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Optimal consumption and investment

in incomplete markets with general constraints∗

Patrick Cheridito†

Princeton University

Princeton, NJ 08544, USA

Ying Hu‡

IRMAR, Université Rennes 1

35042 Rennes Cedex, France.

Abstract. We study an optimal consumption and investment problem in a possibly incom-
plete market with general, not necessarily convex, stochastic constraints. We provide explicit
solutions for investors with exponential, logarithmic as well as power utility and show that they
are unique if the constraints are convex. Our approach is based on martingale methods that
rely on results on the existence and uniqueness of solutions to BSDEs with drivers of quadratic
growth.

1 Introduction

We consider an investor receiving stochastic income who can invest in a financial market. The
question is how to optimally consume and invest if utility is derived from intermediate consump-
tion and the level of remaining wealth at some final time T . More specifically, we assume our
investor receives income at rate et and a lump sum payment E at the final time. The investor
chooses a rate of consumption ct and an investment policy so as to maximize the expectation

E

[
∫ T

0
αe−βtu(ct)dt+ e−βTu(XT + E)

]

,

where α and β are constants, u : R → R ∪ {−∞} is a concave utility function and XT is
his/her wealth immediately before receiving the lump sum payment E. There exists an extensive
literature on problems of this form; see for instance, Karatzas and Shreve [8] for an overview.

The novelty of this paper is that we put general, not necessarily convex, stochastic constraints
on consumption and investment. We provide explicit solutions for investors with exponential, log-
arithmic and power utility in terms of solutions to BSDEs with drivers of quadratic growth. Our
approach is based on an extension of the arguments of Hu et al. [7], where investment problems
without intermediate consumption are studied. To every admissible strategy we associate a util-
ity process, which we show to always be a supermartingale and a martingale if and only if the
strategy is optimal. This method relies on results from Kobylanski [10] and Morlais [11] on the
existence and properties of solutions to BSDEs with drivers of quadratic growth. We formulate
constraints on consumption and investment in terms of subsets of predictable processes and use
conditional analysis results from Cheridito et al. [5] to obtain the existence of optimal strategies.
For related results in a slightly different setup, see Nutz [12], where dynamic programming is used
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Princeton University. The hospitality of both institutions is greatly appreciated. We also thank an anonymous
referee for valuable comments.

†Partially supported by NSF Grant DMS-0642361
‡Partially supported by funds from the Marie Curie ITN Grant, “Controlled Systems”, GA no.213841/2008.
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to derive the Bellman equation for power utility maximization in general semimartingale models
with stochastic constraints on investment.

The structure of the paper is as follows: Section 2 introduces the model. In Section 3 we
discuss the case of constant absolute risk aversion, corresponding to exponential utility functions.
Section 4 treats the case of constant relative risk aversion, which is covered by logarithmic and
power utility functions. The specification of the constraints and the definition of admissible
strategies will be slightly different from case to case. Section 5 concludes with a discussion of the
assumptions and potential generalizations.

2 The model

Let T ∈ R+ be a finite time horizon and (Wt)0≤t≤T an n-dimensional Brownian motion on a
probability space (Ω,F ,P). Denote by (Ft) the augmented filtration generated by (Wt). We
consider a financial market consisting of a money market and m ≤ n stocks. Money can be lent
to and borrowed from the money market at a constant interest rate r ≥ 0 and the stock prices
follow the dynamics

dSi
t

Si
t

= µi
tdt+ σi

tdWt, Si
0 > 0, i = 1, . . . ,m,

for bounded predictable processes µi
t and σi

t taking values in R and R1×n, respectively. If m < n,
the stocks do not span all uncertainty and the market is incomplete even if there are no constraints.

Consider an investor with initial wealth x ∈ R receiving income at a predictable rate et and
an FT -measurable lump sum payment E at time T who can consume at intermediate times and
invest in the financial market. If the investor consumes at a predictable rate ct and invests
according to a predictable trading strategy πt taking values in R1×m, where πi

t is the amount of
money invested in stock i at time t, his/her wealth evolves like

Xt = x+

∫ t

0

(

Xs −
m
∑

i=1

πi
s

)

rds+
m
∑

i=1

∫ t

0

πi
s

Si
s

dSi
s +

∫ t

0
(es − cs)ds.

Denote by σt the matrix with rows σi
t, i = 1, . . . ,m. Assume that σσT is invertible ν ⊗ P-almost

everywhere, where ν is the Lebesgue measure on [0, T ], and the process

θ = σT (σσT )−1(µ − r1)

is bounded. Then for p = πσ, one can write

X
(c,p)
t = x+

∫ t

0
X(c,p)

s rds+

∫ t

0
pt[dWt + θtdt] +

∫ t

0
(es − cs)ds. (2.1)

Note that if
∫ T

0
(|et|+ |ct|+ |pt|

2)dt < ∞ P-almost surely,

where |.| denotes the Euclidean norm on R1×n, then

∫ t

0
pt[dWt + θtdt] +

∫ t

0
(es − cs)ds

is a continuous stochastic process, and it follows that equation (2.1) has a unique continuous
solution X(c,p); see for instance Remark A.2 in Cheridito et al. [4].
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We assume our agent chooses c and π so as to maximize

E

[
∫ T

0
αe−βtu(ct)dt+ e−βTu

(

X
(c,p)
T + E

)

]

(2.2)

for given constants α > 0, β ∈ R and a concave function u : R → R ∪ {−∞}. The specific cases
we will discuss are:

• u(x) = − exp(−γx) for γ > 0
• u(x) = log(x)
• u(x) = xγ/γ for γ ∈ (−∞, 0) ∪ (0, 1).

As usual, for γ > 0, we understand xγ/γ to be −∞ on (−∞, 0) while log(x) and xγ/γ for γ < 0
are meant to be −∞ on (−∞, 0].

To formulate consumption and investment constraints we introduce non-empty subsets C ⊂ P
and Q ⊂ P1×m, where P denotes the set of all real-valued predictable processes (ct)0≤t≤T and
P1×m the set of all predictable processes (πt)0≤t≤T with values in R1×m. In Section 3 we do not
put restrictions on consumption and just require the investment strategy π to belong to Q. In
Section 4 consumption and investment will be of the form c = c̃X and π = π̃X, respectively, and
we will require c̃ to be in C and π̃ in Q.

Note that the expected value (2.2) does not change if (c, p) is replaced by a pair (c′, p′) which
is equal ν⊗P-a.e. So we identify predictable processes that agree ν⊗P-a.e. and use the following
concepts from Cheridito et al. [5]: We call a subset A of P1×k sequentially closed if it contains
every process a that is the ν ⊗ P-a.e. limit of a sequence (an)n≥1 of processes in A. We call it
P-stable if it contains 1Ba+1Bca′ for all a, a′ ∈ A and every predictable set B ⊂ [0, T ]×Ω. We
say A is P-convex if it contains λa + (1 − λ)a′ for all a, a′ ∈ A and every process λ ∈ P with
values in [0, 1]. In the whole paper we work with the following

Standing assumption C and Q are sequentially closed and P-stable.

This will allow us to show existence of optimal strategies. If, in addition, C and Q are P-convex,
the optimal strategies will be unique. Note that P = {πσ : π ∈ Q} is a P-stable subset of P1×n,
which, since we assumed σσT to be invertible for ν ⊗ P-almost all (t, ω), is P-convex if and only
if Q is. Moreover, it follows from [5] that P is sequentially closed.

For a process q in P1×n, we denote by dist(q, P ) the predictable process

dist(q, P ) := ess inf
p∈P

|q − p|,

where ess inf denotes the greatest lower bound with respect to the ν ⊗ P-a.e. order. It is shown
in [5] that there exists a process p ∈ P satisfying |q − p| = dist(q, P ) and that it is unique (up to
ν ⊗ P-a.e. equality) if P is P-convex. We denote the set of all these processes by ΠP (q).

By P1×n
BMO we denote the processes Z ∈ P1×n for which there exists a constant D ≥ 0 such

that

E

[
∫ T

τ
|Zt|

2dt | Fτ

]

≤ D for all stopping times τ ≤ T.

For every Z ∈ P1×n
BMO,

∫ .
0 ZsdWs is a BMO-martingale and E(Z · W )t, 0 ≤ t ≤ T , a positive

martingale. Moreover, if Z, V belong to P1×n
BMO, then Z is also in P1×n

BMO with respect to the
Girsanov transformed measure

Q = E(V ·W )T · P;

see for instance, Kazamaki [9].

3



3 CARA or exponential utility

We first assume that our investor has constant absolute risk aversion −u′′(x)/u′(x) = γ > 0.
Then, up to affine transformations, the utility function u is of the exponential form

u(x) = − exp(−γx).

Here we do not constrain consumption, that is, C = P, and we assume that the set P of possible
investment strategies contains at least one bounded process p̄. Moreover, we assume that the rate
of income e and the final payment E are both bounded.

Define the bounded positive function h on [0, T ] by

h(t) = 1/(1 + T − t) if r = 0

and
h(t) =

r

1− (1− r) exp(−r(T − t))
if r > 0.

Note that in both cases h solves the quadratic ODE

h′(t) = h(t)(h(t) − r), h(T ) = 1.

Definition 3.1 If u(x) = − exp(−γx), an admissible strategy consists of a pair (c, p) ∈ P × P

such that
∫ T
0 (|ct|+ |pt|

2)dt < ∞ P-a.s.,

exp
(

−γh(t)X
(c,p)
t

)

0≤t≤T
is of class (D) and

∫ T

0
E
[

e−γct
]

dt < ∞.

Consider the BSDE

Yt = E +

∫ T

t
f(s, Ys, Zs)ds +

∫ T

t
ZsdWs (3.1)

with driver

f(t, y, z) = −
γ

2
dist2t

(

z +
1

γ
θ, hP

)

+ zθt +
1

2γ
|θt|

2 + h(t)(et − y) +
h(t)

γ

(

log
h(t)

α
− 1

)

+
β

γ
.

Since θ, e, E and h are bounded and the set P contains a bounded process p̄, there exists a
constant K ∈ R+ such that

|f(t, y, z)| ≤ K(1 + |y|+ |z|2)

and
|f(t, y1, z1)− f(t, y2, z2)| ≤ K(|y1 − y2|+ (1 + |z1|+ |z2|)|z1 − z2|).

So it follows from Kobylanski [10] that equation (3.1) has a unique solution (Y,Z) such that Y
is bounded and from Morlais [11] that Z belongs to P1×n

BMO.

Theorem 3.2 The optimal value of the optimization problem (2.2) for u(x) = − exp(−γx) over
all admissible strategies is

− exp [−γ(h(0)x + Y0)] , (3.2)

and (c∗, p∗) is an optimal admissible strategy if and only if

c∗ = hX(c∗,p∗) + Y −
1

γ
log

h

α
ν ⊗ P-a.e. and p∗ ∈ ΠP

(

Z + θ/γ

h

)

. (3.3)

In particular, an optimal admissible strategy exists, and it is unique up to ν ⊗ P-a.e. equality if

the set P is P-convex.
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Proof. For every admissible strategy (c, p), equation (2.1) defines a continuous stochastic process
X(c,p). The process

R
(c,p)
t = −e−βte

−γ
(

h(t)X
(c,p)
t +Yt

)

−

∫ t

0
αe−βse−γcsds

satisfies

R
(c,p)
0 = −e−γ(h(0)x+Y0), R

(c,p)
T = −e−βT e

−γ
(

X
(c,p)
T

+E
)

−

∫ T

0
αe−βse−γcsds

and

dR
(c,p)
t = γe−βte

−γ
(

h(t)X
(c,p)
t +Yt

)

[

(h(t)pt − Zt)dWt +A
(c,p)
t dt

]

,

where

A
(c,p)
t = h(t)ptθt −

γ

2
|h(t)pt − Zt|

2 − f(t, Yt, Zt)

+h(t)(et − ct)−
α

γ
e
γ
(

h(t)X
(c,p)
t +Yt

)

e−γct + h′(t)X
(c,p)
t + h(t)rX

(c,p)
t +

β

γ
.

First note that

h(t)ptθt −
γ

2
|h(t)pt − Zt|

2 = −
γ

2

∣

∣

∣

∣

h(t)pt −

(

Zt +
1

γ
θt

)∣

∣

∣

∣

2

+ Ztθt +
1

2γ
|θt|

2

≤ −
γ

2
dist2t

(

Z +
1

γ
θ, hP

)

+ Ztθt +
1

2γ
|θt|

2,

and the inequality becomes a ν ⊗ P-a.e. equality if and only if

p ∈ ΠP

(

Z + θ/γ

h

)

.

Furthermore, for fixed (t, ω) ∈ [0, T ] × Ω,

z 7→ −h(t)z −
α

γ
e
γ
(

h(t)X
(c,p)
t +Yt

)

e−γz

is a strictly concave function that is equal to its maximum

h(t)

γ
log

h(t)

α
− h2(t)X

(c,p)
t − h(t)Yt −

h(t)

γ

if and only if

z = h(t)X
(c,p)
t + Yt −

1

γ
log

h(t)

α
.

Therefore, one has

h(t)(et − ct)−
α

γ
e
γ
(

h(t)X
(c,p)
t +Yt

)

e−γct + h′(t)X
(c,p)
t + h(t)rX

(c,p)
t +

β

γ

≤ h(t)et +
h(t)

γ
log

h(t)

α
− h2(t)X

(c,p)
t − h(t)Yt −

h(t)

γ
+ h′(t)X

(c,p)
t + h(t)rX

(c,p)
t +

β

γ

= h(t)et +
h(t)

γ
log

h(t)

α
− h(t)Yt −

h(t)

γ
+

β

γ
, (3.4)
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where the inequality is attained if and only if

c = hX(c,p) + Y −
1

γ
log

h

α

(note that in (3.4) the X
(c,p)
t -terms disappear due to our choice of the function h). It follows

that for every admissible pair (c, p), R(c,p) is a local supermartingale, which by our definition of
admissible strategies, is of class (D). Therefore, it is a supermartingale, and one obtains

R
(c,p)
0 ≥ E

[

R
(c,p)
T

]

,

where the inequality is strict if the pair (c, p) does not satisfy condition (3.3). On the other
hand, if we can show that each pair (c∗, p∗) satisfying (3.3) is admissible and R∗ = R(c∗,p∗) is a
martingale, we can conclude that

R∗
0 = E [R∗

T ] ,

and it follows that (c∗, p∗) is optimal.

But if (c∗, p∗) satisfies (3.3), c∗ is continuous in t. In particular, it belongs to P and
∫ T
0 |c∗t |dt <

∞ P-a.s. Moreover, since θ as well as h are bounded and P contains a bounded process p̄,
there exists a constant L such that |p∗| ≤ L(1 + |Z|). It follows that p∗ ∈ P1×n

BMO, and hence,
∫ T
0 |p∗t |

2dt < ∞ P-a.s. Since A∗ := A(c∗,p∗) = 0, −R∗ is a positive local martingale, and one
obtains

E

[

e−γX∗
T

]

+ E

[
∫ T

0
e−γc∗t dt

]

≤ ME [−R∗
T ] < ∞,

where M is a suitable constant and the inequality E [−R∗
T ] < ∞ follows from Fatou’s lemma. By

Girsanov’s theorem,

WQ
t = Wt +

∫ t

0
θsds

is an n-dimensional Brownian motion under the measure

Q = E(−θ ·W )T · P,

and one has

d(h(t)X∗
t ) = h′(t)X∗

t dt+ h(t)p∗t dWt + h(t)[X∗
t r + p∗t θt + et − c∗t ]dt

= h′(t)X∗
t dt+ h(t)p∗t dWt + h(t)

[

X∗
t r + p∗t θt + et − h(t)X∗

t − Yt +
1

γ
log

(

h(t)

α

)]

dt

= h(t)p∗t dWt + h(t)

[

p∗t θt + et − Yt +
1

γ
log

(

h(t)

α

)]

dt

= h(t)p∗t dW
Q
t + h(t)

[

et − Yt +
1

γ
log

(

h(t)

α

)]

dt. (3.5)

Since p∗ belongs to P1×n
BMO, the process Vt =

∫ t
0 h(s)p

∗
sdW

Q
s is a BMO-martingale under Q, and it

can be seen from (3.5) that there exist constants d1, d2 such that

e−γh(t)X∗
t ≤ d1e

−γVt and e−γVt ≤ d2e
−γh(t)X∗

t for all t ∈ [0, T ].

Hence, one obtains for every stopping time τ ≤ T ,

e−γh(τ)X∗
τ ≤ d1e

−γVτ ≤ d1

(

EQ

[

e−
γ

2
VT | Fτ

])2

= d1

(

E

[

e−
γ

2
VT E(−θ ·W )T | Fτ

])2
E(−θ ·W )−2

τ

≤ d1E
[

e−γVT | Fτ

]

E
[

E(−θ ·W )2T | Fτ

]

E(−θ ·W )−2
τ

≤ d1d2E
[

e−γX∗
T | Fτ

]

E
[

E(−θ ·W )2T | Fτ

]

E(−θ ·W )−2
τ .
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But since θ is bounded, there exists a constant d3 such that

E
[

E(−θ ·W )2T | Fτ

]

E(−θ ·W )−2
τ

= E

[

E(−2θ ·W )T
E(−2θ ·W )τ

exp

(
∫ T

τ
|θs|

2ds

)

| Fτ

]

≤ d3 for every stopping time τ ≤ T.

So one has

e−γh(τ)X∗
τ ≤ d1d2d3E

[

e−γX∗
T | Fτ

]

for every stopping time τ ≤ T.

This shows that exp (−γh(t)X∗
t )0≤t≤T is of class (D). Therefore, (c∗, p∗) is admissible and R∗ a

martingale.
It remains to show that a pair (c∗, p∗) satisfying (3.3) exists and that it is unique up to ν⊗P-

a.e. equality if the set P is P-convex. It is shown in [5] that a process p∗ in ΠP

(

Z+θ/γ
h

)

exists

and that it is unique up to ν ⊗ P-a.e. equality if P is P-convex. As we have seen above, every

p∗ ∈ ΠP

(

Z+θ/γ
h

)

is also in P1×n
BMO. So there exists a unique continuous process (Xt) satisfying

Xt = x+

∫ t

0
Xsrds+

∫ t

0
p∗t [dWt + θtdt] +

∫ t

0

(

es − h(s)Xs − Ys +
1

γ
log

h(s)

α

)

ds.

But X = X(c∗,p∗) for

c∗t = h(t)Xt + Yt −
1

γ
log

h(t)

α
.

So (c∗, p∗) satisfies condition (3.3), and it is unique up to ν ⊗ P-a.e. equality if the set P is
P-convex. �

4 CRRA utility

We now assume that the investor has constant relative risk aversion −xu′′(x)/u′(x) = δ > 0. For
δ = 1, this corresponds to u(x) = log(x), and for δ 6= 1 to u(x) = xγ/γ, where γ = 1 − δ. We
discuss the cases δ = 1 and δ 6= 1 separately. In both of them we assume E = 0.

We here suppose that the initial wealth is strictly positive: x > 0. To avoid −∞ utility,
the agent must keep the wealth process positive. Therefore, we can parameterize e, c and π by
ẽ = e/X, c̃ = c/X and π̃ = π/X, respectively. If one denotes p̃ = π̃σ, the corresponding wealth
evolves according to

dX
(c,p)
t

X
(c,p)
t

= p̃t(dWt + θtdt) + (r + ẽt − c̃t)dt, X
(c,p)
0 = x,

and one can write

X
(c,p)
t = x E

(

p̃ ·WQ
)

t
exp

(
∫ t

0
(r + ẽs − c̃s)ds

)

> 0, (4.1)

where E is the stochastic exponential and WQ
t = Wt +

∫ t
0 θsds.

In the whole section we assume that ẽ is bounded and the constraints are of the following
form: c̃ must be in the set C and π̃ in Q, or equivalently, p̃ in P = {π̃σ : π̃ ∈ Q}. Additionally,
c̃ will be required to be positive or non-negative depending on the specific utility function being
used. Also, c̃ and p̃ will have to satisfy suitable integrability conditions. For all CRRA utility
functions u we make the following assumption:

there exists a pair (c̄, p̄) ∈ C × P such that u(c̄)− c̄ and p̄ are bounded. (4.2)

Note that this implies that u(c̄) and c̄ are both bounded.
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4.1 Logarithmic utility

In the case u(x) = log(x), we introduce the positive function

h(t) =

{

1 + α(T − t) if β = 0

α/β + (1− α/β)e−β(T−t) if β > 0
,

and notice that
h′(t) = βh(t) − α with h(T ) = 1.

Definition 4.1 For u(x) = log(x), an admissible strategy is a pair (c̃, p̃) ∈ C × P satisfying

E

[
∫ T

0
| log(c̃t)|dt+

∫ T

0
c̃tdt+

∫ T

0
|p̃t|

2dt

]

< ∞. (4.3)

Remember that we understand log(x) to be −∞ for x ≤ 0. Therefore, (4.3) implies c̃ > 0 ν⊗P-a.e.
Let us set

max
c̃∈C

(α

h
log(c̃)− c̃

)

:= ess sup
c̃∈C

(α

h
log(c̃)− c̃

)

, (4.4)

where ess sup is the smallest upper bound with respect to ν ⊗ P-a.e. inequality. By

argmaxc̃∈C

(α

h
log(c̃)− c̃

)

(4.5)

we denote the set of all processes in C which attain the ess sup. It follows from Cheridito et al.
[5] that (4.5) is not empty and, up to ν ⊗ P-a.e. equality, contains exactly one process if C is
P-convex. Note that

α

h
log(c̄)− c̄ ≤ max

c̃∈C

(α

h
log(c̃)− c̃

)

≤
α

h

(

log
α

h
− 1
)

,

where c̄ is the process of assumption (4.2). It follows that maxc̃∈C
(

α
h log(c̃)− c̃

)

as well as every
process c̃ ∈ argmaxz̃∈C

(

α
h log(z̃)− z̃

)

is bounded. In particular, log(c̃) is bounded for every
c̃ ∈ argmaxz̃∈C

(

α
h log(z̃)− z̃

)

.
Consider the BSDE

Yt =

∫ T

t
f(s, Ys)ds+

∫ T

t
ZsdWs (4.6)

with driver

f(t, y) =
1

2
dist2t (θ, P )−

1

2
|θt|

2 −
αy

h(t)
−max

c̃∈C

(α

h
log(c̃)− c̃

)

t
− r − ẽt. (4.7)

f(t, y) is of linear growth in y, and all the other terms are bounded. It is known from Pardoux
and Peng [13] that (4.6) has a unique solution (Y,Z) such that Y is square-integrable, and it
follows from Morlais [11] that Y is bounded and Z ∈ P1×n

BMO.

Theorem 4.2 For u(x) = log(x), the optimal value of the optimization problem (2.2) over all

admissible strategies is

h(0)(log(x)− Y0), (4.8)

and (c̃∗, p̃∗) is an optimal admissible strategy if and only if

c̃∗ ∈ argmaxc̃∈C

(α

h
log(c̃)− c̃

)

and p̃∗ ∈ ΠP (θ) . (4.9)

In particular, an optimal admissible strategy exists, and it is unique up to ν ⊗ P-a.e. equality if

the sets C and P are P-convex.
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Proof. For every admissible strategy (c̃, p̃), define the process

R
(c,p)
t = h(t)e−βt

(

log
(

X
(c,p)
t

)

− Yt

)

+

∫ t

0
αe−βs log(cs)ds.

Then

R
(c,p)
0 = h(0)(log(x)− Y0), R

(c,p)
T = e−βT log

(

X
(c,p)
T

)

+

∫ T

0
αe−βs log(cs)ds

and
dR

(c,p)
t = h(t)e−βt

[

(p̃t + Zt)dWt +A
(c,p)
t dt

]

, (4.10)

where

A
(c,p)
t = p̃tθt −

1

2
|p̃t|

2 +
αYt

h(t)
+ f(t, Yt) +

α

h(t)
log(c̃t) + r + ẽt − c̃t.

First note that

p̃tθt −
1

2
|p̃t|

2 +
αYt

h(t)
= −

1

2
|p̃t − θt|

2 +
1

2
|θt|

2 +
αYt

h(t)
≤ −

1

2
dist2t (θ, P ) +

1

2
|θt|

2 +
αYt

h(t)
,

and the inequality becomes a ν ⊗ P-a.e. equality if and only if

p̃ ∈ ΠP (θ) .

Furthermore,
α

h
log(c̃) + r + ẽ− c̃ ≤ max

z̃∈C

(α

h
log(z̃)− z̃

)

+ r + ẽ,

where ν ⊗ P-a.e. equality is attained if and only if

c̃ ∈ argmaxz̃∈C

(α

h
log(z̃)− z̃

)

.

It follows that for every admissible pair (c̃, p̃), the process R(c,p) is a local supermartingale. But it
can be seen from (4.10) that the local martingale part of R(c,p) is a true martingale and its finite
variation part is of integrable total variation. So R(c,p) is a supermartingale and one obtains

R
(c,p)
0 ≥ E

[

R
(c,p)
T

]

,

where the inequality is strict if (c, p) does not satisfy condition (4.9). If (c̃∗, p̃∗) satisfies (4.9),
then the pair is in C×P . Moreover, we have seen above that it follows from assumption (4.2) that
the process log(c̃∗) is bounded. The same is true for p̃∗ because θ is bounded and, by assumption
(4.2), P contains a bounded process p̄. In particular, (c̃∗, p̃∗) is admissible and the corresponding
process R∗ a martingale. One concludes

R∗
0 = E [R∗

T ] ,

which shows that (c̃∗, p̃∗) is optimal. That a strategy satisfying (4.9) exists follows from [5] as
well as its uniqueness (up to ν ⊗ P-a.e. equality) in case C and P are P-convex. �

Example 4.3 If consumption is unconstrained, that is C = P, then

c̃∗ =
α

h
, max

c̃∈C

(α

h
log(c̃)− c̃

)

=
α

h

(

log
(α

h

)

− 1
)

,

and the driver (4.7) becomes

f(t, y) =
1

2
dist2t (θ, P )−

1

2
|θt|

2 −
αy

h(t)
−

α

h(t)

(

log

(

α

h(t)

)

− 1

)

− r − ẽt.
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4.2 Power utility

Let us now turn to the case u(x) = xγ/γ for γ ∈ (−∞, 0) ∪ (0, 1). The definition of admissible
strategies is slightly different for γ > 0 and γ < 0. But the optimal value of the optimization
problem (2.2) as well as the optimal strategies will in both cases be of the same form.

Definition 4.4 In the case γ > 0, an admissible strategy is a pair (c̃, p̃) ∈ C × P such that

c̃ ≥ 0 ν ⊗ P-a.e. and

∫ T

0
c̃tdt+

∫ T

0
|p̃t|

2dt < ∞ P-a.s.

For γ < 0, we additionally require the process (X(c,p))γ to be of class (D) and E

[

∫ T
0 cγt dt

]

< ∞.

Note that for γ < 0, since we assume xγ to be ∞ if x ≤ 0, the condition E

[

∫ T
0 cγt dt

]

< ∞ implies

c̃ > 0 ν ⊗ P-a.e.
For every continuous bounded process Y , define

max
c̃∈C

(

α

γ
c̃γeY − c̃

)

:= ess sup
c̃∈C

(

α

γ
c̃γeY − c̃

)

, (4.11)

where ess sup denotes the smallest upper bound with respect to ν ⊗ P-a.e. ordering, and denote
by

argmaxc̃∈C

(

α

γ
c̃γeY − c̃

)

(4.12)

the set of all processes in C which attain the ess sup. It follows from Cheridito et al. [5] that
(4.12) is not empty and, up to ν ⊗ P-a.e. equality, contains exactly one process if C is P-convex.
For the process c̄ of assumption (4.2), one has

α

γ
c̄γeY − c̄ ≤ max

c̃∈C

(

α

γ
c̃γeY − c̃

)

≤
1− γ

γ
α1/(1−γ)eY/(1−γ).

This implies that maxc̃∈C

(

α
γ c̃

γeY − c̃
)

as well as u(c̃) and c̃ for every c̃ ∈ argmaxz̃∈C

(

α
γ z̃

γeY − z̃
)

,

are bounded processes. Now consider the BSDE

Yt =

∫ T

t
f(s, Ys, Zs)ds +

∫ T

t
ZsdWs (4.13)

with driver

f(t, y, z) = γ

(

1− γ

2
dist2t

(

z + θ

1− γ
, P

)

−
|z + θt|

2

2(1− γ)
−

1

2γ
|z|2 −max

c̃∈C

(

α

γ
c̃γey − c̃

)

t

− r − ẽt +
β

γ

)

.

(4.14)
Note that f(t, y, z) grows exponentially in y. But it satisfies Assumption (A.1) in Briand and Hu
[3]. So it can be deduced from Proposition 3 in [3] that (4.13) has a solution (Y,Z) such that Y
is bounded. That Z is in P1×n

BMO and the uniqueness of such a solution then follow from [11].

Theorem 4.5 If u(x) = xγ/γ for γ ∈ (−∞, 0) ∪ (0, 1), the optimal value of the optimization

problem (2.2) over all admissible strategies is

1

γ
xγe−Y0 , (4.15)
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and (c̃∗, p̃∗) is an optimal admissible strategy if and only if

c̃∗ ∈ argmaxc̃∈C

(

α

γ
c̃γeY − c̃

)

and p̃∗ ∈ ΠP

(

Z + θ

1− γ

)

. (4.16)

In particular, an optimal admissible strategy exists, and it is unique up to ν ⊗ P-a.e. equality if

the sets C and P are P-convex.

Proof. For every admissible strategy (c̃, p̃) define the process

R
(c,p)
t = e−βt 1

γ

(

X
(c,p)
t

)γ
e−Yt +

∫ t

0
αe−βs 1

γ
cγsds.

Then

R
(c,p)
0 =

1

γ
xγe−Y0 , R

(c,p)
T = e−βT 1

γ

(

X
(c,p)
T

)γ
+

∫ T

0
αe−βs 1

γ
cγsds

and

dR
(c,p)
t = e−βt

(

X
(c,p)
t

)γ
e−Yt

[(

p̃t +
1

γ
Zt

)

dWt +A
(c,p)
t dt

]

,

where

A
(c,p)
t = p̃t(Zt + θt) +

1

2
(γ − 1)|p̃t|

2 +
1

2γ
|Zt|

2 +
1

γ
f(t, Yt, Zt)

+
α

γ
c̃γt e

Yt + ẽt − c̃t + r −
β

γ
.

First note that

p̃t(Zt + θt) +
1

2
(γ − 1)|p̃t|

2 +
1

2γ
|Zt|

2

=
γ − 1

2

∣

∣

∣

∣

p̃t −
Zt + θt
1− γ

∣

∣

∣

∣

2

+
1

2(1− γ)
|Zt + θt|

2 +
1

2γ
|Zt|

2

≤
γ − 1

2
dist2t

(

Z + θ

1− γ
, P

)

+
1

2(1− γ)
|Zt + θt|

2 +
1

2γ
|Zt|

2,

and the inequality becomes a ν ⊗ P-a.e. equality if and only if

p̃ ∈ ΠP

(

Z + θ

1− γ

)

.

Furthermore,
α

γ
c̃γeY + ẽ− c̃+ r −

β

γ
≤ max

z̃∈C

(

α

γ
z̃γeY − z̃

)

+ ẽ+ r −
β

γ
,

where ν ⊗ P-a.e. equality is attained if and only if

c̃ ∈ argmaxz̃∈C

(

α

γ
z̃γeY − z̃

)

.

The next step of the proof is slightly different for the two cases γ > 0 and γ < 0. Let us
first assume γ > 0. Then for every admissible pair (c̃, p̃), the process R(c,p) is a positive local
supermartingale, and hence, a supermartingale. In particular,

R
(c,p)
0 ≥ E

[

R
(c,p)
T

]

(4.17)
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with strict inequality if condition (4.16) is violated. Now let (c̃∗, p̃∗) be a strategy satisfying
(4.16). Then, as we have seen above, u(c̃∗) and c̃∗ are bounded processes. In particular c̃∗ ≥ 0
ν ⊗ P-a.e. Moreover, since θ and p̄ are bounded and Z is in P1×n

BMO, it follows from

dist

(

Z + θ

1− γ
, p̃∗
)

= dist

(

Z + θ

1− γ
, P

)

≤ dist

(

Z + θ

1− γ
, p̄

)

,

that dist
(

Z+θ
1−γ , p̄

)

is in PBMO and p̃∗ in P1×n
BMO. This shows that (c̃∗, p̃∗) is admissible. Further-

more, the corresponding process X∗ satisfies

X∗
t = x E

(

p̃∗ ·WQ
)

t
exp

(
∫ t

0
(r + ẽs − c̃∗s)ds

)

≤ ME
(

p̃∗ ·WQ
)

t
(4.18)

for some constant M ∈ R+. Choose γ < γ′ < 1 and let ε = 1 − γ′. Since θ is bounded, one has

EQ

[

E
(

θ ·WQ
)1/ε

T

]

< ∞, and by Hölder’s inequality, one obtains for every stopping time τ ≤ T ,

E
[

(X∗
τ )

γ′
]

= EQ

[

(X∗
τ )

γ′

E(θ ·WQ)T

]

≤ EQ [(X∗
τ )]

γ′

EQ

[

E
(

θ ·WQ
)1/ε

T

]ε

≤ Mγ′

EQ

[

E
(

θ ·WQ
)1/ε

T

]ε

.

It follows that (X∗)γ is of class (D) and R∗ a martingale. In particular,

R∗
0 = E [R∗

T ] ,

which shows that (c̃∗, p̃∗) is optimal.
If γ < 0, R(c,p) is for every admissible pair (c̃, p̃) a supermartingale due to our assumption

that (X(c,p))γ is of class (D) and E

[

∫ T
0 cγt dt

]

< ∞. So again,

R
(c,p)
0 ≥ E

[

R
(c,p)
T

]

with strict inequality if (c̃, p̃) does not fulfill condition (4.16). If (c̃∗, p̃∗) satisfies (4.16), it follows
as in the case γ > 0, that u(c̃∗) and c̃∗ are bounded and p̃∗ belongs to P1×n

BMO. In particular,
c̃∗ > 0 ν⊗P-a.e. Moreover, −R∗ is a positive local martingale. So −R∗ is a supermartingale and
E[−R∗

T ] < ∞. Hence,

E

[

(X∗
T )

γ +

∫ T

0
(c∗t )

γdt

]

< ∞, (4.19)

and it follows that (c̃∗, p̃∗) is admissible. It can be seen from (4.1) that (4.19) implies

E
[

E(p̃∗ ·WQ)γT

]

< ∞,

where WQ
t = Wt +

∫ t
0 θsds. So one obtains from Jensen’s inequality that for every stopping time

τ ≤ T ,

E(p̃∗ ·WQ)γτ ≤
(

EQ

[

E(p̃∗ ·WQ)
γ/2
T |Fτ

])2

=

(

E

[

E(p̃∗ ·WQ)
γ/2
T

E(−θ ·W )T
E(−θ ·W )τ

|Fτ

])2

≤ E

[

E(p̃∗ ·WQ)γT |Fτ

]

E

[

E(−θ ·W )2T
E(−θ ·W )2τ

|Fτ

]

≤ ME

[

E(p̃∗ ·WQ)γT |Fτ

]
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for some constant M ∈ R+. This shows that E(p̃∗ · WQ)γ and (X∗)γ are of class (D). Hence,
(c̃∗, p̃∗) is admissible and R∗ is a martingale. In particular, R∗

0 = E [R∗
T ], and it follows that

(c̃∗, p̃∗) is optimal.
In both cases, γ > 0 and γ < 0, existence of an optimal strategy follows from [5] as does

uniqueness (up to ν ⊗ P-a.e. equality) if the sets C and P are P-convex. �

Example 4.6 If consumption is unconstrained, that is C = P, then

c∗ = α1/(1−γ)eYt/(1−γ), max
c̃∈C

(

α

γ
c̃γey − c̃

)

=
1− γ

γ
α1/(1−γ)ey/(1−γ),

and the driver (4.14) becomes

f(t, y, z) = γ

(

1− γ

2
dist2t

(

z + θ

1− γ
, P

)

−
|z + θt|

2

2(1 − γ)
−

1

2γ
|z|2 −

1− γ

γ
α1/(1−γ)ey/(1−γ) − r − ẽt +

β

γ

)

.

5 Conclusion

We gave solutions to optimal consumption and investment problems for expected utility optimiz-
ers in the three cases of exponential, logarithmic and power utility. In the exponential case we
assumed that the income rate e as well as the final payment E were bounded and consumption c
was unconstrained. The proof of Theorem 3.2 relies on the fact that the BSDE (3.1) has a unique
solution (Y,Z) such that Y is bounded and Z is in P1×n

BMO. There exist extensions of the result
of Kobylanski [10] showing that equation (3.1) also has a unique solution for certain unbounded
random variables E; see Briand and Hu [2, 3], Ankirchner et al. [1], Delbaen et al. [6]. However,
if E is not bounded, Y is not bounded and Z not necessarily in P1×n

BMO. It is still possible to
show that there exist strategies satisfying condition (3.3). But one would need a new argument
to show that and in which sense they are optimal. If one introduces restrictions on consumption,
the proof of Theorem 3.2 does not go through. If one can show existence of an optimal strategy
when consumption is constrained, it obviously has to be different from (3.3). In the cases of log-
arithmic and power utility we assumed ẽ = e/X to be bounded and E = 0. The first assumption
is technical and ensures that the BSDEs (4.6) and (4.13) both have unique solutions (Y,Z) such
that Y is bounded and Z in P1×n

BMO. Again, if (4.6) or (4.13) can be solved for unbounded ẽ, one
can still show that there exist strategies satisfying (4.9) or (4.16), respectively. But then again,
one would have to find a new explanation why and in which sense they are optimal. For E 6= 0
the proofs of Theorems 4.2 and 4.5 do not work because the process R(c,p) does not have the
correct terminal value. One would have to find a new way to construct R(c,p) to cover this case.
We point out that also in Sections 3 and 4 of Hu et al. [7] as well as in Nutz [12] it is assumed
that E = 0.

References

[1] S. Ankirchner, P. Imkeller and A. Popier (2009). On measure solutions of backward stochastic
differential equations. Stochastic Process. Appl. 119, 2744–2772.

[2] P. Briand and Y. Hu (2006). BSDE with quadratic growth and unbounded terminal value.
Probab. Theory Related Fields 136, 604–618.

[3] P. Briand and Y. Hu (2008). Quadratic BSDEs with convex generators and unbounded
terminal conditions. Probab. Theory Related Fields 141, 543–567.

13



[4] P. Cheridito, H. Kawaguchi and M. Maejima (2003). Fractional Ornstein-Uhlenbeck pro-
cesses. Electron. J. Probab. 8, 14pp.

[5] P. Cheridito, M. Kupper and N. Vogelpoth (2010). Conditional analysis on Rd. Preprint.

[6] F. Delbaen, Y. Hu and A. Richou (2010). On the uniqueness of solutions to quadratic BS-
DEs with convex generators and unbounded terminal conditions. Ann. Inst. Henri Poincaré
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