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Optimal consumption and investment

in incomplete markets with general constraints*

Patrick Cheriditof Ying Hu?
Princeton University IRMAR, Université Rennes 1
Princeton, NJ 08544, USA 35042 Rennes Cedex, France.

October 1, 2010

Abstract. We study an optimal consumption and investment problem in a possibly in-
complete market with general, not necessarily convex, stochastic constraints. We give explicit
solutions for investors with exponential, logarithmic and power utility. Our approach is based on
martingale methods which rely on recent results on the existence and uniqueness of solutions to
BSDEs with drivers of quadratic growth.

1 Introduction

We consider an investor receiving stochastic income who can invest in a financial market. The
question is how to optimally consume and invest if utility is derived from intermediate consump-
tion and the level of remaining wealth at some final time 7. More specifically, we assume our
investor receives income at rate e; and a lump sum payment F at the final time. The investor
chooses a rate of consumption ¢; and an investment policy so as to maximize the expectation

T
E [/ ae Plu(cy)dt + e PTu(Xr + E) |,
0

where o and [ are constants, u: R — R U {—o0} is a concave utility function and X7 is his/her
wealth immediately before s/he receives the lump sum payment E. There exists an extensive
literature on problems of this form; see for instance, Karatzas and Shreve [ﬂ], Schachermayer [@]
or Morlais [[l]] for an overview.

The novelty of this paper is that we put general, not necessarily convex, stochastic constraints
on consumption and investment. We provide explicit solutions for investors with exponential,
logarithmic and power utility. Our approach is based on the same idea as Hu et al. [fJ], which
studies constraint investment problems without intermediate consumption. To every admissible
strategy we associate a utility process, which we show to always be a supermartingale and a
martingale if and only if the strategy is optimal. This method relies on results from Kobylanski
[f] and Morlais [I(] on the existence and properties of solutions to BSDEs with drivers of quadratic
growth (for extensions to unbounded terminal conditions, see Briand and Hu [B, B], Ankirchner
et al. [[l] as well as Delbaen et al. [{]).

The structure of the paper is as follows: Section ] introduces the model. In Section ] we discuss
the case of constant absolute risk aversion, which corresponds to exponential utility functions.

*The paper was written during periods when the authors could work together at the Université Rennes 1 or
Princeton University. The hospitality of both institutions is greatly appreciated.
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Section [ treats the case of constant relative risk aversion, which is covered by logarithmic and
power utility functions. The specification of the constraints and the definition of admissible
strategies will be slightly different from case to case.

2 The model

Let T € R4 be a finite time horizon and (W})o<¢t<7 an n-dimensional Brownian motion on a
probability space (2, F,P). Denote by (F;) the augmented filtration generated by (W;). We
consider a financial market consisting of a money market and m < n stocks. Money can be lent
to and borrowed from the money market at a constant interest rate » > 0 and the stock prices
follow the dynamics
dsi
St

:,uf;dt—l—agth, Sé>0, 1=1,...,m,

for bounded predictable processes ui and o} taking values in R and R*", respectively. If m < n,
the stocks do not span all uncertainty and the market is incomplete even if there are no constraints.

Consider an investor with initial wealth z € R receiving income at a predictable rate e; and
an Fpr-measurable lump sum payment F at time 1" who can consume at intermediate times and
invest in the financial market. If the investor consumes at a predictable rate ¢; and invests
according to a predictable trading strategy m; taking values in R where 7} is the amount of
money invested in stock ¢ at time ¢, his/her wealth evolves like

t m mooet i t
X, =z+ / (Xs - Zﬂ) rds + Z/ %dsg —i—/ (es — cs)ds.
0 P s 0

=1

Denote by o; the matrix with rows 0%, i = 1,...,m. Assume that oo” is invertible v ® P-almost

everywhere, where v is the Lebesgue measure on [0, 7], and the process
0 =0l (co?) Hpu—r1)

is bounded. Then for p = 7o, one can write

t t t
Xt(c,p) — +/0 Xs(c’p)rds +/0 pe[dWy + 0,dt] —|-/0 (es — cs)ds.

We assume our agent chooses ¢ and 7 so as to maximize
T
E [/ e Ptu(c,)dt + e_ﬁTu(X:(pc’p) + E)} (2.1)
0

for constants a > 0, 5 € R and a concave function v : R — RU{—o00}. The specific cases we will
discuss are:

o u(x) = —exp(—~x) for v > 0

o u(z) =log(x)

o u(x) =7 /y for v € (—00,0) U (0,1).

As usual, for v > 0, we understand 27 /v to be —oo on (—o0,0) while log(z) and 7/~ for v < 0
are meant to be —oo on (—o0,0].

To formulate consumption and investment constraints we introduce non-empty subsets C C P
and Q C P™™ where P denotes the set of all real-valued predictable processes (ct)o<t<T and
PLX™M the set of all predictable processes (m;)o<i<r with values in R1™. In Section B we do not
put restrictions on consumption and just require w to be in (. In Section {| consumption and



investment will be of the form ¢ = ¢X and 7 = 7X, respectively, and we will require ¢ to be in
C and 7 in Q.

Note that the expected value (@) does not change if (¢, p) is replaced by a pair (¢, p’) which
is equal v ® P-almost everywhere. So we identify predictable processes that agree v ® P-almost
everywhere and use the following concepts from Cheridito et al. [{]]: We call a subset A of P1*k
sequentially closed if it contains every process a that is the v ® P-almost everywhere limit of a
sequence (a™),>1 of processes in A. We call it P-stable if it contains 1ga+ 1gea’ for all a,a’ € A
and every predictable set B C [0,7T] x Q. We say A is P-convex if it contains Aa + (1 — A)a’ for
all a,a’ € A and every process A € P with values in [0, 1].

We always assume that C' and @Q are sequentially closed and P-stable. This will allow us to
show existence of optimal strategies. If, in addition, C' and ) are P-convex, the optimal strategies
will be unique. Since we assumed oo’ to be bounded and invertible for v ® P-almost all (¢,w),
P = Qo is a sequentially closed, P-stable subset of P1*"  which is P-convex if and only if Q is
S0.

For a process ¢ in P'*", we denote by dist(q, P) the predictable process

dist(q, P) := essinf |¢ — p|,
peEP

where |.| is the Euclidean norm on R'*" and ess inf denotes the greatest lower bound with respect
to the v ®P-almost everywhere order. It is shown in Cheridito et al. [{f] that there exists a process
p € PY*" satisfying |¢ — p| = dist(g, P) and that it is unique if P is P-convex. We denote the set
of all these processes by IIp(q).

By Péi/[% we denote the processes Z € P'*" for which there exists a constant D > 0 such
that

T

E [/ | Z;2dt | ]:T} < D for all stopping times 7 < T.

T

For every Z ¢ Péﬁ%, fo ZsdWy is a BMO-martingale and £(Z - W), 0 < t < T, a positive

martingale. Moreover, if Z,V € Péﬁ/[%, then Z is also in 73}131@[76 with respect to the Girsanov

transformed measure

Q=&WV -W)r P

see for instance, Kazamaki [J].

3 CARA or exponential utility

We first assume that our investor has constant absolute risk aversion —u”(x)/u’(x) = v > 0.
Then, up to affine transformations, the utility function wu is of the exponential form

u(z) = — exp(—a).

Here we do not constrain consumption, that is, C = P, and we assume that the set P of possible
investment strategies contains at least one bounded process p.
Introduce the bounded positive function h on [0,7] by

ht)=1/(T —t) if r=0

and
r

T 1— (1= r)exp(—r(T — 1))
Note that in both cases it solves the quadratic ODE

if r>0.

h(t)

W (t) = h(t)(h(t) — 1), h(T)= 1.



Definition 3.1 If u(z) = —exp(—~x), an admissible strategy consists of a pair (¢,p) € P x P
such that fOT(]ct\ + |pt?)dt < 0o P-almost surely,

T
. (e,p) . —vet
exp < yh(t) X, >0§t§T is of class (D) and /0 E [e77] dt < .

Consider the BSDE - -
Y,=F +/ f(s,Ys, Zs)ds + / ZsdW (3.1)
t t

with driver
1 1 h(t h(t
ftyy,2z) = —zdistf <z + —6,hP> + 20; + — 0, + h(t)(e; —y) + ht) <10g ht) 1) + é
2 Y 2y Y a g

Since 6, e, F and h are bounded and the set P contains a bounded process p, there exists a
constant K € R, such that
[f(ty:2)] < K(1+ 1yl + |2)

and
|f(t, g1, 21) — f(t y2, 22)] < K(|y1 — ol + (1 + |z1] + [22])[21 — 22]).

So it follows from [f] and [[[(] that equation (B.1]) has a unique solution (Y, Z) such that Y is
bounded and Z belongs to Pxyfe.

Theorem 3.2 The optimal value of the optimization problem (R1) for u(z) = — exp(—vyx) over
all admissible strategies is
— exp [=y(h(0)z + Yo)], (3.2)

and (c¢*,p*) is an optimal admissible strategy if and only if

¢ =hx ’p)—i-Y—;logE and p*EHp(%). (3.3)

Moreover, if P is P-convex, there is only one optimal strategy (c*,p*).

Proof. For every admissible strategy (c,p) define the process

c, t
Rgc’p) = —e_[’)te—v(h(t)Xt( p)+Yt> _/ ae Pse1% s,

0
Then r
R(()ap) = _e_y(h(O)x-‘rYo)’ Réf’p) — —G_BTB_’Y(X’;C@)—FE) _/ ae_ﬁse_“wsds
0

and o

_ p

AR = e Pte P(hOX4v2) [(h(f)pt — Z,)dW, + A§c’p>dt} ,
where
Aﬁc’p) = h(t)p:6; — %’h(t)pt — Zt’2 — f(t,Ys, Zy)

(e,p)
+h(t)(er — ) — %e’\/(h(t)xt P +Yt) e 4 h/(t)Xt(C,p) + h(t)TXt(c’p) + g



First note that

1 2
h(t)pebe — %!h(t)pt — Zi|* = —% 'h(t)pt - <Zt + ;&:)

1
+ Z:0; + —]6t12
2y
T 1 1 2
< ——dIStt Z+—0,hP +Zt0t+_’0t’ s
2 Y 2y

and the inequality becomes an v ® P-almost everywhere equality if and only if

Z+6
h
Furthermore,
(e;p)
h(t)(er — ) — %e'y@@xt DN e WX+ h)rx? + g
h(t h(t c h(t . .
< N(t)e + MO log L R2(6) X[ — h(t)Y; - me) | R ()X + h(t)r X + b
Y @ ot v
h(t h(t h(t
= h(t)e + h(t) log ht) _ h(t)Y: — het) + é, (3.4)
@ v
where the inequality is attained if and only if
(hX(©P) 1Y) —vc (e.p) 1 h
ae’ e =h & c=hX ’p—i—Y—;logE

(note that in (B.4)) the X-terms disappear due to our choice of the function h). It follows that for
every admissible pair (¢, p), R(©P) is a local supermartingale, which by our definition of admissible
strategies, is of class (D). Therefore, it is a supermartingale, and one obtains

Ry > B[ RE)

If we can show that each pair (c¢*, p*) satisfying (B-J) is admissible and R* = R(€"P") is a martin-
gale, we can conclude that

Ry =E[R7],

and it follows that (c¢*,p*) is optimal.

But if (¢*, p*) satisfies (B.J), ¢* is continuous. Therefore, it belongs to P and fOT cjdt < oo
P-almost surely. Moreover, since 6 as well as h are bounded and P contains a bounded process p,

there exists a constant L such that |[p*| < L(1+4|Z]). It follows that p* € Péfﬁ), and in particular,

fOT Ip;|2dt < 0o P-almost surely. Since A* = AlCPY) = 0, —R* is a positive local martingale, and
one obtains

T
E [e—VX%] +E [ / ek dt] < ME[-R}] < oo,
0

where M is a suitable constant and the inequality E [—-R}] < oo follows from Fatou’s lemma. By
Girsanov’s theorem,

t
w2 =W, + / Oyds
0
is an n-dimensional Brownian motion under the measure



and one has
d(h(t)X]) = W ()X} dt + h(t)pEdWy + h(t)[ X + pio; + e, — ¢f]dt
1 h(t
= W'(t)X7dt + h(t)p; dW; + h(t) [Xt*r PO+ e — R(OX] — Y, + : log (ST)” 5
1 h(t
= h(t)p;dW; + h(t) [pjget feo =Yt log (ST)” "

= h(t)prdWZ2 + h(t) [et Y + %log (?)] dt. (3.5)

Since p* belongs to 77]131@[%, the process V; = fot h(s)ptdW2Q is a BMO-martingale under Q, and it
can be seen from (B.§) that there exist constants c;, co such that
e OXT < clemVe and eVt < epe MOXT forall t € [0, 7.

Hence, one obtains for every stopping time 7 < T,

* 2
o V(T X} cre” "V < ¢ <EQ |:e_%VT | ]:TD

IN

— <E [e—%VTg(—e W)r | }'TD25(—9 W2

< qE[eT | FE[E(-0-W)F | Fr] E(—0- W), 2

< o [N | B E[E(-0-W)F | FE(-0- W)
But since @ is bounded, there exists a constant cg such that

E[E(—0-W)F | Fr| E(—60-W);?
< ¢3 for every stopping time 7 < T.
So one has
e X < eieoesE [e_VX% | ]:T] for every stopping time 7 < T

This shows that exp (—vh(t) X[ )o<;<r is of class (D). Therefore, (c*,p*) is admissible and R* a
martingale.

If P is P-convex, IIp (Z+h€/7) contains only one process. So (¢*,p*) is unique. U

4 CRRA utility

We now assume that the investor has constant relative risk aversion —zu”(z)/u/(x) = é > 0. For
d = 1, this corresponds to u(x) = log(x), and for § # 1 to u(z) = 27/, where y =1 —4§. We
discuss the cases § = 1 and § # 1 separately. In both of them we assume E = 0.

We here suppose that the initial wealth is strictly positive: = > 0. To avoid —oo utility,
the agent must keep the wealth process positive. Therefore, we can parameterize e, ¢ and 7 by
eé=e/X,¢=c/X and 7 = 7/X, respectively. If one denotes p = 7o, the corresponding wealth
evolves according to

dx,"
Xt(CJ))

Pr(dWy + Oydt) + (1 + & — &)dt, Xécm) _



and one can write
t
Xt(QP) — 1.5 <ﬁ . WQ)texp </ (7’ + éS — Es)d8> > O, (41)
0

where Wt@ =W;+ fot 0sds.

The constraints are now of the following form: ¢ must be in the set C' and p in P = Qo.
Additionally, ¢ will be required to be positive or non-negative depending on the specific utility
function being used. Moreover, ¢ and p will have to satisfy suitable integrability conditions. For
all CRRA utility functions u we make the following assumption:

there exists a pair (¢,p) € C' x P such that u(¢) — ¢ and p are bounded. (4.2)

This implies that u(¢) and ¢ are both bounded.

4.1 Logarithmic utility
If the utility function is logarithmic, we introduce the positive function
h(t) = 1+ a(T —1t) ifg=0
T a/f+ A —a/B)e T if g >0 0
and note that
B'(t) = Bh(t) —a with h(T) =1.

Definition 4.1 For u(z) = log(x), an admissible strategy is a pair (¢,p) € C x P satisfying

T T T
0 0 0

Notice that ([.3) implies & > 0.
Let us set

max <% log(¢) — E) = esésesg}p <% log(¢) — E) , (4.4)

where esssup is the smallest upper bound with respect to v ® P-almost everywhere inequality.
Due to assumption (f.9), (.4) defines a bounded predictable process. By

arg maXzc o (% log(¢) — E) (4.5)
we denote the set of all process in C' which attain the esssup. It follows from Cheridito et al. [fl]

that ([.3) is not empty and contains exactly one process if C' is P-convex.
Consider the BSDE

T T
Vi— [ s vads+ [ zaw, (4.6)
t t
with driver
1 . 1 ay « —~ ~
Fty) = 5 dist? (0, P) = 516 - hiEy e <E log (&) — c)t —r—é. (4.7)

f(t,y) is of linear growth in y, and all the other terms are bounded. So by Kobylanski [[] and
Morlais [[0], equation (f.§) has a unique solution (Y, Z) such that Y is bounded and Z € Pgy1t.



Theorem 4.2 For u(z) = log(z), the optimal value of the optimization problem (R.) over all
admissible strategies is

h(0)(log(z) — Yo), (4.8)
and (¢*,p*) is an optimal admissible strategy if and only if

¢" € argmax;co (% log(¢) — E) and p*e€TIlp(h). (4.9)
Moreover, if C' and P are P-convez, there is just one optimal strategy (¢*,p*).

Proof. For every admissible pair (¢,p) define the process

t
R = h(t)e P! <1og (Xt(c’p)) - Yt) * / ae™ log(c,)ds.
0

One has

T
RéC,p) = h(0)(log(z) — Y), Rggp) = e T 1og (X:(chp)) +/0 ae s log(cs)ds

and
dRéc’p) = h(t)e " |:(15t + Z)dWy + A§C7p)dt] ) (4.10)
where
Alep) _ P10 — 1‘@,2 + a_yt + f(t, V) + @ log(&;) + 1+ & — ¢.
¢ 2 h(t) h(t)

First note that
1, . oY, . 1
:—§|Pt—9t|2 |9t|2+(—§ < - dlSttQ (H,P)+§|9t|2+

and the inequality becomes an equality if and only if

aYy

~ |2 aYy _t
h(t)’

50 1|
Pt 2pt h(t)

pellp(0).

Furthermore,
hlog( B +rt+é—c rélgg(hlog( &)= &) +r+E

where equality is attained if and only if
~ « ~ ~
¢ € argmaxzco (ﬁ log(¢) — c> .

It follows that for every admissible pair (¢, p), the process R(©P) is a local supermartingale. But it
can be seen from ([L10) that the local martingale part of R(®?) is a true martingale and its finite
variation part is of integrable total variation. So R(®P) is a supermartingale and one obtains

REV > B[ RE)

If (¢*, p*) satisfies ({.g), then the pair is in C' x P and log(¢*) as well as §* are bounded. It follows
that (¢*,p*) is admissible and the corresponding process R* is a martingale. We conclude that

Ry = E[R7],

which shows that (¢*,p*) is optimal. Finally, if C' and P are P-convex, there exists just one pair
(¢*,p*) satisfying condition (f.9), and the proof is complete. O



Example 4.3 If consumption is unconstrained, that is C = P, then

= (i) = (o () 1)

and the driver (J7) becomes

Fty) = %distf 0, P) - %yew - % - % <log (%) - 1) —

4.2 Power utility

Let us now turn to the case u(x) = 27/~ for v € (—00,0) U (0,1). The definition of admissible
strategies is slightly different for v > 0 and v < 0. But the optimal value of the optimization
problem (R.1)) and the optimal strategies will in both cases be of the same form.

Definition 4.4 In the case v > 0, an admissible strategy is a pair (¢,p) € C' x P such that

T T
¢>0 and / Gdt + / [p¢|?dt < oo P-almost surely.
0 0
For v < 0, we additionally require the process (X(cvp))V to be of class (D) and E {fOT cht} < 00.

Note that for v < 0, the condition E [fOT c;/dt] < oo implies ¢ > 0.

For every continuous bounded process Y we define
e o
max <—576Y - 6) = esssup <—E“/ey — E> , (4.11)
ceC \Y o\

where ess sup denotes the smallest upper bound with respect to v @ P-almost everywhere ordering.
By our assumption ([.3), (f.11]) defines a bounded predictable process. We denote the set of all
processes in C' which attain the esssup by

arg maXsc o (gé“/ey - é> . (4.12)
Y

It follows from Cheridito et al. [[I] that (f.13) is not empty and contains exactly one process if C
is P-convex.

Consider the BSDE - -
Ve [ fevazyis+ [ zaw, (1.13)
t t

with driver

1— 0 0,2 1
f(t,y,z)zw(—vdist? <Z+ ,P)—m——|z|2—max<g@ey—é> —T—ét—Fé).
2 1—7 21 —7) 24 ceC \ Y . v
(4.14)

Note that f(t,y,z) grows exponentially in y. But with a truncation argument it can be deduced
from the results in Kobylanski [[] and Morlais [L(] that equation ([L.13) has a unique solution
(Y, Z) such that Y is bounded and Z is in Pgye.




Theorem 4.5 If u(z) = 27/y for v € (—00,0) U (0,1), the optimal value of the optimization
problem (R.1)) over all admissible strategies is

1
—z7e Y0, (4.15)
~y

and (¢*,p*) is an optimal admissible strategy if and only if

Z+0
¢" € argmaxco <25er - 6) and p* ellp <1;> ) (4.16)
Y -

If C and P are P-converx, then the optimal strategy (¢*,p*) is unique.

Proof. For every admissible strategy (¢,p) define the process

1 ¢ 1
R}Ec#’) — 6752&_ (Xt(c,p)>’yefyt +/ Oéeiﬁs—czds.
0

Y Y

Then .

ep) _ 1 4 v ep) _ BT L (y(cn))? L/" _ps 1

R, =—z"e¢ ", R =e (X + ae PP =clds

0 5 T 5 < T ) 0 v
and )

dREc,P) =e Pt <Xt(c’p))v e M |:<ﬁt + ;Zt> dWy + Aﬁc’p)dt} ;
where

R 1 ~ 1 1
AECJ’) — pt(Zt + 915) + 5(’}/ - 1)|pt|2 + Z|Zt|2 + ;f(ta Y;fa Zt)
2N et — 5
y Y
First note that

1 1
5e(Zs 4+ 60) + = (v — D|pe|> + — 1| Z4|?
pe(Ze + t)+2(7 )|t +27| i

y—-1 _Zt+9t2

2 1-

-1 Z+0 1
< 1 dist? 240 P4+ ——
2 -7 2(1—7)

and the inequality becomes an equality if and only if

v—1]
b

1
Zi + 0% + —|Z,?

1
\Zy + 0, + —|Z4)?,
2

L=y
Furthermore,
g”ey%—é—é%—r—égrpax<gc”yey—é> —|—é+r—é,
v v el \Y v

where equality is attained if and only if

~ a ~
¢ € argmaxzco <—c“’ey — c) .
Y

10



If v > 0, the process R(©P) s for every admissible pair (¢,p), a positive local supermartingale,
and therefore a supermartingale. In particular,

ReP > | [R&?’p)} . (4.17)

Now let (¢*,p*) be a strategy satisfying ({.16). Then ¢* is non-negative and bounded. More-

over, since Z is in 73}131@[%, p* is again in Péﬁ/[%. It follows that the pair (¢*,p*) is admissible.
Furthermore,

t
X7 = g€ <ﬁ* - WQ>teXp (/ (r+és— EZ)ds> < ME (15* : W@>t (4.18)
0

for some constant M € R;. Choose v < ' < 1 and let £ =1 — /. Since 6 is bounded, one has
Eq [5 (6? . WQ)lT/ 6} < 00, and by Holder’s inequality, one obtains for every stopping time 7 < T,

E [(Xq(_c*,p*))ﬂ/] _ EQ [(Xﬁc*,p*))’y’g(a ) WQ)T]
/ 3 3
CESNE we\Ye 04 we) e
< o |(xie"#M)) EQ[é’(QW)T < M"Eg 5<9W>T
It follows that (X(¢"P"))7 is of class (D) and R* a martingale. In particular,

R, =E[R})].

This shows that (¢*,p*) is optimal.
If v <0, R(©P) s for every admissible pair (¢,p) a supermartingale due to our assumption
that (X(P))7 is of class (D) and E [fOT c;’dt} < 00. So again,

REV > E (RGP,

If (¢*,p*) satisfies (4.16), u(¢*) — ¢* is bounded and p* belongs to Péﬁ/[%. Moreover, —R* is a
positive local martingale. So —R* is a supermartingale and E[—R}.] < co. It follows that

B+ | T(cfﬁdt} <o,

which by ([.1), implies
E [5(;5* : WQ)H < .

From Jensen’s inequality, one obtains for every stopping time 7 < T,
2
e - W < (Eg €657 - W7 ))

- (efew wodl e, fD

T E-0-w),
< Ele@ - w3 [%ﬂ

< NE &G - WOGIF]
for some constant N € Ry. This shows that £(5* - W)Y and (X*)" are of class (D). Hence, R*

is a martingale and R = E [R}.], which shows that (&*,p*) is optimal. If C' and P are P-convex,
then there exists only one pair (¢*, p*) satisfying condition (4.16)). O
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Example 4.6 If consumption is unconstrained, that is C = P, then

= o/ =M M/U=7)  pax (gévey _ 5) — 1__7(11/(1—7)631/(1—7)’
eC \y v
and the driver (f.14) becomes

L—7 .. 2<Z+9 ) RN N Sl Sy - _ B
L) = aise? (ZH0 p) SO L e 1oy e _ g 4 BY
ft,9.2) 7< 2 AT 20 T ‘T
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