algorithms
give set-valued but discrete approximations of the PFA; the ideal and the
nadir points of such approximations can then be computed. The difficulty
of estimating nadir points is related to the original problem and to the fact
that such evolutionary approximations might badly approximate a PF close
to the nadir point. Therefore, it is important to apply at least two aspects
of an evolutionary multi-objective algorithm. One is to use a strategy stress-
ing diversity, or generally enhancing the importance of the extreme values
of the discrete set-valued approximation of the PF; there might be several
such strategies (Szczepański and Wierzbicki, 2003). Another is to use a stop-
ping criterion that involves the diameter of the approximation of the PF,
measured as the distance between the nadir and the ideal points. If this
diameter stabilizes in subsequent iterations, it indicates that either the ap-
proximation is already good (because a good approximation of the nadir
point is one of the most difficult aspects of the entire PFA) or that the algo-
rithm specifically applied cannot produce further improvement (which can al-
ways happen with heuristic algorithms). Szczepański and Wierzbicki (2003)
provide a good overview of diverse examples. Notice that the approxima-
tion must be corrected by broadening it by some factor. This “broadening”
is necessary for many reasons, starting with the fact that an evolutionary
multi-objective algorithm approximates the distance ideal-nadir from below,
and such “broadening” is even used when running classical nonlinear multi-
objective optimization.

To approximate the ideal and the nadir points, Deb et al. (2006) proposed
a modified NSGA-II procedure that focuses its search towards the extremities
of the PF. Then, the best and worst objective values are computed among
the final PFA, and can be used to constitute the approximated ideal and
nadir objective vectors, z∗

A
and znA

. To do so, this algorithm uses a di-
versity maintaining strategy, based on an extremized crowding distance that
emphasizes the importance of the worst objective solutions. The reader is
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Figure 1: Cutting plane in the objective space for a two-objective problem.

referred to Deb et al. (2006) for more details about this approach.

3.1.2. Generating Multiple Reference Points
There might exist several ways of generating multiple reference points.

The most intuitive is perhaps the random generation over a predefined area of
the objective space. This simple way, however, does not seem to be adequate
to our case. The random generation can be so random that it does not
cover a predefined area. This is the reason why we propose to define a quite
uniform distribution of the multiple points over a predefined area. After
having defined the bounds for each objective function, an area is built in such
a way that it covers all the feasible region of the objective space. Figure 1
shows how to proceed when two objectives are involved. Let us assume, for
the sake of simplicity, that the bounds can be defined in a more or less exact
way. How to proceed? A possible way is to perform the following steps:

1. Compute the ideal point z∗ or a good approximation of it z∗
A
;

2. Compute the nadir point zn or a good approximation of it znA
;
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3. Consider the box formed by these points, and define a cutting plane as
the “diagonal” of this box;

4. If necessary, relax the extreme points of such a cutting plane and obtain
the cutting plane used to generate the reference points;

5. Uniformly generate the reference points, according to the number of
processors available.

Figure 1 illustrates how to define this cutting plane. There are two em-
bedded rectangles. The small one was built from z∗ and zn. The diagonal,
represented by the dashed line connecting the two opposing vertices can be
used as a first cutting plane. Then, we relax this line in order to get the solid
style one. This is done to avoid the use of the extreme points as reference
ones, since they are non-dominated. Obviously, when dealing with approx-
imations of the ideal and nadir points, we do not need to perform such a
relaxation. In continuous multi-objective linear models, the plane covers the
whole non-dominated region which is above the plane (when all the objective
functions are to be minimized). In discrete MO, it is, however, not always
the case as we can observe in Figure 1 where we just build a cutting plane
by moving a little bit up the dashed line. There are non-dominated outcome
points below and above the cutting line. This does not raise any problem
since the achievement function that will be used does not impose any con-
straints on the location of the reference points. Such a conclusion is not
true when using a (weighting) Chebychev metric, as it is the case in many
research works done in interactive decision-making tools.

The following figure shows how to define initial reference points for a three
objectives problem. In such a case, the area is represented by a triangle. It
shows a grid of fifteen reference points, built from the ideal point z∗ and the
nadir point zn, or good approximation of them (z∗

A
and znA

, respectively).
Note that this principle can be easily generalized for n-dimensional problems,
but the required number of reference points grows exponentially with n.

3.1.3. A Single Reference Point Evolutionary Algorithm
In this subsection, we present an evolutionary algorithm based on the

achievement functions introduced in Subsection 2.2 and designed to be used
with a single reference point z0 and a single weighting coefficients vector λ.
This single reference point search method will appear as a subroutine of the
main algorithm in order to solve the problem resulting from z0 and λ. Note
that this is not a pure single-objective optimization problem since we are
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Figure 2: Generating initial reference points for a three-objective problem.

interested in getting a certain number of non-dominated solutions. This is
illustrated in Figure 3 and Figure 4. Different kinds of methods can be
used to tackle such a problem (exact methods, heuristics, or metaheuristics),
and here we choose to design an evolutionary algorithm. It consists of the
Preference-Based Evolutionary Algorithm (PBEA) proposed by Thiele et al.
(2009). As the problem function is used to get efficient solutions, now we can
talk in terms of approximate efficient solutions. Then, PBEA aims at pro-
ducing a good, probably small, set of approximate efficient solutions related
to z0 and λ.

PBEA is a variant of the Indicator-Based Evolutionary Algorithm (IBEA)
proposed by Zitzler and Künzli (2004), where preference information is taken
into account through a reference point. The main idea behind IBEA is to
introduce a total order between solutions by generalizing the dominance rela-
tion given in Definition 1 by means of an arbitrary binary quality indicator I.
Indeed, its fitness assignment scheme is based on a pairwise comparison of
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solutions from the current population, based on a user-given indicator I. To
each individual x is then assigned a fitness value F (x) measuring the “loss in
quality” if x was removed from the current population (Zitzler and Künzli,
2004). Selection for reproduction consists of a binary tournament between
randomly chosen individuals. And selection for replacement consists of it-
eratively removing the worst solution from the current population until the
required population size is reached. Fitness information of the remaining
individuals is updated each time there is a deletion. A detailed description
of IBEA is reproduced below.

Several binary indicators can be used in (4). As an example, Zitzler and
Künzli (2004) define the binary additive ε-indicator (Iε+) as follows:

Iε+(x, x′) = max
i∈{1,...,n}

{fi(x) − fi(x
′)} (6)

It computes the minimum value by which a solution x ∈ X has to be, or can
be, translated in the objective space to weakly dominate another solution x′ ∈
X.

In order to take preference information into account by means of a refer-
ence point, Thiele et al. (2009) propose the so-called preference-based quality
indicator based on the achievement function given in Definition 2. First, a
normalized achievement function is defined.

σ(f(x), z0,λ, ρ, δ) = σ(f(x), z0,λ, ρ) + δ − min
x′∈P

{σ(f(x′), z0,λ, ρ)} (7)
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Indicator-Based Evolutionary Algorithm (IBEA).
1. Initialization. Start with a user-given initial population P of size N ,

or generate it randomly.
2. Fitness assignment. Compute the fitness values of individuals in P :

F (x) ←
∑

x′∈P\{x}

(−e−I(x′,x)/κ) (4)

where κ > 0 is a user-defined scaling factor.
3. Environmental selection. Iterate the following steps until the size

of the population P does not exceed N :
(a) Choose an individual x! ∈ P with the smallest fitness value:

F (x!) ≤ F (x) for all x ∈ P .
(b) Remove x! from P .
(c) Update the fitness values of the remaining individuals. For all

x ∈ P :
F (x) ← F (x) + e−I(x!,x)/κ (5)

4. Termination. If a stopping condition is satisfied, return the non-
dominated solutions of P . Stop.

5. Mating pool selection. Perform binary tournament selection with
replacement on P in order to fill the temporary mating pool P ′.

6. Variation. Apply recombination and mutation operators to the mat-
ing pool P ′ and add the resulting offspring to P . Go to Step 2.

The parameter δ > 0 is a specificity, representing the minimal value of the
normalized function. Then, the preference based quality indicator Ip can be
defined as follows:

Ip(x, x′) = Iε+(x′, x)/σ(f(x), z0,λ, ρ, δ) (8)

This quality indicator can now be used in (4) to set the fitness values of a
population P . The resulting algorithm is referred to as PBEA.

In order to (approximately) give the same amplitude to each objective
function, note that we replace each element zi of an objective vector z with
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a normalized value by using the (approximated) ideal and nadir points:

zi − z!
i

zn
i − z!

i

(9)

Moreover, an external archive A has been added to PBEA in order to store
the current approximated efficient set. It is updated with new non-dominated
solutions at each iteration of the algorithm.

3.2. Outline of the Method

The parallel multiple reference point approach proposed in this paper can
be divided into two consecutive phases. The first one, called the preparation
phase, is devoted to the design of several versions of a PBEA by i) estimating
the bounds of the PF, ii) generating multiple reference points, and iii) de-
signing a version of the solver for each reference point. The second phase is
the running phase and consists of launching a PBEA version for every refer-
ence point in every processor, until a stopping condition is fulfilled. Details
about the search method are summarized above.

3.2.1. Preparation Phase
The preparation phase is devoted to assign an equal number of CPUs

and reference point vectors by:

1. Getting a very rough common sense estimation of lower bounds and
upper bounds for all objective functions. This estimation can either be
given by the DM, or approximated automatically (see Subsection 3.1.1).

2. A possible stopping test for the latter algorithm can be stated as fol-
lows. First, determine the outer diameter (Chebychev norm of the
distance between the current lower and upper bound) for the current
efficient set approximation. Then, compare it with the former esti-
mation of the outer diameter. If the difference between both values
remains constant over a user-given number of iterations, stop.

3. Imagining a cutting plane through the area (of normalized ranges of
objectives), and defining a uniform distribution of reference points in
this area.

4. Assigning to every computer a PBEA version with a quality indicator
function related to an achievement scalarization function defined by a
reference point z0 and a weighting vector λ.
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3.2.2. Running Phase
The running phase consists of performing a PBEA version in parallel until

a stopping condition is verified. The output of each reference point solver is
then merged to obtain the efficient set approximation. The overall algorithm
is outlined next.

Parallel Multiple Reference Point Evolutionary Algorithm (PMRPEA).
1. Start with a user-given approximation of the objective ranges; use this

approximation as an initial estimation of the bounds of the PFA to
determine the initial ideal and nadir point approximations, z∗

A
and

znA
.

2. Set d! ← outer diameter of these bounds, measured by ||znA − z∗
A ||.

3. Set λ = (1/n, 1/n, . . . , 1/n), where n is the number of objective func-
tions.

4. Generate m initial reference points z0(1), z0(2), . . . , z0(m) in a uniform
way by using the (approximated) bounds of the PF.

5. Generate m initial populations P1, P2, . . . , Pm of size N .
6. For i ← 1 to m, perform in parallel (on m processors):

Ai ← PBEA(Pi, G, z0(i), λ, ρ)

until a stopping condition is verified.
7. Return the non-dominated solutions of A1 ∪ A2 ∪ . . . ∪ Am.

4. Parallel Model and Implementation

To design the algorithm proposed in the paper, two levels of parallelism
may be used: the reference point level and the evolutionary algorithmic level.
First, at the reference point level, using multiple reference points can natu-
rally be implemented in a parallel algorithmic framework, since the resulting
single-reference point solvers can all be launched independently. Moreover,
we observed that multiple weighting coefficients vectors can also be used
for the same reference point, what gives rise to a second level of paral-
lelism. Next, at the evolutionary algorithmic level, three models can be
distinguished (Melab et al., 2006). The first one is the Island model, which
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consists of deploying the same evolutionary algorithm on the islands with dif-
ferent parameters. In our case, let us remark that the reference points can be
considered as the parameters. The second one, the parallel evaluation of the
population consists of distributing the evaluation of the objective value(s) of
solutions contained in the population between different “workers”. The last
one is the distributed evaluation of a single solution, where the evaluation
of one solution is itself parallelized (when it is possible and interesting to do
it). For the sake of simplicity, here we only focus our attention on the paral-
lelism at the reference point level. To this end, we will implement the single
reference point-based evolutionary algorithm as described in Subection 3.1.3.
But, of course, any other reference point evolutionary algorithm can be used.
For instance, a more advanced version of this evolutionary algorithm that
would intrinsically involve parallelism can be considered instead of this sim-
ple model. The interested reader is referred to Melab et al. (2006) for more
details about parallel and distributed metaheuristics.

In terms of implementation, ParadisEO (http://paradiseo.gforge.
inria.fr) has been used. ParadisEO (Cahon et al., 2004) is a white-box
object-oriented software framework devoted to the flexible design of meta-
heuristics. It is composed of four connected modules: ParadisEO-EO for
population-based metaheuristics, ParadisEO-MO for single solution-based
metaheuristics, ParadisEO-MOEO for multi-objective metaheuristics, and
finally ParadisEO-PEO for parallel and distributed metaheuristics. More-
over, ParadisEO also includes tools for the design of hybrid and coopera-
tive models. The single reference point evolutionary algorithm introduced
in Subsection 3.1.3, PBEA, has been implemented using the ParadisEO-
MOEO (Liefooghe et al., 2009) module of ParadisEO. The ParadisEO-PEO
module is based on the other modules of ParadisEO, so that PBEA instances
can directly be used in the implementation of the parallel multiple reference
point algorithm. Using ParadisEO-PEO, different types of parallel and dis-
tributed architectures may be used. In our case, the implementation of the
parallel algorithm is based on the Message Passing Implementation (MPI)
library. MPI is a parallel programming environment allowing a portable
deployment on networks of heterogeneous workstations.

5. A Case Study

The FSP is one of the most well-known scheduling problems and has been
widely studied in the literature. The majority of works devoted to this prob-
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Figure 5: Example of a solution for a permutation FSP where 3 jobs (J1, J2, J3) have to
be scheduled on 4 machines (M1, M2, M3, M4).

lem considers it on a single-objective form and mainly aims at minimizing the
makespan (i.e. the total completion time). However, many objective func-
tions, varying according to the particularities of the tackled problem, may
be considered and some multi-objective approaches have also been proposed.
For a survey on this topic, see for instance Nagar et al. (1995); T’Kindt and
Billaut (2002); Landa Silva et al. (2004); Minella et al. (2008).

Following the formulation of a multi-objective permutation FSP, this sec-
tion presents some complexity issues and various works related to the problem
under consideration.

5.1. Problem Definition

Solving the FSP consists of scheduling N jobs {J1, J2, . . . , JN} on M ma-
chines {M1, M2, . . . , MM}. Machines are critical resources, i.e. one machine
cannot process more than one job at a time. Each job Ji is composed of
M consecutive tasks {ti1, ti2, . . . , tiM}, where tij represents the jth task of
the job Ji, requiring the machine Mj . A processing time pij is associated to
each task tij; and a due date di is given to each job Ji (the deadline of the
job). In this study, we focus on the permutation FSP, where the operating
sequences of the jobs are identical and unidirectional for every machine, as
illustrated in Figure 5. Then, for a problem instance of N jobs, there exists
N ! feasible solutions.

Many objective functions may be tackled while scheduling tasks on sev-
eral machines (Nagar et al., 1995). The FSP that we consider here aims
at minimizing the following ones: the makespan (Cmax) and the total tardi-
ness (T ). These objectives are among the most widely investigated in the
literature (Nagar et al., 1995; T’Kindt and Billaut, 2002; Landa Silva et al.,
2004; Minella et al., 2008). For each task tij being scheduled at the time sij ,
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they are computed as follows:

Cmax = max
i∈{1,...,N}

{siM + piM} (10)

T =
N∑

i=1

{
max{0, siM + piM − di}

}
(11)

With respect to Graham et al. (1979), this problem can be denoted by
F/perm, di/(Cmax, T ).

5.2. Complexity Issues

Even if it can be solved in polynomial time by using the Johnson’s algo-
rithm (Johnson, 1954) for two machines, the FSP of minimizing the makespan
has been proven to be NP-hard for three or more machines (Lenstra et al.,
1977). The objective of minimizing the total tardiness is already NP-hard
for one machine (Du and Leung, 1990), what possibly explains the small
number of studies dealing with minimizing the total tardiness in the case of
M machines (Kim, 1995). Hence, as minimizing the makespan and the total
tardiness independently is already NP-hard, medium and large-size instances
can generally not be solved exactly.

5.3. Related Works

The methods proposed in the literature for the resolution of multiple ob-
jective scheduling problems vary from exact methods, specific heuristics and
metaheuristics. In their survey, Nagar et al. (1995) classify the scheduling
problems according to different characteristics, including shop configuration
(single or multiple machines) and objectives (two- or more-than-two objec-
tives). The majority of FSP works on multiple machine has been restricted
to the treatment of one objective at a time (generally the makespan or the
sum of completion times). Moreover, most of multi-objective scheduling
applications deal with two-machine and/or bi-objective problems, and con-
centrate on FSPs. T’Kindt and Billaut (2002) provide an overview on multi-
objective scheduling for both researcher and industrial points of view. They
provide models and a topology for single- and multi-objective scheduling
problems, and describe some exact and heuristic algorithms to tackle them.
Landa Silva et al. (2004) provided a survey about metaheuristics for solv-
ing multi-objective scheduling problems. It seems that the most commonly
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Figure 7: Two-point crossover.

used approaches are genetic algorithms and local searches, but also algo-
rithms hybridizing both or hybridizing metaheuristics with exact methods.
More recently, Minella et al. (2008) provided a review of the literature for
multi-objective flowshop scheduling, together with a complete computational
evaluation and comparison of a number of algorithms on some bi-objective
variants of the problem.

5.4. Problem-related Implementation Issues
The problem-related components involved in the evolutionary algorithm,

and used for the specific case of the FSP under consideration are the following
ones:

• Individual representation: sequence of jobs scheduled in one machine.
A solution of an instance with N jobs and M machines is represented
by a permutation of size N .

• Initialization: Randomly generated solutions.

• Mutation: Insert mutation (Ishibuchi and Murata, 1998) (see Figure 6).

• Crossover: Two-point crossover (Ishibuchi and Murata, 1998) (see Fig-
ure 7).

6. Computational Experiments

In this section, computational experiments are performed on the parallel
multiple reference point algorithm applied to the multi-objective FSP intro-
duced in the previous section. The experimental protocol used to evaluate
the quality of the algorithm is first described. Then, some results are given
and discussed in order to extract some useful information about the proposed
approach.
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6.1. Experimental Protocol

In order to quantify the effectiveness of the proposed approach, we com-
pare its behavior to both NSGA-II (Deb et al., 2000) and IBEA (Zitzler and
Künzli, 2004). The first one is often used as a reference to be compared
with for MO. The latter is also investigated because the PMRPEA subpro-
cedures are based on an IBEA-variant, so that the impact of the proposed
parallelization scheme will be fairly measured at the implementation level.

6.1.1. Characteristics of the Computer Network
The experiments have been conducted on a cluster of 2 nodes, each one

being composed of 2 Xeon 5060 CPUs (3.2 GHz, 2 × 2 MB, 4 Gb RAM).
Hence, a total number of 16 processors interconnected in a distributed com-
puting environment were available.

6.1.2. Benchmark Test Instances
To evaluate the performance of the mechanisms introduced in this paper,

we consider a set of benchmark test instances (Liefooghe et al., 2007). These
benchmark test instances are available at the URL: http://www.lifl.fr/

~liefooga/benchmarks/. They have been built from Taillard instances for
the single-objective FSP (Taillard, 1993) and extended to the bi-objective
case by adding a due date for every job. These due dates are fixed using a
value randomly generated between p × M and p × (N + M − 1), where N
stands for the number of jobs, M for the number of machines and p for the
average processing time for the instance under consideration. Thus, a due
date roughly lies between the average completion date of the first scheduled
job and the average completion date of the last scheduled job. During our
experiments, we will consider a set of 8 instances involving between 20 and
100 jobs and between 5 and 20 machines. An instance denoted by N ×M × i
represents the ith instance composed of N jobs and M machines.

6.1.3. Parameter Values Settings
A preliminary experimental phase has been performed to determine the

parameter values used during our experiments. They are summarized in
Table 1. The stopping condition has been motivated by the fact that,
after 5000 generations with no improvement, we can reasonably think that
the evolutionary algorithm has reached its convergence. However, a non-
improving iteration is difficult to define while dealing with MO. Here, we state
that an iteration is non-improving if there are no potential non-dominated
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Table 1: Parameter settings.
Parameter Value

Number of reference points 10
Population size 100

Max. number of iterations without improvement 5000
Maximum runtime 30 minutes

Crossover rate 0.8
Mutation rate 1.0

κ (PBEA and IBEA) 0.05
δ (PBEA) 10−2

ρ (PMRPEA) 10−4

solutions that can be included into the archive. In addition, a maximum
runtime of 30 minutes was allowed. Let us notice that the reference points
have been specified as described in Subsection 3.1.2. The starting ideal and
nadir point approximations were specified “manually”; that is, simulating
initial information as if it was given by an experienced DM.

6.1.4. Performance Assessment
In the frame of MO, the performance assessment of a number of algo-

rithms in solving the same problem is a key issue. In this study, a set of
30 runs per instance is performed for each evolutionary algorithm. In order
to evaluate the quality of the approximations for every instance we experi-
mented, the protocol proposed by Knowles et al. (2006) was adopted. For
a given instance, let Zall denotes the union of the outputs we obtained dur-
ing all our experiments. Let us notice that this set probably contains both
dominated and non-dominated points, as a given approximation may contain
vectors dominating the ones of another approximation, and vice-versa. We
first compute a reference set PFA containing all the non-dominated points
of Zall plus any other existing best know non-dominated set for the problem
under consideration. Second, we define zmax = (zmax

1 , . . . , zmax
n ), where zmax

k

denotes the upper bound of the kth objective for all the points contained
in Zall. In order to give a roughly equal range to the objective functions, val-
ues are normalized with respect to zmax. Now, to measure the quality of an
output set A in comparison to PFA, we compute the difference between these
two sets by using the unary hypervolume metric (Zitzler et al., 2003), zmax

being the reference point. The hypervolume difference indicator (I−H) com-
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putes the portion of the objective space that is weakly dominated by PFA and
not by A. The closer this measure is to 0, the better is the approximation A.
Furthermore, we also consider the additive ε-indicator proposed in (Zitzler
et al., 2003). The unary additive ε-indicator (I1ε+) gives the minimum factor
by which an approximation A can or has to be translated in the objective
space to weakly dominate the reference set Z!

N . As a consequence, for each
test instance, we obtain 30 I−H measures and 30 Iε+ measures, corresponding
to the 30 simulation runs, per algorithm. Once all these values are computed,
we first compute an average value per metric. Additionally, we perform a sta-
tistical analysis for a pairwise comparison of methods. To this end, we use
the Wilcoxon signed rank test (Wilcoxon, 1945). Such a non-parametric sta-
tistical test is motivated by the fact that samples collected here correspond
to matched samples. Indeed, for a given simulation run, the random seed
numbers are identical for all the algorithms, so that the final indicator values
can be taken as pairs. Details for this statistical testing procedure are given
in (Knowles et al., 2006). Hence, for a given test instance, and with respect
to the p-value and to the metric under consideration, this statistical test
reveals that if the sample of approximation sets obtained by a given search
method is significantly better than the one of another search method, or if
there is no significant difference between both. Note that all the performance
assessment procedures have been achieved using the performance assessment
tool provided in PISA (Bleuler et al., 2003).

6.2. Results and Discussion

Results are summarized in Tables 2, 3, and 4. PMRPEA denotes the
parallel multiple reference point evolutionary algorithm introduced in this
paper. Let us notice that the running time was differently measured on the
algorithms. The comparison between the algorithms is a little bit unfair
because the computation load used for the parallel algorithm is, of course,
higher than the existing ones. However, the latter have been designed and
implemented in a sequential way by the original authors. According to the
experimental protocol defined above, the first set of experiments revealed
that PMRPEA results was significantly better than the ones of IBEA and
NSGA-II on all instances with respect to both metrics. However, as it can be
seen in Table 2, the average runtime of PMRPEA is always higher than the
one of the other algorithms under investigation. That is the reason why we
performed another set of experiments where the PMRPEA search process
was stopped after a smaller runtime. The corresponding algorithm is de-
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Table 2: Comparison of the different algorithms with respect the average runtime, the
average I−H-value and the average Iε+-value.

benchmark average average average
instance runtime I−H-value Iε+-value

(seconds) (×10−1) (×10−1)
020 × 05 × 01 PMRPEA 311.1 0.942 1.582

PMRPEA-2 111.0 0.967 1.618
IBEA 111.5 1.905 2.046
NSGA-II 124.9 1.722 2.000

020 × 10 × 01 PMRPEA 345.0 0.212 0.492
PMRPEA-2 147.0 0.229 0.508
IBEA 147.4 0.912 1.090
NSGA-II 182.6 0.760 1.035

020 × 20 × 01 PMRPEA 510.0 0.493 0.852
PMRPEA-2 210.0 0.514 0.881
IBEA 210.7 1.900 2.446
NSGA-II 218.1 2.023 2.532

050 × 05 × 01 PMRPEA 517.1 0.740 0.738
PMRPEA-2 254.0 0.750 0.745
IBEA 258.0 1.630 1.265
NSGA-II 254.2 1.522 1.231

050 × 10 × 01 PMRPEA 794.4 2.759 2.267
PMRPEA-2 640.0 2.776 2.275
IBEA 640.1 3.398 2.855
NSGA-II 767.6 3.421 2.870

050 × 20 × 01 PMRPEA 1000.7 2.119 1.886
PMRPEA-2 561.0 2.184 1.923
IBEA 561.0 3.558 2.995
NSGA-II 934.9 3.109 2.767

100 × 10 × 01 PMRPEA 1550.6 2.748 2.252
PMRPEA-2 1060.0 2.817 2.303
IBEA 1060.5 4.643 4.028
NSGA-II 1260.3 3.889 3.367

100 × 20 × 01 PMRPEA 1740.5 2.666 2.280
PMRPEA-2 1620.0 2.665 2.285
IBEA 1620.3 3.424 2.872
NSGA-II 1702.8 3.277 2.965
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Table 3: Wilcoxon rank test p-values with respect to the I−H metric. Either the algorithm
located at a specific row significantly outperforms the algorithm located at a specific
column (represented by a gray or light-gray area for a p-value less or equal to 0.01 or to
0.05, respectively), or there is no significant difference between both (represented by a
white area).

IBEA NSGA-II PMRPEA-2
020 × 05 × 01 PMRPEA

PMRPEA-2 -
020 × 10 × 01 PMRPEA

PMRPEA-2 -
020 × 20 × 01 PMRPEA

PMRPEA-2 -
050 × 05 × 01 PMRPEA

PMRPEA-2 -
050 × 10 × 01 PMRPEA

PMRPEA-2 -
050 × 20 × 01 PMRPEA

PMRPEA-2 -
100 × 10 × 01 PMRPEA

PMRPEA-2 -
100 × 20 × 01 PMRPEA

PMRPEA-2 -

noted by PMRPEA-2. For a given benchmark test instance, the PMRPEA-2
maximum runtime was set as the minimum value between the average run-
time of IBEA and the average runtime of NSGA-II, observed from previous
experiments. Given that average runtime of our algorithm (PMRPEA) was
higher than the remaining ones, it seems to us that the minimum average
runtime of the other algorithms is a “natural” choice to verify that, with the
same available CPU time, PMRPEA is still better than other algorithms.
However, PMRPEA-2 also obtained significantly better I−H- and Iε+-values
than IBEA and NSGA-II on every instance we tested. Besides, PMRPEA-2
is predominantly outperformed by PMRPEA, except for large-size instances
of 100 jobs, where the difference between both is not significant, see Tables 3
and 4.
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Table 4: Wilcoxon rank test p-values with respect to the Iε+ metric. Either the algorithm
located at a specific row significantly outperforms the algorithm located at a specific
column (represented by a gray or light-gray area for a p-value less or equal to 0.01 or to
0.05, respectively), or there is no significant difference between both (represented by a
white area).

IBEA NSGA-II PMRPEA-2
020 × 05 × 01 PMRPEA

PMRPEA-2 -
020 × 10 × 01 PMRPEA

PMRPEA-2 -
020 × 20 × 01 PMRPEA

PMRPEA-2 -
050 × 05 × 01 PMRPEA

PMRPEA-2 -
050 × 10 × 01 PMRPEA

PMRPEA-2 -
050 × 20 × 01 PMRPEA

PMRPEA-2 -
100 × 10 × 01 PMRPEA

PMRPEA-2 -
100 × 20 × 01 PMRPEA

PMRPEA-2 -

7. Conclusion and Directions for Future Research

This paper dealt with the design of a parallelization strategy to efficiently
approximate the Pareto Frontier. Multiple reference points were used to uni-
formly divide the objective space into different areas. For each reference
point, a set of approximate efficient solutions was found independently, so
that the computation was performed in parallel. The proposed approach
was applied to a real-world bi-objective combinatorial optimization problem
which provided important results. In this parallel multiple reference point
approach proposed for solving multi-objective optimization problems, the
parallelization of evolutionary multi-objective optimization algorithms was
combined with the use of a reference point approach. On the one hand,
the problem can be formulated as follows: how to parallelize the resolution
method by separating a number of regions in the objective space, then ap-
plying an evolutionary algorithm in each region, then combining the results?
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The clear motivation is to exploit the power of computer networks. On the
other hand, the concept of reference points can be naturally used to sep-
arate regions of interest in the objective space, and then to parallelize the
computations.

The outcomes of our tests show that the parallelization of evolutionary
multi-objective optimization algorithms based on reference point methods
gives very promising and statistically significantly better results than the
comparable non-parallel evolutionary multi-objective algorithm. However,
many further issues should be studied in future work. One of them is defin-
ing and analyzing statistically the speed-up factor due to parallelization.
Another is analyzing diverse possible versions of parallelization, the impact
of a larger number of objectives, etc. For example, it includes using different
weighted vectors for the same reference point (Murata et al., 2001; Zhang
and Li, 2007; Luque et al., 2009; Ruiz et al., 2009). Moreover, the issue
of overlapping solutions resulting from the application of diverse reference
points should be investigated in more detail, even if the results of experi-
ments performed until now did not indicate that this issue is a major one.
The concept of g-dominance can be used for such a purpose (Molina et al.,
2009). An additional aspect for future research is to take into account the
shape of the Pareto Frontier. A method for estimating this shape can be
found in (Hernández-Dı́az et al., 2007). Finally, interactive versions of the
algorithms proposed in this paper are also possible, together with a ques-
tion of possible dynamic modifications of reference points. Indeed, as it was
previously pointed out, one of the fundamental aspects of reference point
approaches, given from experiments, is the fact that the closer is a reference
point to the Pareto Frontier, the faster it is to get a non-dominated outcome
vector. Based on this observation, a dynamic update of reference points
is suitable to reach non-dominated outcome vectors quicker. Figure 8 illus-
trates a way of updating a reference point. We can start with a first reference
point, represented by a diamond (-) and get a first solution represented by
a circle (◦), that is the best found approximate solution with regards to the
reference point and the achievement function under consideration. A simple
rule for updating this reference point could be to use a linear convex com-
bination to obtain a point in between the current reference point and the
obtained solution. Proceeding in the same way, we can observe the path that
leads to get a non-dominated outcome vector, represented by a bullet (•).
Note that, if we use several linear combinations, we could spread the number
of reference points and define another level of parallelization.
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Szczepański, M., Wierzbicki, A., 2003. Application of multiple criteria evolu-
tionary algorithms to vector optimisation, decision support and reference
point approaches. Journal of Telecommunications and Information Tech-
nology 3, 16–33.

Taillard, E. D., 1993. Benchmarks for basic scheduling problems. European
Journal of Operational Research 64, 278–285.

Thiele, L., Miettinen, K., Korhonen, P. J., Molina, J., 2009. A preference-
based evolutionary algorithm for multi-objective optimization. Evolution-
ary Computation 17 (3), 411–436.

T’Kindt, V., Billaut, J.-C., 2002. Multicriteria Scheduling: Theory, Models
and Algorithms. Springer-Verlag, Berlin, Germany.

Wierzbicki, A., 1980. The use of reference objectives in multiobjective op-
timization. In: Fandel, G., Gal, T. (Eds.), Multiple Objective Decision
Making, Theory and Application. No. 177 in Lecture Notes in Economics
and Mathematical Systems. Springer-Verlag, pp. 468–486.

Wierzbicki, A. P., Makowski, M., Wessels, J. (Eds.), 2000. Model-Based Deci-
sion Support Methodology with Environmental Applications. Kluwer Aca-
demic Publishers, Dordrecht.

30



Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics
1, 80–83.

Zhang, Q., Li, H., 2007. MOEA/D: A multiobjective evolutionary algorithm
based on decomposition. IEEE Trans. Evolutionary Computation 11 (6),
712–731.

Zitzler, E., Künzli, S., 2004. Indicator-based selection in multiobjective
search. In: Proceedings of the 8th International Conference on Parallel
Problem Solving from Nature, Birmingham, U.K. (PPSN VIII). Vol. 3242
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
pp. 832–842.

Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C. M., Grunert da Fonseca,
V., 2003. Performance assessment of multiobjective optimizers: An anal-
ysis and review. IEEE Transactions on Evolutionary Computation 7 (2),
117–132.

31


