N

N

A software framework based on a conceptual unified
model for evolutionary multiobjective optimization:
ParadisEO-MOEO
Arnaud Liefooghe, Laetitia Jourdan, El-Ghazali Talbi

» To cite this version:

Arnaud Liefooghe, Laetitia Jourdan, El-Ghazali Talbi. A software framework based on a conceptual
unified model for evolutionary multiobjective optimization: ParadisEO-MOEOQO. European Journal of
Operational Research, 2011, 209 (2), pp.104-112. 10.1016/j.ejor.2010.07.023 . hal-00522612

HAL Id: hal-00522612
https://hal.science/hal-00522612
Submitted on 1 Oct 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00522612
https://hal.archives-ouvertes.fr

European Journal of Operational Research xxx (2010) XXX—XXX

journal homepage: www.elsevier.com/locate/ejor

Contents lists available at ScienceDirect

European Journal of Operational Research

Decision Support

A software framework based on a conceptual unified model for evolutionary
multiobjective optimization: ParadisEO-MOEO

Arnaud Liefooghe *P*, Laetitia Jourdan?, El-Ghazali Talbi ®¢

2 Université Lille 1, Laboratoire d’'Informatique Fondamentale de Lille, UMR CNRS 8022, INRIA Lille-Nord Europe, Parc Scientifique de la Haute Borne, 40 Avenue Halley,

59650 Villeneuve d’Ascq, France
Y University of Coimbra, CISUC, Department of Informatics Engineering, Portugal
€King Saud University, Riyadh, Saudi Arabia

ARTICLE INFO ABSTRACT

Article history:
Received 24 April 2009
Accepted 24 July 2010
Available online xxxx

Keywords:

Multiple objective programming
Evolutionary algorithms

Conceptual unified model

Algorithm design and implementation
Software framework

This paper presents a general-purpose software framework dedicated to the design and the implementa-
tion of evolutionary multiobjective optimization techniques: ParadisSEO-MOEO. A concise overview of
evolutionary algorithms for multiobjective optimization is given. A substantial number of methods has
been proposed so far, and an attempt of conceptually unifying existing approaches is presented here.
Based on a fine-grained decomposition and following the main issues of fitness assignment, diversity
preservation and elitism, a conceptual model is proposed and is validated by regarding a number of
state-of-the-art algorithms as simple variants of the same structure. This model is then incorporated into
the ParadisEO-MOEO software framework. This framework has proven its validity and high flexibility by
enabling the resolution of many academic, real-world and hard multiobjective optimization problems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Evolutionary multiobjective optimization (EMO) is one of the
most challenging areas in the field of multicriteria decision mak-
ing. Generally speaking, a multiobjective optimization problem
(MOP) can be defined by a vector function fof n > 2 objective func-
tions (f1,fa,....fn), and a set X of feasible solutions in the decision
space. Let Z be the set of feasible points in the objective space. With-
out loss of generality, we assume that Z C R" and that all n objec-
tive functions are to be minimized. To each decision vector x € X
is assigned an objective vector z € Z on the basis of the vector
function f: X —» Z with z = f{x). A dominance relation is then usually
assumed so that a partial order is induced over X. Numerous dom-
inance relations exist in the literature and will be discussed later in
the paper. Let us consider the well-known concept of Pareto-dom-
inance, for which a given objective vector z € Z is said to dominate
another objective vector zZ eZ if Vie{1,2,...,n}, z;<Z and
Jj€{1,2,...,n} such as z; < z.. An objective vector z ¢ Z is said to
be non-dominated if there does not exist any other objective vector
Z €Z such that z dominates z. By extension, we will say that a

* Corresponding author at: Université Lille 1, Laboratoire d’Informatique Fonda-
mentale de Lille, UMR CNRS 8022, INRIA Lille-Nord Europe, Parc Scientifique de la
Haute Borne, 40 avenue Halley, 59650 Villeneuve d’Ascq, France. Tel.: +33 3 59 57
79 30; fax: +33 3 59 57 78 50.

E-mail addresses: arnaud.liefooghe@Iifl.fr (A. Liefooghe), laetitia.jourdan@Iifl.fr
(L. Jourdan), talbi@lifl.fr (E.-G. Talbi).

0377-2217/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2010.07.023

decision vector x € X dominates a decision vector x' € X if f(x)
dominates f{x'), and that a decision vector x € X is non-dominated
(or efficient, Pareto optimal) if f(x) maps to a non-dominated point.
The set of all efficient solutions is called the efficient set (or Pareto
optimal set) and its mapping in the objective space is the Pareto
front.

In practice, different resolution scenarios exist and strongly rely
on the cooperation between the search process and the decision-
making process. Indeed, a distinction can be made between the
following forms such a cooperation might take. For instance, the
decision maker (DM) may be interested in identifying the whole
set of efficient solutions, in which case the choice of the most pre-
ferred solution is made a posteriori. However, when preference
information can be provided a priori, the search may lead to the po-
tential best compromise solution(s) over a particular region of
interest of the Pareto front. A third class of methods consists of a
progressive, interactive, cooperation between the DM and the sol-
ver. However, in any case, the overall goal is often to identify a set
of good-quality solutions. But generating such a set is usually
infeasible, due to the complexity of the underlying problem or to
the large number of optima. Therefore, the overall goal is often
to identify a good approximation of it. Evolutionary algorithms
are commonly used to this end, as they are particularly well suited
to find multiple efficient solutions in a single simulation run (Deb,
2001; Coello Coello et al., 2007).

As pointed out by different authors (see, e.g., Coello Coello et al.,
2007, Zitzler et al., 2004), approximating an efficient set is itself a

Please cite this article in press as: Liefooghe, A, et al. A software framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research (2010), doi:10.1016/j.ejor.2010.07.023

http://dx.doi.org/10.1016/j.ejor.2010.07.023
mailto:arnaud.liefooghe@lifl.fr
mailto:laetitia.jourdan@lifl.fr
mailto:talbi@lifl.fr
http://dx.doi.org/10.1016/j.ejor.2010.07.023
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor
http://dx.doi.org/10.1016/j.ejor.2010.07.023

2 A. Liefooghe et al./European Journal of Operational Research xxx (2010) xxx—xxx

bi-objective problem. Indeed, the approximation to be found must
have both good convergence and distribution properties, as its
mapping in the objective space has to be (i) close to and (ii)
well-spread over the (generally unknown) optimal Pareto front,
or a subpart of it. As a consequence, the main difference between
the design of a single-objective and of a multiobjective search
method deals with these two goals. Over the last two decades, ma-
jor advances, from both algorithmic and theoretical aspect, have
been made in the EMO field. And a large number of algorithms
have been proposed. Among the existing approaches, one may cite
VEGA (Schaffer, 1985), MOGA (Fonseca and Fleming, 1993), NSGA
(Srinivas and Deb, 1994), NSGA-II (Deb et al., 2002), NPGA (Horn
et al., 1994), SPEA (Zitzler and Thiele, 1999), SPEA2 (Zitzler et al.,
2001) or PESA (Corne et al., 2000). Note that another topic to men-
tion while dealing with EMO relates to performance assessment.
Various quality indicators have been proposed in the literature
for evaluating the performance of multiobjective search methods.
The reader is referred to Zitzler et al. (2003) for a review.

Zitzler et al. (2004) notice that initial EMO approaches were
mainly focused on moving toward the Pareto front (Schaffer,
1985; Fourman, 1985). Afterwards, diversity preservation mecha-
nisms quickly emerged (Fonseca and Fleming, 1993; Srinivas and
Deb, 1994; Horn et al., 1994). Then, at the end of the 90s, the con-
cept of elitism, related to the preservation and use of non-domi-
nated solutions, became very popular and is now employed in
most recent EMO methods (Zitzler and Thiele, 1999; Zitzler et al.,
2001; Knowles and Corne, 2000). Specific issues of fitness assign-
ment, diversity preservation and elitism are commonly approved in
the community and are also presented under different names in,
for instance (Coello Coello et al., 2007; Zitzler et al., 2004). Based
on these three main notions, several attempts have been made in
the past for unifying EMO algorithms. Laumanns (2000) focus on
elitist EMO search methods. Their study has been later extended
by Zitzler et al. (2004) where the algorithmic concepts of fitness
assignment, diversity preservation and elitism are largely dis-
cussed. More recently, Deb (2008) proposed a robust framework
for EMO based on NSGA-II (Non-dominated Sorting Genetic Algo-
rithm, Deb et al., 2002). The latter approach is decomposed into
three main issues related to elite preservation, non-dominated
solutions emphasis and diversity maintaining. However, this model
is strictly focused on NSGA-II, whereas other state-of-the-art meth-
ods can be decomposed in the same way. Indeed, a lot of ingredients
are shared by many EMO algorithms, so that, somehow, they can all
be seen as variants of the same conceptual model, as it will be high-
lighted in the remainder of the paper. Furthermore, some of these
existing conceptual models have been used as a basis for the design
of tools to help practitioners and researchers for MOP solving. For
instance, following Laumanns (2000) and Zitzler et al. (2004), the
authors proposed a software framework for EMO called PISA
(Bleuler et al., 2003). PISA is a platform and programming
language-independent interface for search algorithms that consists
of two independent modules (the variator and the selector) com-
municating via text files. Note that other software frameworks
dealing with the design of metaheuristics for EMO have been pro-
posed until then, and will be discussed later in the paper.

The purpose of the present work is to present a conceptual frame-
work and its practical integration into the ParadisEO-MOEO soft-
ware. Firstly, a conceptual model for EMO is given and will serve
as a basis and motivation for the design of the software framework.
We describe the basic issues shared by many algorithms, and we
introduce a general-purpose model as well as a classification of its
fine-grained elements. Next, we confirm its high genericity and
modularity by treating a number of state-of-the-art methods as sim-
ple instances of the model. NSGA-II (Deb et al., 2002), SPEA2 (Zitzler
et al,, 2001) and IBEA (Zitzler and Kiinzli, 2004) are taken as exam-
ples. Finally, we illustrate how this general-purpose model has been

used as a starting point for the design and the implementation of an
open-source software framework dedicated to the reusable design
of EMO algorithms, namely ParadisEO-MOEO, which is available
for download at the following URL: http://paradiseo.gforge.inria.fr.
All the implementation choices have been strongly motivated by
the unified view presented in the paper. This free C++ white-box
framework has been widely experimented and has enabled the
resolution of a large diversity of MOPs from both academic and
real-world applications. In comparison to the literature, we expect
the proposed conceptual model to be more complete, to provide a
more fine-grained decomposition, and the software framework to
offer a more modular implementation than previous similar at-
tempts. The reminder of the paper is organized as follows. In Section
2,a concise, unified and up-to-date presentation of EMO techniques
are discussed. A conceptual model is introduced as a basis for the de-
sign of our software framework. Next, a motivated presentation of
ParadisEO-MOEQO is given in Section 3, and is followed by a short
description of the design and the implementation of EMO algo-
rithms under ParadisEO-MOEDO. Finally, the last section concludes
the paper.

2. A conceptual unified model for evolutionary multiobjective
optimization

An evolutionary algorithm (EA) (Eiben and Smith, 2003) is a
search method that belongs to the class of metaheuristics (Talbi,
2009), and where a population of solutions is iteratively improved
by means of some stochastic operators. Starting from an initial
population, each individual is evaluated in the objective space
and a selection scheme is performed to build a so-called parent
population. An offspring population is then created by applying
variation operators. Next, a replacement strategy determines
which individuals will survive. This search process is iterated until
a given stopping condition is satisfied.

As noticed earlier in the paper, in the frame of EMO, the main
expansions deal with the issues of fitness assignment, diversity pres-
ervation and elitism. Indeed, contrary to single-objective optimiza-
tion where the fitness value of a solution corresponds to its single-
objective value in most cases, a multiobjective fitness assignment
scheme is here required to assess the individuals’ performance,
as the mapping of a solution in the objective space is now multi-
dimensional. Moreover, trying to approximate the efficient set is
not only a question of convergence. The approximation to be found
also has to be well-spread over the objective space, so that a diver-
sity preservation mechanism is usually required. This fitness and
diversity information are required to discriminate individuals at
the selection and the replacement steps of the EA. Next, the main
purpose of elitism is to avoid the loss of best-found non-dominated
solutions during the stochastic search process. These solutions are
frequently incorporated into a secondary population, the so-called
archive. The update of the archive contents possibly appear at each
EA iteration.

As a consequence, whatever the MOP to be solved, the common
concepts for the design of an EMO algorithm are the following ones:

. Design a representation.

. Design a population initialization strategy.
. Design a way of evaluating a solution.

. Design suitable variation operators.

. Decide a fitness assignment strategy.

. Decide a diversity preservation strategy.
Decide a selection strategy.

. Decide a replacement strategy.

. Decide an archive management strategy.

. Decide a continuation strategy.

CLENOUTA WN =

—

Please cite this article in press as: Liefooghe, A., et al. A software framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research (2010), doi:10.1016/j.ejor.2010.07.023

http://paradiseo.gforge.inria.fr
http://dx.doi.org/10.1016/j.ejor.2010.07.023

A. Liefooghe et al./European Journal of Operational Research xxx (2010) Xxx—xxx 3

When dealing with any kind of metaheuristics, one may distin-
guish problem-specific and generic parts. Indeed, the former four
common concepts presented above strongly depend on the MOP
at hand, while the six latter ones can be considered as problem
independent, even if some problem-dependent strategies can also
be designed in some particular cases. Note that the concepts of rep-
resentation and evaluation are shared by any metaheuristic, the
concepts of population initialization and stopping criterion are
shared by any population-based metaheuristic, the concepts of
variation operators, selection and replacement are shared by any
EA, whereas the concepts of fitness, diversity and archiving are
specific to EMO.

2.1. Elements description

This section provides a description of the elements involved in
our conceptual unified model. EMO-related issues are detailed in
more depth.

2.1.1. Representation

Solution representation is the starting point for anyone who
plans to design any kind of metaheuristic. An MOP solution needs
to be represented both in the decision space and in the objective
space. While the representation in the objective space can be seen
as problem independent, the representation in the decision space
must be relevant to the tackled problem. Successful applications
of metaheuristics strongly require a proper solution representa-
tion. Various encodings may be used such as binary variables,
real-coded vectors, permutations, discrete vectors, and more com-
plex representations. The choice of a representation will consider-
ably influence the way solutions will be initialized and evaluated in
the objective space, and the way variation operators will be
applied.

2.1.2. Initialization

Whatever the algorithmic solution to be designed, a way to ini-
tialize a solution (or a population of solutions) is expected. While
dealing with any population-based metaheuristic, one has to keep
in mind that the initial population must be well diversified in order
to prevent a premature convergence. This remark is even more true
for MOPs where the goal is to find a well-converged and a well-
spread approximation. The way to initialize a solution is closely re-
lated to the problem under consideration and to the representation
at hand. In most approaches, the initial population is generated
randomly or according to a given diversity function.

2.1.3. Evaluation

The problem at hand is to optimize a set of objective functions
simultaneously over a given search space. Then, each time a new
solution integrates the population, its objective vector must be
set, i.e., the value corresponding to each objective function must
be evaluated.

2.1.4. Variation

The purpose of variation operators is to modify the representa-
tion of solutions in order to move them in the search space. Gener-
ally speaking, while dealing with EAs, these problem-dependent
operators are stochastic. Mutation operators are unary operators
acting on a single solution whereas recombination (or crossover)
operators are mostly binary, and sometimes n-ary.

2.1.5. Fitness assignment

In the single-objective case, the fitness value of a solution is
most often its unidimensional objective value. While dealing with
MOPs, fitness assignment aims to guide the search toward Pareto
optimal solutions for a better convergence. Extending the works

of Zitzler et al. (2004) and Coello Coello et al. (2007), we propose
to classify existing fitness assignment schemes into four different
families:

e Scalar approaches, where the MOP is reduced to a single-objec-
tive optimization problem. A popular example consists of com-
bining the n objective functions into a single one by means of a
weighted-sum aggregation. Other examples are e-constraint or
achievement function-based methods (see Miettinen, 1999).
Criterion-based approaches, where each objective function is
treated separately. For instance, in VEGA (vector evaluated
genetic algorithm) (Schaffer, 1985), a parallel selection is per-
formed where solutions are discerned according to their values
on a single-objective function, independently to the others. In
lexicographic methods (Fourman, 1985), a hierarchical order
is defined beforehand between objective functions.
Dominance-based approaches, where a dominance relation is
used to classify solutions. For instance, dominance-rank tech-
niques compute the number of population items that dominate
a given solution (Fonseca and Fleming, 1993). Such a strategy
takes part in, e.g., Fonseca and Fleming MOGA (multiobjective
genetic algorithm) (Fonseca and Fleming, 1993). In dominance-
count techniques, the fitness value of a solution corresponds
to the number of individuals that are dominated by these solu-
tions (Zitzler and Thiele, 1999). Finally, dominance-depth strate-
gies consist of classifying a set of solutions into different classes
(or fronts) (Goldberg, 1989). Hence, a solution that belongs to a
class does not dominate another one from the same class; so
that individuals from the first front all belong to the best non-
dominated set, individuals from the second front all belong to
the second best non-dominated set, and so on. The latter
approach is used in both NSGA (non-dominated sorting genetic
algorithm) (Srinivas and Deb, 1994) and NSGA-II (Deb et al,,
2002). In addition, note that several schemes can also be com-
bined, as in the case of, for example, Zitzler and Thiele (1999).
In the frame of dominance-based approaches, the most com-
monly used dominance relation is based on Pareto-dominance
as given in Section 1. But some recent techniques are based
on other dominance operators such as e-dominance in Deb
et al. (2005a) and g-dominance in Molina et al. (2009).
Indicator-based approaches, where the fitness values are com-
puted by comparing individuals on the basis of a quality indica-
tor I. The chosen indicator represents the overall goal of the
search process. Generally speaking, no particular diversity pres-
ervation mechanism is in usual necessary, with regards to the
indicator being used. Examples of indicator-based EAs are IBEA
(indicator-based EA) proposed by Zitzler and Kiinzli (2004) or
SMS-EMOA (S-metric selection EMO algorithm) of Beume
et al. (2007).

2.1.6. Diversity assignment

As noticed in the previous section, aiming at approximating the
efficient set is not only an issue related to convergence. The final
approximation also has to be well-spread over the objective space.
However, classical dominance-based fitness assignment schemes
often tend to produce premature convergence by privileging
non-dominated solutions, what does not guarantee a uniformly
sampled output set. In order to prevent that issue, a diversity pres-
ervation mechanism, based on a given distance measure, is usually
integrated into the algorithm to uniformly distribute the popula-
tion over the trade-off surface. In the frame of EMO, a common dis-
tance measure is based on the euclidean distance between
objective vectors. But, this measure can also be defined in the
decision space or can even combined both spaces. Nevertheless, a
distance metric partly or fully defined in the parameter space
strongly relies on the tackled problem.

Please cite this article in press as: Liefooghe, A, et al. A software framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research (2010), doi:10.1016/j.ejor.2010.07.023

http://dx.doi.org/10.1016/j.ejor.2010.07.023

4 A. Liefooghe et al./European Journal of Operational Research xxx (2010) Xxx—xxx

Popular examples of EMO diversity assignment techniques are
sharing or crowding. The notion of sharing (or fitness sharing) has
initially been suggested by Goldberg and Richardson (1987) to pre-
serve diversity among the solutions of an EA population. It has first
been employed by Fonseca and Fleming (1993) in the frame of
EMO. This kernel method consists of estimating the distribution
density of a solution using a so-called sharing function that is re-
lated to the sum of distances to its neighborhood solutions. A shar-
ing distance parameter specifies the similarity threshold, i.e., the
size of niches. Another diversity assignment scheme is the concept
of crowding, first suggested by Holland (1975) and used by De Jong
(1975) to prevent genetic drift. It is employed by Deb et al. (2002) in
the frame of NSGA-II. Contrary to sharing, this scheme allows to
maintain diversity without specifying any parameter. It consists
in estimating the density of solutions surrounding a particular
point of the objective space.

2.1.7. Selection

The selection step is one of the main search operators of EAs. It
consists of choosing some solutions that will be used to generate
the offspring population. In general, the better an individual, the
higher its chance of being selected. Common strategies are
deterministic or stochastic tournament, roulette-wheel selection,
random selection, etc. An existing EMO-specific elitist scheme
consists of including solutions from the archive in the selection
process, so that non-dominated solutions also contribute to the
evolution engine. Such an approach has successfully been applied
in various elitist EMO algorithms including SPEA (Zitzler and
Thiele, 1999), SPEA2 (Zitzler et al., 2001) and PESA (Corne et al.,
2000). In addition, in order to prohibit the crossover of dissimilar
parents, mating restriction (Goldberg, 1989) can also be mentioned
as a candidate strategy to be integrated into EMO algorithms.

2.1.8. Replacement

Selection pressure is also affected at the replacement step
where survivors are selected from both the current and the off-
spring populations. In generational replacement, the offspring pop-
ulation systematically replaces the parent one. An elitist strategy
consists of preserving the N best solutions from both populations
(N stands for the appropriate population size), either by means of
a one-shot deletion or by deleting the worst solution iteratively
until the required population size is reached, so that fitness and
diversity information of remaining solutions can be updated each
time there is a deletion.

2.1.9. Elitism

Another essential issue about MOP solving is the notion of elit-
ism. It mainly consists of maintaining an external set, the so-called
archive, that allows to store either all or a subset of non-dominated
solutions found during the search process. This secondary popula-
tion mainly aims at preventing the loss of these solutions during
the stochastic optimization process. The update of the archive
contents with new potential non-dominated solutions is mostly
based on the Pareto-dominance relation. But, in the literature,
other dominance criterion can be found. Examples are weak-
dominance, strict-dominance, e-dominance (Helbig and Pateva,

Table 1
State-of-the-art EMO methods as instances of the proposed unified model.

1994; Laumanns et al., 2002), and so on. When dealing about
archiving, one may distinguishe four different techniques depend-
ing on the problem properties, the designed algorithm and the
number of desired solutions: (i) no archive, (ii) an unbounded
archive, (iii) a bounded archive or (iv) a fixed-size archive. Firstly, if
the current approximation is maintained by, or contained in the
main population itself, there can be no archive at all. On the other
hand, if an archive is maintained, it usually comprises the current
non-dominated set approximation, as dominated solutions are re-
moved. Then, an unbounded archive can be used in order to save
the whole set of non-dominated solutions found until the begin-
ning of the search process. However, as some continuous optimiza-
tion problems may contain an infinite number of non-dominated
solutions, it is simply not possible to save them all. Therefore, addi-
tional operations must be used to reduce the number of stored
solutions. Then, a common strategy is to bound the size of the
archive according to some fitness and/or diversity assignment
scheme(s). Finally, another archiving technique consists of a fixed
size storage capacity, where a bounding mechanism is used when
there is too much non-dominated solutions, and some dominated
solutions are integrated in the archive if the non-dominated set
is too small, what is done for instance within SPEA2 (Zitzler
et al., 2001). Usually, an archive is used as an external storage only.
However, archive members can also be integrated during the selec-
tion phase of an EMO algorithm, as proposed by Zitzler and Thiele
(1999), see Section 2.1.7.

2.1.10. Stopping criteria

Since an iterative method computes successive approximations,
a practical test is required to determine when the process must
stop. Popular examples are a given number of iterations, a given
number of evaluations, a given run time, etc.

2.2. State-of-the-art EMO algorithms as instances of the conceptual
unified model

By means of the conceptual model presented in this paper, we
claim that a large number of state-of-the-art EMO algorithms pro-
posed in the last two decades are based on variations of the prob-
lem-independent elements presented above. In Table 1, three EMO
approaches, namely NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al.,
2001) and IBEA (Zitzler and Kiinzli, 2004), are regarded as simple
instances of the model proposed in this paper. For obvious reasons,
only problem-independent issues are presented. NSGA-II and
SPEA2 are two of the most frequently encountered EMO algorithms
of the literature, either for tackling an original MOP or to serve as
references for comparison. Regarding IBEA, it is a good illustration
of the new EMO trend dealing with indicator-based search that
started to become popular in recent years. We can see in the table
that these three state-of-the-art algorithms perfectly fit into our
model for EMO, what strongly validates the proposed approach.
But other examples can be found in the literature. For instance,
the only part that differs from NSGA (Srinivas and Deb, 1994) to
NSGA-II is the diversity preservation strategy that is based on
sharing in NSGA and on crowding in NSGA-II. Another example is
the e-MOEA proposed by Deb et al. (2005a). This algorithm is a

Elements NSGA-II

SPEA2 IBEA

Fitness assignment
Diversity assignment

Dominance-depth
Crowding distance

Selection Binary tournament
Replacement One-shot elitist replacement
Archiving None

Stopping criteria Number of generations

Dominance-count and rank Binary quality indicator

kth nearest neighbor None

Elitist binary tournament Binary tournament
Generational replacement Iterative elitist replacement
Fixed-size archive None

Number of generations Number of generations

Please cite this article in press as: Liefooghe, A., et al. A software framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research (2010), doi:10.1016/j.ejor.2010.07.023

http://dx.doi.org/10.1016/j.ejor.2010.07.023

A. Liefooghe et al./European Journal of Operational Research xxx (2010) Xxx—xxx 5

modified version of NSGA-II where the Pareto-dominance relation
used for fitness assignment has been replaced by the e-dominance
relation. Similarly, the g-dominance relation proposed by Molina
et al. (2009) is experimented by the authors on an NSGA-II-like
EMO technique where the dominance relation has been modified
in order to take the DM preferences into account by means of a ref-
erence point.

3. Design and implementation of evolutionary multiobjective
optimization algorithms under ParadisEO-MOEO

In this section, we provide a general presentation of ParadisEO,
a software framework dedicated to the design of metaheuristics,
and a detailed description of the ParadisEO module specifically
dedicated to EMO, namely ParadisEO-MOEO. Historically, Paradi-
SsEO was especially dedicated to parallel and distributed metaheu-
ristics and was the result of the Ph.D. work of Sébastien Cahon,
supervised by Nouredine Melab and El-Ghazali Talbi (Cahon
et al., 2004). The initial version already contained a few number
of EMO-related features, mainly with regard to archiving. This
work has been partially extended and presented in Liefooghe
et al. (2007b). But since then, the ParadisEO-MOEO module has
been completely redesigned in order to confer an even more
fine-grained decomposition in accordance with the conceptual
model presented above.

3.1. Motivations

In practice, there exists a large diversity of optimization prob-
lems to be solved, engendering wide possibilities in terms of mod-
els to handle in the frame of a metaheuristic solution method.
Moreover, a growing number of general-purpose search methods
are proposed in the literature, with evolving complex mechanisms.
From a practitioner point of view, there is a popular demand to
provide a set of ready-to-use metaheuristic implementations,
allowing a minimum programming effort. On the other hand, an
expert generally wants to design new algorithms, to integrate
new elements into an existing method, or even to combine differ-
ent search mechanisms. Moreover, such a tool is of large interest in
order to be able to evaluate and to compare different algorithms
fairly.

Hence, as pointed out in Cahon et al. (2004) and Talbi (2009),
three major approaches exist for the development of metaheuris-
tics: from scratch or no reuse, code reuse only and both design and
code reuse. Firstly, programmers are tempted to develop and imple-
ment their own code from scratch. However, it requires time and
energy and the resulting code is generally error prone and difficult
to maintain and evolve. The second approach consists of reusing a

third-party source code available on the web, either as individual
programs or as libraries. Individual programs often have applica-
tion-dependent sections that are to be extracted before a new
application-dependent code is to be inserted. Similarly, modifying
these sections is often time consuming and error prone. Code reuse
through libraries is obviously better because they are often well
tried, tested, documented, and thus more reliable. However, li-
braries do not allow the reuse of the complete invariant part of
the algorithms related to the design. Therefore, the code effort re-
mains important. At last, both design and code reuse allow to over-
come this problem. As a consequence, an approved approach for
the development of metaheuristics is the use of frameworks.

A metaheuristic software framework may be defined by a set of
building blocks based on a strong conceptual separation of the
invariant part and the problem-specific part of metaheuristics.
Thus, each time a new optimization problem is to be tackled, both
code and design can directly be reused in order to redo as little
code as possible. Hence, the implementation effort is minimal with
regards to the problem under investigation. Generally speaking,
the constant part is encapsulated in generic or abstract skeletons
that are implemented in the framework. The variable part, which
is problem specific, is fixed in the framework but must be supplied
by the user. These user-defined functions are thus to be called by
the framework. To do so, the design of the framework must be
based on a clear conceptual separation between the resolution
methods and the problem to be solved. Object-oriented design
and programming are generally recommended for such a purpose.
But another way to perform this separation is to provide a set of
modules for each part, and to make them cooperate thought text
files. However, this allows less flexibility than the object-oriented
approach, and the execution is generally much more time-consum-
ing. Besides, note that two types of software frameworks can be
distinguished: white-box and black-box frameworks.

3.2. ParadisEO and ParadisEO-MOEO

ParadisEO (http://paradiseo.gforge.inria.fr) is a white-box ob-
ject-oriented software framework dedicated to the flexible design
of metaheuristics for optimization problems of continuous, dis-
crete and combinatorial nature. Based on EO (evolving objects,
http://eodev.sourceforge.net) (Keijzer et al., 2001), this template-
based C++ computation library is portable across both Unix-like
and Windows systems. This software is governed by the CeCILL li-
cense under French law and abiding by the rules of distribution of
free software (http://www.cecill.info). ParadisEO tends to be used
by both non-specialists and optimization experts. As illustrated
in Fig. 1, it is composed of four connected modules that constitute
a global framework. Each module is based on a clear conceptual
separation of the solution methods from the problems they are in-

hybrid, parallel and
distributed metaheuristics

ParadisEO-PEO

single solution-based ParadisEO-MO

metaheuristics

metaheuristics for

ParadisEO-MOEO A A
multiobjective optimization

ParadisEO-EO

population-based
metaheuristics

Fig. 1. The modules constituting the ParadisEO framework.

Please cite this article in press as: Liefooghe, A, et al. A software framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research (2010), doi:10.1016/j.ejor.2010.07.023

http://paradiseo.gforge.inria.fr
http://eodev.sourceforge.net
http://www.cecill.info
http://dx.doi.org/10.1016/j.ejor.2010.07.023

6 A. Liefooghe et al./European Journal of Operational Research xxx (2010) Xxx—xxx

tended to solve. This separation confers a maximum code and de-
sign reuse to the user. The first module, ParadisEO-EO, provides a
broad range of classes for the development of population-based
metaheuristics, including evolutionary algorithms and particle
swarm optimization techniques. Second, ParadisEO-MO contains
a set of tools for single solution based metaheuristics, i.e., local
search, simulated annealing, tabu search, etc. Next, ParadisEO-
MOEO, which is of our interest in this paper, is specifically dedi-
cated to the reusable design of metaheuristics for multiobjective
optimization. Finally, ParadisEO-PEO provides a powerful set of
classes for the design of parallel and distributed metaheuristics:
parallel evaluation of solutions, parallel evaluation function, island
model and cellular model. In the frame of this paper, we will exclu-
sively focus on the module devoted to multiobjective optimization,
namely ParadisEO-MOEO.

ParadisEO-MOEO provides a flexible and modular framework
for the design of EMO metaheuristics. Its implementation is based
on the model presented in the previous section and is conceptually
divided into fine-grained elements. On each level of its architec-
ture, a set of abstract classes is proposed and a wide range of
instantiable classes, corresponding to different state-of-the-art
strategies, are also provided. Moreover, as the framework aims to
be extensible, flexible and easily adaptable, all its elements are
generic so that its modular architecture allows to quickly and con-
veniently develop any new scheme with a minimum code writing.
The underlying goal here is to follow new strategies coming from
the literature and, if need be, to provide any additional algorithmic
part required for their implementation. ParadisEO-MOEO con-
stantly evolves and new features might be regularly added to the
framework in order to provide efficient and modern concepts and
to reflect the most recent advances of the EMO field.

3.3. Main characteristics

A framework is usually intended to be exploited by a large num-
ber of users. Its exploitation could only be successful if a range of
user criteria are satisfied. Therefore, the main goals of the Paradi-
sEO software framework are the following ones (Cahon et al,
2004; Talbi, 2009):

e Maximum design and code reuse. The framework must provide a
whole architecture design for the metaheuristic approach to be
used. Moreover, the programmer may redo as little code as pos-
sible. This aim requires a clear and maximal conceptual separa-
tion of the solution methods and the problem to be solved. The
user might only write the minimal problem-specific code and
the development process might be done in an incremental
way, so that it will considerably simplify the implementation
and reduce the development time and cost.

Flexibility and adaptability. It must be possible to easily add new
features or to modify existing ones without involving other
algorithmic elements. Users must have access to source code
and use inheritance or specialization concepts of object-
oriented programming to derive new objects from base or

abstract classes. Furthermore, as existing problems evolve and

new others arise, the framework must be conveniently special-

ized and adapted.

Utility. The framework must cover a broad range of metaheuris-

tics, problems, parallel and distributed models, hybridization

mechanisms, etc. Of course, advanced features must not
add any difficulty for users wanting to implement classical
algorithms.

e Transparent and easy access to performance and robustness. As the

optimization applications are often time consuming, the perfor-

mance issue is crucial. Parallelism and distribution are two
important ways to achieve high performance execution. More-
over, the execution of the algorithms must be robust in order
to guarantee the reliability and the quality of the results.

Hybridization mechanisms generally allow to obtain robust

and better solutions.

Portability. In order to satisfy a large number of users, the frame-

work must support many material architectures (sequential,

parallel, distributed) and their associated operating systems

(Windows, Linux, MacOS).

e Easy-of-use and efficiency. The framework must be easy to use
and must not contain any additional cost in terms of time or
space complexity in order to keep the efficiency of a special-
purpose implementation. On the contrary, the framework is
intended to be less error prone than a specifically developed
metaheuristic.

The ParadisEO platform honors all the above-mentioned criteria
and aims to be used by both non-specialists and optimization ex-
perts. Furthermore, The ParadisEO-MOEO module must cover addi-
tional goals related to EMO. Thus, in terms of design, it might for
instance be a commonplace to extend a single-objective optimiza-
tion problem to the multiobjective case without modifying the
whole metaheuristic implementation.

3.4. Existing software frameworks for evolutionary multiobjective
optimization

Many frameworks dedicated to the design of metaheuristics
have been proposed so far. However, very few are able to handle
MOPs, even if some of them provide a few particular EMO strate-
gies, such as ECJ] (http://cs.gmu.edu/eclab/projects/ecj/), JavaEVA
(Streichert and Ulmer, 2005) and Open BEAGLE (Gagné and Pari-
zeau, 2006). Table 2 gives a non-exhaustive comparison between
a number of existing software frameworks for EMO, including jMet-
al (Durillo et al., 2006), the MOEA toolbox for Matlab (Tan et al.,
2001), MOMHLib++ (http://home.gna.org/mombh/), PISA (Bleuler
et al., 2003) and Shark (Igel et al., 2008). Note that other software
packages exist for multiobjective optimization (Poles et al., 2008),
but some cannot be considered as frameworks and others do not
deal with EMO. The frameworks presented in Table 2 are distin-
guished according to the following criteria: the kind of MOPs they
are able to tackle (continuous and/or combinatorial problems),
the availability of statistical tools (including performance metrics),

Table 2

Main characteristics of existing frameworks for multiobjective metaheuristics.
Framework Problems Statistical tools Hybrid. Parallel Type Lang. License

Cont. Comb. Off-line On-line

jMetal Yes Yes Yes No Yes No White Java Free
MOEA for Matlab Yes No No No No Yes Black Matlab Free/com.
MOMHLib++ Yes Yes No No Yes No White C++ Free
PISA Yes Yes Yes No No No Black Any Free
Shark Yes No No No Yes No White C++ Free
ParadisEO Yes Yes Yes Yes Yes Yes White C++ Free

Please cite this article in press as: Liefooghe, A., et al. A software framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research (2010), doi:10.1016/j.ejor.2010.07.023

http://cs.gmu.edu/eclab/projects/ecj/
http://home.gna.org/momh/
http://dx.doi.org/10.1016/j.ejor.2010.07.023

A. Liefooghe et al./European Journal of Operational Research xxx (2010) Xxx—xxx 7

the availability of hybridization or parallel features, the framework
type (black-box or white-box), the programming language and the
license type (free or commercial).

Firstly, let us mention that every listed software framework is
free of use, except the MOEA toolbox designed for the commer-
cial-software Matlab. They can all handle continuous problem,
but only a subpart is able to deal with combinatorial MOPs. More-
over, some cannot be considered as white-box frameworks since
their architecture is not decomposed into objects. For instance, to
design a new algorithm under PISA, it is necessary to implement
it from scratch, as no existing element can be reused. Similarly,
even if Shark can be considered as a white-box framework, its
building blocks are not as fine grained as the ones of ParadisEO.
On the contrary, ParadisEO is an open platform where anyone
can contribute and add his/her own features. Finally, only a few
ones are able to deal with hybrid and parallel metaheuristics at
the same time. Hence, with regards to the taxonomy proposed by
Talbi (2002), only relay hybrid metaheuristics can be easily imple-
mented within jMetal, MOMHLib++ and Shark, whereas ParadisEO
provides tools for the design of all classes of hybrid models, includ-
ing teamwork hybridization. Furthermore, in opposition to jMetal
and MOMHLib++, ParadisEO offers easy-to-use models for the de-
sign of parallel and distributed EMO algorithms. Therefore, Paradi-
SEO seems to be the only existing software framework that
achieves all the aforementioned goals.

3.5. Implementation

Technical details on the implementation of EMO algorithms un-
der ParadisEO-MOEO can be found on the ParadisEO website
(http://paradiseo.gforge.inria.fr), together with a complete docu-
mentation and many examples of use. The high flexibility of the
framework and its modular architecture based on the three main
multiobjective metaheuristic design issues (fitness assignment,
diversity preservation and elitism) allow to implement efficient
algorithms in solving a large diversity of MOPs. The granular
decomposition of ParadisEO-MOEO is based on the conceptual
model introduced in the previous section.

3.5.1. EMO algorithms

An EMO algorithm can easily be designed using the fine-grained
building blocks of ParadisEO. Different operators can be experi-
mented without engendering significant modifications in terms
of code writing. A wide range of strategies are already provided,
but this list is not exhaustive as the framework perpetually evolves
and offers all that is necessary to develop new ones with a mini-
mum effort. Indeed, ParadisEO is a white-box framework that
tends to be flexible while being as user-friendly as possible.

In order to satisfy both the beginners and the more experi-
mented users, ParadisSEO-MOEO also provides even more easy-
to-use EMO algorithms. These classes propose different imple-
mentations of some state-of-the-art methods. They are based on
a simple combination of building blocks, as described in Section
2.2. Hence, MOGA (Fonseca and Fleming, 1993), NSGA (Srinivas
and Deb, 1994), NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al.,
2001), IBEA (Zitzler and Kiinzli, 2004) and SEEA (Liefooghe et al.,
2010) are proposed in a way that a minimum number of problem-
or algorithm-specific parameters are required. For instance, to
instantiate NSGA-II for a new continuous MOP, it is possible to
use standard operators for representation, initialization and varia-
tion, so that the evaluation function is the single part to be imple-
mented. These easy-to-use algorithms also tend to be used as
references for a fair performance comparison in the academic
world, even if they are also well suited for a straight use to solve
real-world MOPs.

3.5.2. Parallel EMO algorithms

The design and the implementation of sequential EMO algo-
rithms is just an aspect of the features provided by ParadisEO. In-
deed, EMO algorithms can easily be hybridized, parallelized and
distributed, thanks to the PEO module of ParadisEO (Cahon et al.,
2004). The framework has been designed in such a way that the
user can, for instance, parallelize his/her sequential EMO algorithm
very easily and transparently. When solving real-world optimiza-
tion problems, running simple EMO algorithms on a large popula-
tion or on complex individuals often requires high computational
resources. However, since each population member can be seen
as an independent unit, parallelism naturally arises while dealing
with population-based metaheuristics. Melab et al. (2006) identify
three levels of parallelism for evolutionary computation, and then
EMO algorithms: the solution level, the iteration level and the algo-
rithmic level. ParadisEO is one of the rare framework that provides
these most common parallel and distributed models. The resulting
applications are portable on different execution platforms such as
parallel computing, cluster computing, Internet computing and
grid computing.

Evaluating a solution in the objective space is by far the most
computationally expensive step of any metaheuristic for difficult
or large-size optimization problems. Firstly, at the solution level,
the evaluation of a single solution can be parallelized, by either
partitioning data or objective functions. However, such a parallel
evaluation function strongly relies on the problem to be solved
so that the user must have enough knowledge about parallel com-
puting to implement it efficiently. Second, at the iteration level,
the evaluation of the evolving population can be parallelized as
well. At each algorithm iteration, the offspring solutions are dis-
tributed to different workers in order to be evaluated in parallel.
In terms of implementation, the latter strategy can be done by
embedding the original, either sequential or parallel, evaluation
function into a more advanced object with which the EMO algo-
rithm is to be created. Note that these two first parallelization
schemes do not modify the behavior of the EMO algorithm but
are essentially focused on speeding up the search. At last, the
algorithmic level consists of running simultaneously a number
of EMO algorithms in parallel. This can be done in a multi-start
way, what seems to be particularly interesting for testing different
independent algorithms or parameter settings. However, various
EMO algorithms can also cooperate with each other during the
search process, either in a centralized way or like in the island
model. The approach results in a hybrid co-evolutionary EMO
algorithm where different agents cooperate in a high-level team-
work mode (Talbi, 2002). For instance, in the island model,
sub-populations are distributed in a set of islands in which
semi-isolated EMO algorithms are executed in parallel. Each is-
land manages a proper population and an optional proper archive.
However, a global archive containing the set of non-dominated
solutions from all the islands can possibly be designed as well.
The migration of individuals from an island to another is managed
by a migration decision condition, an exchange topology, a num-
ber of emigrants, an emigrants selection scheme and an integra-
tion strategy. Note that emigrant individuals can be selected
from both the current population and the current archive of a gi-
ven island. The reader is referred to (Cahon et al., 2004) for more
information about the ParadisEO parallel models.

3.6. Discussion

We believe that the aforementioned characteristics make
ParadisEO-MOEO a valuable tool for both researchers and practi-
tioners, and a unique software framework in comparison to exist-
ing ones. Indeed, it includes many state-of-the-art and up-to-date
EMO algorithms. The rich set of ParadisEO modular ingredients

Please cite this article in press as: Liefooghe, A, et al. A software framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research (2010), doi:10.1016/j.ejor.2010.07.023

http://paradiseo.gforge.inria.fr
http://dx.doi.org/10.1016/j.ejor.2010.07.023

8 A. Liefooghe et al./European Journal of Operational Research xxx (2010) xxx—xxx

serve as building blocks to implement these methods. The related
source code is maintained and regularly updated by the develop-
ers. Moreover, the framework gives the possibility to design and
implement a wide number of new MOP resolution methods,
either sequential or parallel, just by combining existing elements
in an innovative way, or by implementing original ones. As an
example, to illustrate the high ParadisEO flexibility, the domi-
nance relation used to manage the archive of a given EMO algo-
rithm is just a parameter of the corresponding object. The latter
can then be modified from, say, Pareto-dominance to e-domi-
nance with insignificant effort in order to obtain a different meth-
od. Furthermore, analogously to the design level, a large number
of issues are shared by many EMO algorithms at the implementa-
tion level as well. Hence, ParadisEO can serve as a reference
implementation in order to compare different algorithms fairly.
For instance, whenever a new EMO algorithm is proposed, its effi-
ciency can be experimentally demonstrated by comparing its
behavior with existing ones.

On the other hand, ParadisEO is also a practical tool that can be
used to tackle an original MOP. The implementation of efficient
programs is highly facilitated so that the user only has to focus
on problem-related issues of representation, initialization, evalua-
tion and variation. The implementation effort is even more reduced
when a classical solution representation can be applied for the
problem under consideration. By means of classical representation,
we include real-coded, binary, integer, permutation variable repre-
sentations, and so on. For such problems, the development and
time cost are reduced to minimum since the evaluation function
is the single element to be implemented. Of course, this cost is al-
ways related to the proficiency of the programmer in charge of the
implementation. Once this evaluation function is available, the
user only has to instantiate any EMO algorithm (NSGA-II, SPEA2,
IBEA, ...) and optionally any parallel model (parallel evaluation, is-
land model, ...) to obtain a powerful resolution program that is
able to run on a large range of material architectures (sequential,
parallel, distributed) and their associated operating systems (Win-
dows, Linux, MacOS). Therefore, the remaining development con-
sists of a direct instantiation of selected strategies. Though, for
more sophisticated solution encodings, the development cost re-
mains substantial with respect to the complexity of the underlying
representation and to the level of expertise of the programmer. But
it will always be lower than implementing a whole specific EMO
algorithm from scratch. Otherwise, starting from a single-objective
optimization problem implemented within ParadisEO, it is a com-
monplace to investigate a multiobjective variant, so that existing
EMO algorithms can then be instantiated to solve the resulting
MOP.

With regards to runtime efficiency, it is difficult, if not
impracticable, to show how ParadisEO-MOEO performs in com-
parison to existing software frameworks or even to a specific
implementation done from scratch. Indeed, it will always depend
on the programmer ability to handle such a tool, and may often
depend on the problem to be solved and the algorithm to be ap-
plied. Development from scratch generally allows a deep code
optimization with respect to a very specific application, but this
requires a high level of expertise and is also time-consuming in
terms of development cost. Additionally, ParadisEO-MOEO has a
clear advantage of not communicating information through text
files, as done in PISA for instance, what is known to be very
expensive in time.

Finally, ParadisEO-MOEO has been used and experimented to
solve a large range of MOPs from both academic and real-world
fields, which validates its high flexibility. Indeed, various academic
MOPs have been tackled, including continuous test functions such
as the ZDT and DTLZ functions family (Deb et al., 2005b) or the
Schaffer problem (Schaffer, 1985), scheduling problems including

permutation flow-shop scheduling (Liefooghe et al., 2007a), rout-
ing problems such as the multiobjective traveling salesman prob-
lem and the bi-objective ring star problem (Liefooghe et al.,
2010). Moreover, ParadisEO-MOEO has been successfully applied
to solve real-world applications in structural biology (Boisson
et al., 2008), feature selection in cancer classification (Talbi et al.,
2008), materials design in chemistry (Schuetze et al., 2008), portfo-
lio optimization, etc. Note that the problem-related part of some
aforementioned applications is freely available as contributions on
the ParadisEO website (http://paradiseo.gforge.inria.fr), together
with a detailed documentation and some tutorial lessons.

Additionally, hybrid and parallel metaheuristics have also
been designed within ParadisEO to solve MOPs. For instance, hy-
brid EMO algorithms have been experimented by Liefooghe et al.
(2010), a multiobjective cooperative island model has been de-
signed by Talbi et al. (2007), costly evaluation functions have
been parallelized by Boisson et al. (2008), and a parallel multiple
reference point approach has been proposed by Figueira et al.
(2010).

4. Concluding remarks

The current paper described a software framework for the
development of evolutionary multiobjective optimization algo-
rithms. First, we identified the common concepts shared by many
evolutionary multiobjective optimization techniques, separating
the problem-specific part from the invariant part of such ap-
proaches. We emphasized the main issues of fitness assignment,
diversity preservation and elitism. Therefore, we presented a con-
ceptual model, based on a fine-grained decomposition, and we
illustrated its robustness and reliability by treating a number of
state-of-the-art algorithms as simple instances of it. Next, this uni-
fied view has been used as a starting point for the design and the
implementation of a general-purpose software framework called
ParadisEO-MOEO. ParadisEO-MOEO is a free C++ white-box ob-
ject-oriented framework dedicated to the flexible and reusable de-
sign of evolutionary multiobjective optimization algorithms. It is
based on a clear conceptual separation between the resolution
methods and the problem they are intended to solve, thus confer-
ring a maximum code and design reuse. This global framework has
been experimentally validated by solving a comprehensive number
of both academic and real-world multiobjective optimization
problems.

However, we believe that a large number of issues from evolu-
tionary multiobjective optimization are shared by many other
metaheuristic methodologies. Thereafter, we plan to generalize
the conceptual model introduced in this paper to other existing
metaheuristic approaches for multiobjective optimization. Hence,
multiobjective local search or scatter search methods might be
interesting paths to explore in order to investigate their ability
and their modularity for providing such a flexible model as the
one presented in this paper. The resulting general-purpose models
and their particular mechanisms would then be integrated into the
ParadisEO-MOEO software framework.

Acknowledgments

This work was supported by the ANR DOCK project. The authors
would like to gratefully acknowledge Jérémie Humeau, Thomas Le-
grand, and Abdel-Hakim Deneche for their helpful contribution on
the implementation part of this work, as well as Sébastien Cahon
and Nouredine Melab for their work on the preliminary version
of the ParadisEO-MOEO software framework presented in this pa-
per. Moreover, the authors would like to thank the anonymous
reviewers for their valuable comments and suggestions.

Please cite this article in press as: Liefooghe, A., et al. A software framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research (2010), doi:10.1016/j.ejor.2010.07.023

http://paradiseo.gforge.inria.fr
http://dx.doi.org/10.1016/j.ejor.2010.07.023

A. Liefooghe et al./European Journal of Operational Research xxx (2010) Xxx—xxx 9

References

Beume, N., Naujoks, B., Emmerich, M., 2007. SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research
181 (3), 1653-1669.

Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E., 2003. PISA - A platform and
programming language independent interface for search algorithms. In: Second
International Conference on Evolutionary Multi-Criterion Optimization (EMO
2003). Lecture Notes in Computer Science, vol. 2632. Springer-Verlag, Faro,
Portugal, pp. 494-508.

Boisson, J.-C., Jourdan, L., Talbi, E.-G., Horvath, D., 2008. Parallel multi-objective
algorithms for the molecular docking problem. In: IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB 2008), Sun Valley Resort, Idaho, USA, pp. 187-194.

Cahon, S., Melab, N., Talbi, E.-G., 2004. ParadisEO: A framework for the reusable
design of parallel and distributed metaheuristics. Journal of Heuristics 10 (3),
357-380.

Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A., 2007. Evolutionary
Algorithms for Solving Multi-Objective Problems, second ed. Springer, New
York, USA.

Corne, D., Knowles,].D., Oates, M.]., 2000. The pareto envelope-based selection
algorithm for multi-objective optimisation. In: Conference on Parallel Problem
Solving from Nature (PPSN VI). Lecture Notes in Computer Science, vol. 1917.
Springer-Verlag, London, UK, pp. 839-848.

Deb, K., 2001. Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, Chichester, UK.

Deb, K., 2008. A robust evolutionary framework for multi-objective optimization.
In: Genetic and Evolutionary Computation Conference (GECCO 2008). ACM,
Atlanta, GA, USA, pp. 633-640.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., 2002. A fast and elitist multiobjective
genetic algorithm: NSGA-IL IEEE Transactions on Evolutionary Computation 6
(2), 182-197.

Deb, K., Mohan, M., Mishra, S., 2005a. Evaluating the e-domination based multi-
objective evolutionary algorithm for a quick computation of pareto-optimal
solutions. Evolutionary Computation 13 (4), 501-525.

Deb, K., Thiele, L., Laumanns, M., Zitzler, E., 2005b. Scalable test problems for
evolutionary multi-objective optimization. In: Abraham, A,, Jain, R., Goldberg, R.
(Eds.), Evolutionary Multiobjective Optimization: Theoretical Advances and
Applications. Springer, pp. 105-145 (Chapter 6).

De Jong, K.A., 1975. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. Ph.D. Thesis, Ann Arbor, University of Michigan.

Durillo, JJ., Nebro, AJ., Luna, F., Dorrosoro, B., Alba, E., 2006. jMetal: A java
framework for developing multi-objective optimization metaheuristics. Tech.
Rep. ITI-2006-10, University of Malaga.

Eiben, A.E., Smith,].E., 2003. Introduction to Evolutionary Computing. Springer, New
York, USA.

Figueira, J., Liefooghe, A., Talbi, E.-G., Wierzbicki, A., 2010. A parallel multiple
reference point approach for multi-objective optimization. European Journal of
Operational Research 205, 390-400.

Fonseca, C.M., Fleming, PJ, 1993. Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization. In: 5th
International Conference on Genetic Algorithms (ICGA 1993). Morgan
Kaufmann, Urbana-Champaign, IL, USA, pp. 416-423.

Fourman, M.P., 1985. Compaction of symbolic layout using genetic algorithms. In:
1st International Conference on Genetic Algorithms (ICGA 1985). Lawrence
Erlbaum Associates, Pittsburgh, PA, USA, pp. 141-153.

Gagné, C., Parizeau, M., 2006. Genericity in evolutionary computation software
tools: Principles and case study. International Journal on Artificial Intelligence
Tools 15 (2), 173-194.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Boston, MA, USA.

Goldberg, D.E., Richardson, J., 1987. Genetic algorithms with sharing for multimodal
function optimization. In: 2nd International Conference on Genetic Algorithms
and their application. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, pp.
41-49.

Helbig, S., Pateva, D., 1994. On several concepts for e-efficiency. OR Spektrum 16 (3),
179-186.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Abor, MI, USA.

Horn,], Nafpliotis, N., Goldberg, D.E., 1994. A niched pareto genetic algorithm for
multiobjective optimization. In: IEEE Congress on Evolutionary Computation
(CEC 1994). IEEE Press, Piscataway, NJ, USA, pp. 82-87.

Igel, C., Glasmachers, T., Heidrich-Meisner, V., 2008. Shark. Journal of Machine
Learning Research 9, 993-996.

Keijzer, M., Merelo,].-J., Romero, G., Schoenauer, M., 2001. Evolving objects: A
general purpose evolutionary computation library. In: 5th International
Conference on Artificial Evolution (EA 2001). Le Creusot, France, pp. 231-244.

Knowles,].D., Corne, D., 2000. Approximating the nondominated front using the
pareto archived evolution strategy. Evolutionary Computation 8 (2), 149-172.
Laumanns, M., Zitzler, E., Thiele, L., 2000. A unified model for multi-objective
evolutionary algorithms with elitism. In: [EEE Congress on Evolutionary
Computation (CEC 2000). IEEE Press, Piscataway, New Jersey, USA, pp. 46-53.

Laumanns, M., Thiele, L., Deb, K., Zitzler, E., 2002. Combining convergence and
diversity in evolutionary multi-objective optimization. Evolutionary
Computation 10 (3), 263-282.

Liefooghe, A. Basseur, M. Jourdan, L., Talbi, E.-G., 2007a. Combinatorial
optimization of stochastic multi-objective problems: an application to the
flow-shop scheduling problem. In: Fourth International Conference on
Evolutionary Multi-Criterion Optimization (EMO 2007). Lecture Notes in
Computer Science, vol. 4403. Springer-Verlag, Matsushima, Japan, pp. 457-471.

Liefooghe, A., Basseur, M., Jourdan, L. Talbi, E.-G., 2007b. ParadisEO-MOEO: A
framework for evolutionary multi-objective optimization. In: Fourth
International Conference on Evolutionary Multi-Criterion Optimization (EMO
2007). Lecture Notes in Computer Science, vol. 4403. Springer-Verlag,
Matsushima, Japan, pp. 386-400.

Liefooghe, A., Jourdan, L., Talbi, E.-G., 2010. Metaheuristics and cooperative
approaches for the bi-objective ring star problem. Computers & Operations
Research 37 (6), 1033-1044.

Melab, N., Talbi, E.-G., Cahon, S., Alba, E., Luque, G., 2006. Parallel metaheuristics:
Models and frameworks. In: Talbi, E.-G. (Ed.), Parallel Combinatorial
Optimization. John Wiley & Sons, Chichester, UK, pp. 149-162 (Chapter 6).

Miettinen, K., 1999. Nonlinear Multiobjective Optimization. International Series in
Operations Research and Management Science, vol. 12. Kluwer Academic
Publishers, Boston, MA, USA.

Molina, J., Santana, L.V., Hernandez-Diaz, A.G., Coello Coello, C.A., Caballero, R.,
2009. g-dominance: Reference point based dominance for multiobjective
metaheuristics. European Journal of Operational Research 167 (2), 685-692.

Poles, S., Vassileva, M., Sasaki, D., 2008. Multiobjective optimization software. In:
Branke,], Deb, K., Miettinen, K., Slowinski, R. (Eds.), Multiobjective
Optimization - Interactive and Evolutionary Approaches, Lecture Notes in
Computer Science (LNCS), vol. 5252. Springer-Verlag, Berlin Heidelberg, pp.
329-348 (Chapter 12).

Schaffer,].D., 1985. Multiple objective optimization with vector evaluated genetic
algorithms. In: 1st International Conference on Genetic Algorithms (ICGA 1985).
Lawrence Erlbaum Associates, Pittsburgh, PA, USA, pp. 93-100.

Schuetze, O., Jourdan, L., Legrand, T., Talbi, E.-G., Wojkiewicz, J.-L., 2008. New
analysis of the optimization of electromagnetic shielding properties using
conducting polymers and a multi-objective approach. Polymers for Advanced
Technologies 19 (7), 762-769.

Srinivas, N., Deb, K., 1994. Multiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary Computation 2 (3), 221-248.

Streichert, F., Ulmer, H., 2005. JavaEvA: A java based framework for evolutionary
algorithms. Tech. Rep. WSI-2005-06, Centre for Bioinformatics Tiibingen (ZBIT)
of the Eberhard-Karls-University, Tiibingen.

Talbi, E.-G., 2002. A taxonomy of hybrid metaheuristics. Journal of Heuristics 8 (2),
541-564.

Talbi, E.-G., 2009. Metaheuristics: From Design to Implementation. Wiley.

Talbi, E.-G., Cahon, S., Melab, N., 2007. Designing cellular networks using a parallel
hybrid metaheuristic on the computational grid. Computer Communications 30
(4), 698-713.

Talbi, E.-G., Jourdan, L., Garcia-Nieto, J., Alba, E., 2008. Comparison of population
based metaheuristics for feature selection: Application to microarray data
classification. In: IEEE/ACS International Conference on Computer Systems and
Applications (AICCSA 2008). IEEE Press, pp. 45-52.

Tan, K.C,, Lee, T.H., Khoo, D., Khor, E.F., 2001. A multi-objective evolutionary
algorithm toolbox for computer-aided multi-objective optimization. IEEE
Transactions on Systems, Man and Cybernetics: Part B (Cybernetics) 31 (4),
537-556.

Zitzler, E., Kiinzli, S., 2004. Indicator-based selection in multiobjective search. In:
Conference on Parallel Problem Solving from Nature (PPSN VIII). Lecture Notes
in Computer Science, vol. 3242. Springer-Verlag, Birmingham, UK, pp. 832-842.

Zitzler, E., Thiele, L., 1999. Multiobjective evolutionary algorithms: A comparative
case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation 3 (4), 257-271.

Zitzler, E., Laumanns, M., Thiele, L. 2001. SPEA2: Improving the strength pareto
evolutionary algorithm. Tech. Rep. 103, Computer Engineering and Networks
Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V., 2003.
Performance assessment of multiobjective optimizers: An analysis and review.
IEEE Transactions on Evolutionary Computation 7 (2), 117-132.

Zitzler, E., Laumanns, M., Bleuler, S., 2004. A tutorial on evolutionary multiobjective
optimization. In: Gandibleux, X., Sevaux, M., Swrensen, K. (Eds.), Metaheuristics
for Multiobjective Optimisation, Lecture Notes in Economics and Mathematical
Systems, vol. 535. Springer-Verlag, pp. 3-38.

Please cite this article in press as: Liefooghe, A, et al. A software framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research (2010), doi:10.1016/j.ejor.2010.07.023

http://dx.doi.org/10.1016/j.ejor.2010.07.023

	A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO
	Introduction
	A conceptual unified model for evolutionary multiobjective optimization
	Elements description
	Representation
	Initialization
	Evaluation
	Variation
	Fitness assignment
	Diversity assignment
	Selection
	Replacement
	Elitism
	Stopping criteria

	State-of-the-art EMO algorithms as instances of the conceptual unified model

	Design and implementation of evolutionary multiobjective optimization algorithms under ParadisEO-MOEO
	Motivations
	ParadisEO and ParadisEO-MOEO
	Main characteristics
	Existing software frameworks for evolutionary multiobjective optimization
	Implementation
	EMO algorithms
	Parallel EMO algorithms

	Discussion

	Concluding remarks
	Acknowledgments
	References

