

Linkage Disequilibrium and Age of HLA Region SNPs in Relation to Classic HLA Gene Alleles within Europe

Walter Bodmer, Irina Evseeva, Kristin Nicodemus, Carolina Bonilla, Susan

Tonks

► To cite this version:

Walter Bodmer, Irina Evseeva, Kristin Nicodemus, Carolina Bonilla, Susan Tonks. Linkage Disequilibrium and Age of HLA Region SNPs in Relation to Classic HLA Gene Alleles within Europe. European Journal of Human Genetics, 2010, n/a (n/a), pp.n/a-n/a. 10.1038/ejhg.2010.32. hal-00522557

HAL Id: hal-00522557 https://hal.science/hal-00522557

Submitted on 1 Oct 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	
2	
3	Linkage Disequilibrium and Age of HLA Region SNPs in Relation to Classic HLA
4	Gene Alleles within Europe
5	
6	Irina Evseeva ^{1*} , Kristin K. Nicodemus ^{1,2*} , Carolina Bonilla ¹ , Susan Tonks ¹ , Walter F.
7	Bodmer ^{1,3§}
8	
9	1. Department of Clinical Pharmacology, Old Road Campus Research Building,
10	University of Oxford, Off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
11	2. Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Road,
12	Oxford OX3 7BN, United Kingdom
13	3. Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine,
14	John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
15	
16	[§] To whom correspondence and reprint requests may be addressed:
17 18 19 20 21 22 23 24 25 26 27	Sir Walter Bodmer FRCPath, FRS Cancer and Immunogenetics Laboratory Weatherall Institute of Molecular Medicine John Radcliffe Hospital Oxford OX3 9DS United Kingdom Email: <u>walter.bodmer@hertford.ox.ac.uk</u> Telephone: +44 (0)1865 222 422 Fax: +44 (0)1865 222 431 * These authors contributed equally to this work.
28	

30 Abstract

31 The HLA region on chromosome 6 is gene-rich and under selective pressure due to the 32 high proportion of immunity-related genes. Linkage disequilibrium (LD) patterns and 33 allele frequencies in this region are highly differentiated across broad geographical 34 populations, making it a region of interest for population genetics and immunity-related 35 disease studies. We examined LD in this important region of the genome among 6 36 European populations using 166 putatively neutral SNPs and the classical HLA-A, -B 37 and -C gene alleles. We found the pattern of association between the classical HLA 38 gene alleles and SNPs implied that most of the SNPs predated the origin of the classic 39 HLA gene alleles. The SNPs most strongly associated with HLA gene alleles were in 40 some cases highly predictive of HLA allele carrier status (misclassification rates ranged 41 from less than 1% to 27%) in independent populations using 5 or fewer SNPs, a much 42 smaller number than tagSNP panels previously proposed and often with similar 43 accuracy, showing our approach may be a viable solution to designing novel HLA 44 prediction panels. To describe the LD within this region, we developed a novel haplotype clustering method/software based on r^2 , which may be more appropriate for 45 46 use within regions of strong LD. Haplotype blocks created using this proposed method, 47 classic HLA gene alleles and SNPs were predictive of northern versus southern 48 European population membership (misclassification error rates ranged from 0-23% 49 depending on which independent population was used for prediction), indicating this 50 region may be a rich source of ancestry informative markers. 51

52 **Keywords**: HLA, population genetics, Europe, LD, haplotype

54	The HLA region on chromosome 6 is an important region of interest for both
55	population genetics and immunity-related disease studies. Due to the selective pressure
56	associated with immune functions, linkage disequilibrium patterns and allele
57	frequencies are highly differentiated across populations. Because HLA typing of the
58	classical HLA gene alleles is expensive and time-consuming, although necessary for
59	transplantation matching and detailed analysis of disease-associations, we assessed
60	whether a simple novel method could ascertain SNPs that were informative of HLA
61	allele carrier status. One important consideration in finding such SNPs is the age of the
62	SNP in question, and whether it is likely that it arose before or after the origin of the
63	classical HLA gene alleles. SNPs that arose on a particular classical HLA gene allele
64	haplotype background may be more informative for prediction of carrier status for that
65	allele than SNPs which pre-date the origin of the allele. It is also of interest to examine
66	the LD structure of the HLA region, especially within closely-related populations.
67	Previous approaches for the creation of haplotype blocks have generally relied on the
68	LD metric D', which may not be as sensitive within these high LD regions as the
69	alternate LD metric r^2 . We developed a novel haplotype blocking strategy based on r^2 ,
70	and applied this method to SNP data in the HLA region across six European
71	populations. Finally, we tested whether haplotype blocks, HLA alleles and SNPs were
72	useful for differentiating European populations using logistic regression and
73	unsupervised clustering algorithm approaches. Using these approaches we identify novel
74	SNPs in the HLA region that may be useful as ancestry informative markers (AIMs) for
75	European populations.
76	Material and Methods

77 **Populations sampled**

78	The project involved genotyping 657 DNA samples from unrelated
79	representatives of 9 European populations: English (n=77, mainly from Birmingham),
80	Orcadians from the Orkney Islands, UK (n=88), Catalans (n=66), Italians from
81	Bergamo (n=82), Piedmont (n=59), and Sicily (n=59), French Basques (n=76), Finns
82	(n=71) and unrelated individuals from the CEPH reference families in Utah (n=79).
83	Nine European populations were available for study, of which we used 6 populations for
84	logistic regression and clustering analyses. These populations were collapsed into
85	northern European (Orkney) and southern European (Bergamo, Piedmont, Sicily,
86	Catalan). This choice was based on the assumption that the Basques and the Finns are
87	generally considered to be outlier populations, while the European CEPH are an
88	unknown mixture, though retrospectively they are mostly Northern European. This is a
89	limited sample of European populations, but serves to illustrate methods of analysis and
90	does reveal major differences between northern and southern European populations.
91	
92	SNP selection
93	Two sets of markers were selected:
94	1. One hundred and eighty-eight SNPs within the HLA region defined as
95	putatively neutral by the following criteria: in introns, pseudogenes, intergenic regions,
96	or synonymous changes. The SNPs were selected based on their chromosome position
97	to provide, as far as possible, an even distribution across the 3.9MB HLA region
98	(chromosome 6, 29587512 – 33516520, National Center for Biotechnology Information,
99	Build 36.3) at an average density of 1 SNP per 18Kb. In addition, extra SNPs were
100	chosen to cover areas around presumed recombination hotspots ¹ . Only SNPs with minor

allele frequency reported on NCBI as greater that 0.05 were included.

102	2. Seventy-eight SNPs in exons 2 and 3 of the HLA-A, B and C genes providing a low
103	to medium resolution HLA Class I allele typing with a total of 69 alleles (locus A - 18,
104	B - 31, C - 20) all with frequencies greater that 0.05 in Caucasians in the
105	Allele*Frequencies in World Populations Database (http://www.allelefrequencies.net).
106	
107	Genotyping
108	Thirty-five SNPs were successfully genotyped in house using ARMS-PCR
109	(Amplification Refractory Mutation System) with KCl buffer and 15 ng of DNA in 6.5
110	μ l PCR reaction. The detection of the product was done using AMDI (Alkaline-
111	mediated differential interaction). One hundred and fifty-three SNPs were typed by the
112	Centre National de Genotypage (Ivry, France), using a customized Illumina Beadarray
113	Platform ² . One hundred and thirty-one of these gave successful results and were
114	included in the analysis, resulting in a total of 166 SNPs. HLA Class I allele typing was
115	performed based on the 12 th International Histocompatibility Workshop Protocol ³ , but
116	using a SNP based approach, as discussed above. The 78 'diagnostic' SNPs were typed
117	by ARMS-PCR with MgCl ₂ buffer and 15 ng of DNA in 6.5 μ l PCR reaction, followed
118	by AMDI detection ⁴ . All typing results were checked for Hardy-Weinberg equilibrium
119	using a cut off p-value of 0.05 to exclude abberrant results. Internal quality control with
120	94 duplicates gave 100% concordance. Fourteen individuals had 5 or more missing
121	genotypes and were removed from further analysis, thus the available N was 643.
122	
123	Statistical Methods
124	Prediction of classic HLA alleles by SNPs
125	We tested whether the 166 SNPs predicted individual classic HLA-A, B and C
126	gene alleles by deriving a binary variable for each HLA allele and each SNP. The binary

128 respectively, in an individual: thus, if an individual carried the haplotype or minor allele 129 they were assigned a 1, otherwise a 0. We then used Fisher's exact test to test the 2x2 130 associations between each SNP and HLA allele. We corrected for multiple testing using 131 a Bonferroni correction for the total number of tests (166 SNPs * 56 observed HLA 132 alleles = 9, 296 tests). We ranked pairwise associations between SNPs and HLA alleles by -log₁₀(p-value), and, using all SNPs passing Bonferroni correction, obtained counts 133 134 of the number of SNPs where minor alleles were present in HLA allele carriers and non-135 carriers. In addition, we formally tested whether these SNPs were able to predict HLA 136 carrier status using a split-half cross-validation approach. We estimated a logistic 137 regression model on the training set containing the 5 most strongly associated SNPs (with the exception of HLA-B*44, which only had 4 SNPs in the Bonferroni-corrected 138 139 set) to predict HLA allele carrier status. We used only the top 5 most strongly associated 140 SNPs instead of the full set due to multicollinearity. We then used the test set to predict 141 HLA allele carrier status. We validated the ability of this model built on the training 142 data to predict HLA allele carrier status using the independent CEPH population. The 143 logistic regression model was of the form:

144
$$\ln\left(\frac{p}{(1-p)}\right) = \sum_{i=1}^{N} \beta_{i} \chi_{i}$$

145 where the probability of carrying a particular HLA allele was the outcome to be 146 predicted by the linear combination of x_i of N markers in the equation, which were 147 binary-coded as the presence or absence of the minor frequency allele carried by that 148 individual. We then calculated the sensitivity (number of predicted carriers/number of 149 true carriers) and specificity (number of predicted non-carriers/number of true non-150 carriers) for the test set; since the association between the SNPs and HLA alleles was

127 variable represented the presence or absence of the haplotype or minor allele, calculated using the full set of 6 populations, this may overestimate both sensitivity and
specificity. We therefore also calculated the same quantities for the independent CEPH
population.

- 154
- 155

r2blocks: a haplotype blocking algorithm based on r^2

156 We implemented a new algorithm to define correlated clusters or blocks of SNPs based on the LD metric r^2 (r2blocks) and compared this algorithm to blocks defined 157 by the program Haploview⁵, which are based on evidence for historical recombination 158 using D^{6} . D' is less sensitive in tightly-correlated LD regions than r^{2} . The clustering 159 160 algorithm of r2blocks accepts genotype-level data or phased haplotypes as input and allows users to impute missing genotypes, set an r^2 threshold for defining blocks and set 161 a maximum number (M) of SNPs to skip that do not pass the threshold while continuing 162 to build a block. Briefly, starting with the highest r^2 value for all pairs of SNPs that are 163 separated by at most M SNPs, it then calculates pair-wise r² measures for all SNPs 164 165 within M SNPs of the first pair and continues to grow the block in either direction as long as one pair-wise r² value within M SNPs of any SNP within the current block is 166 167 above the threshold, omitting SNPs that do not pass the threshold (Figure 1). It then considers the next SNP within the block and all pair-wise r^2 values for SNPs within M 168 169 SNPs, growing the block until no additional SNPs remain or until no additional SNPs 170 pass the threshold value. We evaluated two threshold values for the creation of haplotype blocks: $r^2 > 0.70$ and $r^2 > 0.5$ with M set to 4. The blocking algorithm is 171 172 implemented in a freely-available contributed package r2blocks for the R statistical computing environment (www.r-project.org). 173

175	Population differentiation: HWE, F_{ST} , association, prediction and clustering
176	Because population differentiation can cause departures from Hardy Weinberg
177	equilibrium (HWE), we tested for departures from HWE in the pooled population and in
178	the northern and southern population separately using Fisher's exact test.
179	We used Weir and Cockerham's ⁷ estimate of F_{ST} as implemented in the R
180	package Geneland ⁸ to assess genetic differentiation using the 166 SNPs and using the
181	top 20 SNPs, individual r2blocks blocks or two-locus HLA haplotypes that were
182	most strongly associated with north-south status. In addition, we calculated F_{ST} for
183	individual SNPs, r2blocks haplotype blocks, HLA alleles and HLA haplotypes.
184	Three-locus HLA haplotypes were estimated using PHASE v.2.1.19-10 with parent-
185	independent mutation; two-locus HLA haplotypes were derived from those estimates.
186	Allele- and genotype-based associations were tested between individual SNPs,
187	r2blocks-defined haplotypes, HLA alleles and 2 and 3-locus HLA-A, B and C
188	haplotypes, and north-south status using χ^2 tests or Fisher's exact test, when appropriate.
189	Allele-based tests tested the association between each allele and north-south status
190	(sample size = 2N); genotype-based tests tested the number of minor alleles versus
191	north-south status (sample size = N). We set the p-value threshold to 0.05 .
192	We ranked association tests between north-south status and SNPs, haplotype
193	blocks and 2-loci HLA haplotypes by $-\log_{10}(p-value)$ and considered the top 20 most
194	strongly associated predictors in a leave-one-population-out approach to validate
195	predictive ability on an independent southern population. We could not perform leave-
196	one-out analyses with the northern set due to small sample size; instead, we used the
197	CEPH sample for prediction. The logistic regression model used was of the form:

198
$$\ln\left(\frac{p}{(1-p)}\right) = \sum_{i=1}^{N} \beta_{i} \chi_{i}$$

199	where the probability of population membership is the outcome to be predicted by the
200	linear combination of x_i of N markers/haplotypes in the equation, which are coded as the
201	presence/absence of particular alleles/haplotypes carried by that individual. Prediction
202	of individual population assignment for the CEPH population and the removed southern
203	population was performed by calculating the probability of being northern European
204	using each individual's observed genotypes in the model. Misclassification rates were
205	calculated by taking the number of individuals misclassified given their 'true'
206	north/south label/total number of individuals in the independent population.
207	Current approaches to population differentiation detection using genomewide
208	sets of biallelic markers often apply unsupervised clustering algorithms, such as
209	principal components analysis (PCA, e.g., EIGENSTRAT ¹¹ , KPCA from the R package
210	$kernlab^{12}$) or Bayesian methods such as implemented in STRUCTURE ¹³⁻¹⁴ or
211	BAPS ¹⁵⁻¹⁶ . We applied EIGENSTRAT, KPCA and BAPS to data from the 166 SNPs.
212	

221	physical location of each gene, although LD patterns extended across most of the region
222	(see Figure 2). Only a few very low-frequency HLA alleles (4 HLA-A alleles; 10 HLA-
223	B alleles; 2 HLA-C alleles) were not observed to show Bonferroni-corrected association
224	with genotyped SNPs. Fifty-five (33.1%) SNPs did not show corrected association with
225	HLA alleles; of the 111 significantly associated SNPs, 72 (64.8%) showed association
226	with \leq 3 alleles. One SNP showed strong association with 7 HLA alleles: rs1265059
227	(HLA-A*29, HLA-B*07, HLA-C*0702, *06, *16, *0302 and *0303). The HLA-
228	A*29/C*16 haplotype has a frequency of 2.8% in Northern Ireland and the HLA-
229	B*07/C*0702 haplotype is frequent in the same population (17.0%) (frequencies from
230	allelefrequencies.net), indicating this SNP may be tagging common haplotypes. Note
231	the position of HLA-DRA1 is between SNPs 122-123 and that of HLA-DRB1, HLA-
232	DQA1 and HLA-DQB1 are between SNPs 129-130, possibly explaining the strong
233	association observed on the far right hand side of Figure 2.
234	Histograms of counts of the number of minor alleles carried at SNPs passing
235	Bonferroni correction in HLA allele carriers and non-carriers clearly showed a bimodal
236	distribution (Figure 3; also see Figures S1-S10). Using the top 5 most strongly
237	associated SNPs and the HLA haplotypes observed with $> 1\%$ frequency in either
238	northern or southern European populations (Table S2), we observed high sensitivity and
239	specificity in predicting whether an individual carried a particular classic HLA allele in
240	both the test set and in the independent CEPH set for most HLA alleles tested (Table 2).
241	In particular, the overall misclassification rate for HLA-A*29 in the independent CEPH
242	set was less than 0.01, with sensitivity near 1.0 (0.997) and 94.3% specificity. In
243	addition, HLA-A*01 showed a less than 5% misclassification rate in the CEPH
244	population (4.5%) and had 93.5% sensitivity and 99.9% specificity indicating that

245 genotyping even a small number of SNPs can provide information about HLA allele

246 carrier status, although not as complete information as direct HLA typing.

247

248 Comparison of haplotype blocking algorithms

Using an r² threshold of 0.70 and a window size (M) of 3, r2blocks creates 12 249 250 blocks across the HLA region in the pooled sample of European populations. Reducing the r² threshold to 0.50 leads to an additional 7 blocks and 14 additional SNPs being 251 252 assigned to blocks (Figure 4; Table S3). The Gabriel block method using default 253 parameters (lower bound D' confidence interval > 0.7 and upper bound confidence 254 interval > 0.98) defines 18 blocks. The two additional blocking methods (the four 255 gamete rule (FGR) and solid spine of LD with default D' threshold of 0.7) both create 256 twice as many blocks over the region as compared to r2blocks and the Gabriel 257 method, and assign nearly half of the HLA genomic region to haplotype blocks. In northern European populations, r2blocks using an r^2 threshold of 0.50 creates 20 258 259 blocks over the HLA region and in southern European populations 19 blocks; block regions were generally consistent across the two sets of European populations. Using 260 r2blocks with an r^2 threshold of 0.50 leads to a similar number of blocks and number 261 of SNPs assigned to blocks as the Gabriel method, although the block boundaries are 262 often different. Not surprisingly, the use of r2blocks with the higher r^2 (0.70) 263 threshold leads to a more similar percentage of genome covered as the Gabriel method 264 than the lower r^2 threshold. r2blocks with both r^2 thresholds and the Gabriel method 265 266 show that LD is slightly lower in southern versus northern European populations, but 267 with similar average block size, number of SNPs assigned to blocks and percent of the

genome assigned to blocks in northern Europeans. Of the 20 blocks assigned using
r2blocks with an r² threshold of 0.50, more than half (11; 55%) are in genic regions.

Hardy Weinberg Equilibrium, F_{ST}, association tests and clustering of markers/haplotypes and northern-southern European status

274 Excess deviations from HWE versus expected numbers of deviations can be 275 induced by population structure. Of 166 SNPs tested, 15 (9.0%) were out of HWE at the 276 $\alpha = 0.05$ level, almost double the number expected by chance alone (8.3) (Table S4 277 shows HWE, association test results and F_{ST} for all markers). In separate analyses of 278 northern/southern populations the number of SNPs out of HWE was much nearer the 279 expected value (8 and 10, respectively), suggesting that the excess when using the 280 combined populations is probably due to population structure. 281 Overall F_{ST} values using the 20 SNPs, haplotypes and classic HLA gene alleles 282 most strongly associated with north-south status were modest, as expected within 283 European populations (Table S5; see Table 3 for full list of markers). The largest F_{ST} 284 value (0.056) was observed between northern and southern populations using this panel 285 of 20 alleles/markers/haplotypes, which were selected to highlight north-south 286 differences; similarly, the second largest F_{ST} (0.050) was observed between southern 287 populations and the CEPH sample. The smallest F_{ST} (0.0024) was found between 288 northern populations and the CEPH sample. Single SNP F_{ST} values were strongly 289 negatively correlated with both allelic (r = -0.41, $-log_{10}$ (p-value) = 7.42) and genotypic 290 $(r = -0.42, -\log_{10}(p-value) = 7.81)$ association test p-values for north-south status, 291 indicating that the allelic/genotypic tests are similar measures to F_{ST} (Table S4). We 292 note that single SNP F_{ST} estimates are approximately distributed as γ^2_1 and thus have 293 large variances. The largest single SNP F_{ST} for differentiation between northern and

294	southern European populations was for rs411136 in SYNGAP1 ($F_{ST} = 0.29$);
295	interestingly, this same SNP showed the largest pair-wise F_{ST} between any two
296	populations, namely for for southern Europeans versus CEPH ($F_{ST} = 0.51$). The same
297	comparison between northern Europeans and CEPH, however, produced a F_{ST} of 0.015,
298	suggesting rs411136 may be an important AIM within European populations.
299	Seventy-four (44.6%) of the 166 SNPs were significantly associated with north-
300	south status using the uncorrected allelic or genotypic test, and after Bonferroni
301	correction for the 332 allelic and genotypic tests, 25 (15.1%) still showed significant
302	associations (Table 3; see also Table S4). The strongest association was observed with
303	rs411136 in SYNGAP1, with an allelic test $-\log_{10}(p-value)$ of 32.42. As expected, the
304	largest 3-locus haplotype frequency difference between northern and southern European
305	populations was for haplotype HLA-A*01-HLA-B*08-HLA-C*0701 with frequencies
306	of 0.097 versus 0.034 respectively $(-\log_{10}(p-value) = 4.16; Table S2)^{17}$.
307	Association tests between the 20 haplotype blocks defined using r2blocks
308	with an r^2 threshold of 0.50 and north-south status showed in nearly all cases the
309	haplotype block was more strongly associated than the individual SNPs comprising the
310	block. Of the 20 haplotype blocks, 15 were associated with north-south status. Six of the
311	significantly associated blocks did not contain any individual SNPs that were
312	significantly associated with north-south status. Of the 9 blocks containing at least 1
313	significantly associated SNP, 6 of them showed stronger association with the haplotype
314	block containing that SNP than with all individual SNPs (Table S4; Figure S11). In fact,
315	of the 20 strongest-associated HLA allele haplotypes, SNPs or block-based haplotypes,
316	4 were haplotypes created using our novel methodology (Table 3).

317	KPCA and EIGENSTRAT analysis of single SNPs did not reveal tight
318	clustering by north-south designation (Figure S12). Clustering of individuals using
319	BAPS on single SNPs resulted in a best-fitting solution of 11 clusters; inspection of the
320	proportion of individuals from northern and southern European populations in each
321	cluster revealed a mixture of both; none of the clusters were comprised of purely
322	northern or southern European samples (data not shown). However, BAPS clustering of
323	the 6 population samples, instead of individuals, led to a best-fitting solution of 2
324	clusters exactly matching our northern and southern designations, confirming our a
325	priori clustering of individuals.

327	Population membership prediction using HLA alleles, SNPs and blocks
328	We used logistic regression to test the predictive ability of the 20 most
329	significantly associated HLA SNPs by using leave-one-population-out validation to
330	predict north-south population membership on the independent population and on the
331	CEPH population. To avoid multicollinearity induced by LD, we removed predictors
332	that were strongly correlated with other predictors, retaining the predictor that was more
333	strongly associated with north-south status, to thin the model from 20 variables to a
334	model containing 7 predictors: rs411136, rs1265160, rs3096702, rs2256328, rs2855453,
335	block 8 and HLA-B*08/C*0701. Even using such a limited number of predictors
336	provided perfect prediction for the Piedmont population and low prediction error for the
337	Sicily population (8.5%), although the error rates for the Bergamo (13.0%) and Catalan
338	(18.0%) were higher (Table 4). The CEPH population prediction error rate was steady
339	across all models at ~22%; however, given the genetic background of this population is
340	not clearly defined, this may indicate some evidence for southern European admixture.

342 **Discussion**

343	Due to the time-consuming and expensive process needed to perform full
344	classical HLA allele typing, we developed a simple strategy to identify inexpensively
345	and easily-genotyped SNP combinations that were able to predict classic HLA gene
346	allele carrier status in leave-one-population-out cross-validation using logistic
347	regression models. We have also described a novel haplotype blocking method and
348	software based on r ² , which is probably more appropriate than a D'-based method in
349	regions of strong linkage disequilibrium. In addition, we have shown that haplotype
350	blocks created using the novel haplotype blocking method, classic HLA gene alleles and
351	neutral HLA region SNPs were useful for the differention of northern versus southern
352	European populations, in agreement with previous work ¹⁸ , and suggested particular
552	
353	SNPs that may be useful as AIMs.
353 354	SNPs that may be useful as AIMs. An examination of the 15 associations in Table S1 that show the opposite
353 353 354 355	SNPs that may be useful as AIMs. An examination of the 15 associations in Table S1 that show the opposite classical HLA allele-SNP pattern to that observed in the other 304 associations, namely,
 352 353 354 355 356 	SNPs that may be useful as AIMs. An examination of the 15 associations in Table S1 that show the opposite classical HLA allele-SNP pattern to that observed in the other 304 associations, namely, the frequency of individuals carrying the HLA allele but <i>not</i> carrying the minor allele at
 352 353 354 355 356 357 	SNPs that may be useful as AIMs. An examination of the 15 associations in Table S1 that show the opposite classical HLA allele-SNP pattern to that observed in the other 304 associations, namely, the frequency of individuals carrying the HLA allele but <i>not</i> carrying the minor allele at the SNP is greater than the frequency of individuals <i>not</i> carrying the HLA allele but
 352 353 354 355 356 357 358 	SNPs that may be useful as AIMs. An examination of the 15 associations in Table S1 that show the opposite classical HLA allele-SNP pattern to that observed in the other 304 associations, namely, the frequency of individuals carrying the HLA allele but <i>not</i> carrying the minor allele at the SNP is greater than the frequency of individuals <i>not</i> carrying the HLA allele but carrying the minor allele at the SNP, shows that the 4 SNPs associated with > 1 HLA
 352 353 354 355 356 357 358 359 	SNPs that may be useful as AIMs. An examination of the 15 associations in Table S1 that show the opposite classical HLA allele-SNP pattern to that observed in the other 304 associations, namely, the frequency of individuals carrying the HLA allele but <i>not</i> carrying the minor allele at the SNP is greater than the frequency of individuals <i>not</i> carrying the HLA allele but carrying the minor allele at the SNP, shows that the 4 SNPs associated with > 1 HLA allele are associated with known HLA haplotypes of high frequency in Europeans.
 352 353 354 355 356 357 358 359 360 	SNPs that may be useful as AIMs. An examination of the 15 associations in Table S1 that show the opposite classical HLA allele-SNP pattern to that observed in the other 304 associations, namely, the frequency of individuals carrying the HLA allele but <i>not</i> carrying the minor allele at the SNP is greater than the frequency of individuals <i>not</i> carrying the HLA allele but carrying the minor allele at the SNP, shows that the 4 SNPs associated with > 1 HLA allele are associated with known HLA haplotypes of high frequency in Europeans. rs404240 shows this pattern with HLA-A*01, HLA-B*08 and HLA-C*0701, which is
 352 353 354 355 356 357 358 359 360 361 	SNPs that may be useful as AIMs. An examination of the 15 associations in Table S1 that show the opposite classical HLA allele-SNP pattern to that observed in the other 304 associations, namely, the frequency of individuals carrying the HLA allele but <i>not</i> carrying the minor allele at the SNP is greater than the frequency of individuals <i>not</i> carrying the HLA allele but carrying the minor allele at the SNP, shows that the 4 SNPs associated with > 1 HLA allele are associated with known HLA haplotypes of high frequency in Europeans. rs404240 shows this pattern with HLA-A*01, HLA-B*08 and HLA-C*0701, which is the most frequent 3-locus haplotype in northern Europeans (0.034 in southern
 352 353 354 355 356 357 358 359 360 361 362 	SNPs that may be useful as AIMs. An examination of the 15 associations in Table S1 that show the opposite classical HLA allele-SNP pattern to that observed in the other 304 associations, namely, the frequency of individuals carrying the HLA allele but <i>not</i> carrying the minor allele at the SNP is greater than the frequency of individuals <i>not</i> carrying the HLA allele but carrying the minor allele at the SNP, shows that the 4 SNPs associated with > 1 HLA allele are associated with known HLA haplotypes of high frequency in Europeans. rs404240 shows this pattern with HLA-A*01, HLA-B*08 and HLA-C*0701, which is the most frequent 3-locus haplotype in northern Europeans (0.034 in southern Europeans and 0.097 in northern Europeans); two additional SNPs, rs2001009 and
 352 353 354 355 356 357 358 359 360 361 362 363 	SNPs that may be useful as AIMs. An examination of the 15 associations in Table S1 that show the opposite classical HLA allele-SNP pattern to that observed in the other 304 associations, namely, the frequency of individuals carrying the HLA allele but <i>not</i> carrying the minor allele at the SNP is greater than the frequency of individuals <i>not</i> carrying the HLA allele but carrying the minor allele at the SNP, shows that the 4 SNPs associated with > 1 HLA allele are associated with known HLA haplotypes of high frequency in Europeans. rs404240 shows this pattern with HLA-A*01, HLA-B*08 and HLA-C*0701, which is the most frequent 3-locus haplotype in northern Europeans (0.034 in southern Europeans and 0.097 in northern Europeans); two additional SNPs, rs2001009 and rs2249099, also show this pattern with HLA-A*01 and HLA-C*0701. rs1800684 shows

365	(0.060 in southern Europeans and 0.16 in northern Europeans). rs404240 and rs1800684
366	are both synonymous, and rs404240 and rs2249099 are physically proximal to the
367	HLA-A gene, whereas rs2001099 is physically proximal to HLA-DRA. Because the
368	opposite pattern is much more frequently observed (that individuals who do not carry
369	the classical HLA do carry the minor allele at a particular SNP), this implies that most
370	of these SNPs are older than the classical HLA alleles. We searched dbSNP build 36.3
371	(http://www.ncbi.nlm.nih.gov/projects/SNP/) for presumed ancestral (Pan troglodytes)
372	alleles for these polymorphisms and found 26/166 (15.7%) were in regions not able to
373	be aligned with the chimpanzee sequence (indicated in Table S4). Most of these SNPs
374	were unassociated with north-south status, although 3 of the 26 were strongly associated
375	with north-south status (rs2256328, rs2857205 and rs2747479). However, of these 26
376	SNPs, only 6 (23.1%) did not show Bonferroni-corrected association with at least one
377	classic HLA gene allele, a smaller percentage than in the full set of 166 SNPs (31.1%)
378	suggesting the existence of human-specific SNPs, that probably arose on a particular
379	HLA allele haplotype background, and which might be more informative of classic
380	HLA gene allele carrier status. The fact that these data suggest that most SNPs are older
381	than the classic HLA gene alleles, most of which are common to humans and
382	chimpanzees, suggests that they are not likely to be good markers for LD based
383	associations. It seems likely that this is a problem shared by a high proportion of SNPs
384	in the commonly-used SNP databases, since the SNPs used in this study were selected
385	only by location. The age of the SNPs could account for the emphasis on building
386	haplotype blocks using very high LD thresholds. Only in those cases where LD is very
387	high and the SNPs are very closely linked will such blocking give meaningful results for
388	relatively old SNPs, given that the average rate of decay of LD between two SNPs is 1-r

389	per generation, where r is the recombination fraction between the SNPs. For example,
390	for a distance of 1000 bp, corresponding, on average, to $r = 10^{-5}$, the LD would decay by
391	a factor of 0.0034 in 500, 000 generations, and so to negligible levels in the separation
392	time between humans and chimpanzees. The SNPs may show associations with more
393	recent variation, as with HLA alleles, but these associations will be incomplete.
394	We show that, even with highly ancestry informative markers, unsupervised
395	clustering algorithms were not able to detect substructure with our limited number of
396	SNPs. Clustering algorithms should be used with caution when genome-wide data are
397	unavailable, even if the SNPs selected are informative of ancestry.
398	The bimodal distribution of minor allele carriers of sets of SNPs that are
399	strongly associated with classic HLA gene alleles and the use of logistic regression to
400	predict HLA allele carrier status are computationally efficient and simple methods that
401	do not require particular 'tag SNPs' ¹⁹ or prior database-based information ²⁰ and thus
402	may be preferred when no previous data exist on a particular population. Even though
403	our method and previously-described methods show relatively high sensitivity and
404	specificity for prediction of classic HLA gene allele carrier status, none of the proposed
405	methods, including ours, is as accurate as HLA allele typing. Even with this caveat, our
406	method may be helpful in pre-selecting a subset of individuals for full classic HLA gene
407	allele typing in disease association studies, thus reducing genotyping time and costs.
408	Higher-order associations, such as associations between blocks of SNPs, may
409	more accurately describe genetic diversity and historical recombination patterns of a
410	particular region of the genome, and may be helpful for the assignment of classic HLA
411	gene allele carrier status than previously-reported approaches ^{17, 19-20} . Future work will
412	develop a novel meta-blocking algorithm to perform higher-level blocking using blocks

413 created by r2blocks, to be used as input to unsupervised and/or supervised clustering

414 algorithms for the detection of population stratification based on the example of the

415 HLA region in closely-related populations. This meta-blocking algorithm may also be

416 useful in prediction of classic HLA gene allele carrier status.

417

418 Acknowledgements

419 The Project was funded by European Union (Linkage Disequilibrium in 420 European Populations, 2001-2005, CT-2001-00916), the Wellcome Trust (support for KKN) and Cancer Research UK (support for CB and ST). DNA samples were provided 421 422 by Project partners : Prof. Howard Cann (Fondation Jean Dausset-CEPH, Paris, France), 423 Prof. Laurent Excoffier (Computational and Molecular Population Genetics Lab, 424 Zoological Institute, University of Bern, Switzerland), Prof. Antti Sajantila (Department 425 of Forensic Medicine, Laboratory of Forensic Biology, University of Helsinki, Finland), 426 Prof. Alberto Piazza (Dipartimento di Genetica, Biologia e Biochimica, Universita di 427 Torino, Italy), Prof. Silvana Santachiara (Department of Genetics and Microbiology, 428 University of Pavia, Italy), Prof. Jaume Bertranpetit (Biologia Evolutiva, CEXs, 429 Universitat Pompeu Fabra, Barcelona, Spain)

430

431 **Conflict of Interest:** The authors declare no conflict of interest.

- 432
- 433
- 434
- 435
- 436

437 **References**

438 1. Miretti MM, Walsh EC, Ke X, et al: A high-resolution linkage-disequilibrium map of 439 the human major histocompatibility complex and first generation of tag single-440 nucleotide polymorphisms. Am J Hum Genet 2005; 76: 634-646. 441 442 2. Shen R, Fan JB, Campbell D, et al: High-throughput SNP genotyping on universal 443 bead arrays. Mutat Res 2005; 573: 70-82. 444 445 3. Tonks S, Marsh S, Bunce M, Bodmer JG Molecular typing for HLA class I using 446 ARMS-PCR: Further development following the 12th International Histocompatibility 447 Workshop. Tissue Antigens 1999; 53: 175-183. 448 449 4. Bartlett S, Straub J, Tonks S, Wells RS, Bodmer JG, Bodmer, WF Alkaline-mediated 450 differential interaction (AMDI): A simple automatable single-nucleotide polymorphism 451 assay. Proc Natl Acad Sci USA 2001; 98: 2694-2697. 452 453 5. Barrett JC, Fry B, Maller J, Daly MJ Haploview: analysis and visualization of LD 454 and haplotype maps. *Bioinformatics* 2005; 21: 263-265. 455 456 6. Gabriel SB, Schaffner SF, Nguyen H, et al: The structure of haplotype blocks in the 457 human genome. Science 2002; 296: 2225-2229. 458 459 7. Weir BS, Cockerham CC Estimating F-statistics for the analysis of population 460 structure. Evolution 1984; 38: 1358-1370. 461 462 8. Guillot G, Mortier F, Estoup A Geneland: A program for landscape genetics. Mol 463 Ecol Notes 2005; 5: 1261-1280. 464 465 9. Stephens M, Smith N, Donnelly P A new statistical method for haplotype 466 reconstruction from population data. Am J Hum Genet 2001; 68: 978-989. 467 468 10. Stephens M, Donnelly P A comparison of Bayesian methods for haplotype 469 reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162-1169. 470 471 11. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D Principal 472 components analysis corrects for stratification in genome-wide association studies. Nat 473 Genet 2006; 38: 904-909. 474 475 12. Karatzoglou A, Smola A, Hornik K kernlab: Kernel-based Machine Learning Lab. 476 2008 R package version 0.9-8. 477 478 13. Pritchard JK, Stephens M, Donnelly P Inference of population structure using 479 multilocus genotype data. Genetics 2000; 155: 945-959. 480 481 14. Falush D, Stephens M, Pritchard JK Inference of population structure using 482 multilocus genotype data: linked loci and correlated allele frequencies. *Genetics* 2003; 483 **164**: 1567-1587.

15. Corander J, Waldman P, Silanpää MJ Bayesian analysis of genetic differentiation between populations. Genetics 2003; 163: 367-374. 16. Corander J, Marttinen P, Siren J, Tang J Enhanced Bayesian modeling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 2008; 9: 539. 17. Bodmer JG. The HLA System: The HLA-DR antigens and HLA haplotypes in 2 populations; in Eriksson E (ed): Population Structure and Genetic Disorders. Acad Press, 1980, pp 211-238. 18. Cavalli-Sforza LL, Menozzi P, Piazza A. The history and geography of human genes. Princeton University Press, 1994, Princeton. 18. de Bakker PI, McVean G, Sabeti PC, et al: A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 2006; **38**: 1166-1172. 19. Leslie S, Donnelly P, McVean G A statistical method for predicting classical HLA alleles from SNP data. Am J Hum Genet 2008; 82:48-56.

524 **Titles and legends to figures**

525

526	Figure 1. Schematic of the r2blocks algorithm. HAPLOVIEW plot of pair-wise r^2
527	values between a set of 7 simulated SNPs; the block shading shows strength of
528	correlation. A, Assuming a window size (M) of 4 and an r^2 threshold of 0.70, the
529	r2blocks algorithm begins with the highest pair-wise LD value, here between SNPs 3
530	and 5, which are in perfect LD ($r^2 = 1.0$). Starting with SNP 3, consider r^2 values with
531	SNPs 1, 2 and 4. Only SNP 1 passes the r^2 threshold; add SNP 1 to the block.
532	Discontinue growing the block to the left. Consider r^2 values between SNP 5 and SNPs
533	4, 6 and 7 and add SNP 6. Move to SNP 6, consider r^2 values between SNP 6 and 7,
534	which is below the threshold. Terminate growing block to the right, creating block 1 of
535	SNPs 1, 3, 5 and 6. Now consider r^2 values between SNPs not assigned to blocks: SNPs
536	2, 4 and 7; none of the pair-wise r^2 values are above the threshold so the algorithm
537	terminates, leaving these three SNPs as singletons. B. The resulting haplotype block
538	from A.
539	

540 Figure 2. Association of HLA-A, B and C alleles by genotyped SNPs. Plot shows –

541 $\log_{10}(p-values)$ of Fisher's exact tests for association between classic HLA gene alleles

542 and genotyped SNPs passing Bonferroni correction. Association with the classic HLA

543 gene alleles only are plotted in primary colours (HLA-A = blue, HLA-B = dark yellow,

544 HLA-C = red); association with 2 classic HLA gene alleles are shown as secondary

545 colours (HLA-A (blue) and HLA-B (yellow) = green, HLA-A (blue) and HLA-C (red)

546 = violet, HLA-B (yellow) and HLA-C (red) = orange); association with all 3 classic

547	HLA gene alleles = black. The position of HLA-DRA1 is between SNPs 122-123 and
548	that of HLA-DRB1, HLA-DQA1 and HLA-DQB1 are between SNPs 129-130.
549	
550	Figure 3. Histograms of the number of minor allele carriers at associated SNPs by
551	HLA allele carrier status. A. HLA-A*01 (18 SNPs), B. HLA-A*03 (12 SNPs), C.
552	HLA-B*08 (27 SNPs); y-axis = frequency, x-axis = number of SNPs where individuals
553	carry at least one minor allele. Blue = HLA allele non-carrier; red = HLA allele carrier.
554	
555	Figure 4. HLA region haplotype blocks in European populations defined by
556	r2blocks and the Gabriel, four gamete rule and solid spine of LD methods. Plots
557	show LD heatmap of pair-wise r ² values for SNPs. Top bar represents physical spacing
558	of SNPs. Triangles show location of haplotype blocks defined by each method.
559	Methods are indicated on the left hand side of each plot. A: pooled European
560	populations; red triangles show blocks added by reducing the r^2 threshold from 0.7 to
561	0.5 using r2blocks. B: blocks obtained using r2blocks with r^2 threshold 0.70 in
562	northern European populations (top) and southern European populations (bottom) C:
563	blocks obtained using r2blocks with r^2 threshold 0.50 in northern European
564	populations (top) and southern European populations (bottom). D: blocks obtained
565	using the Gabriel method in northern European populations (top) and southern
566	European populations (bottom).
567	
568 569 570	

572 Table 1. Counts, odds ratios (ORs) and $-\log_{10}(p-values)$ for association tests for the

top 20 pairs of Bonferroni-corrected significantly positively associated 'tagging'
 pairs of HLA alleles and SNPs.

575

							-log10
HLA Allele	SNP	$+ +^{1}$	+ -	- +		OR	(p-value) ²
HLA-A*03	rs3121593	82	9	3	337	946.2	73.74
HLA-A*02	rs6909253	202	14	64	151	33.66	59.8
HLA-C*06	rs10484554	72	0	52	307	425.1	48.92
HLA-C*05	rs2524160	67	3	37	324	191.1	47.44
HLA-A*03	rs6921921	88	3	74	266	104.2	43.41
HLA-A*01	rs1150741	105	8	82	236	37.43	43.18
HLA-B*08	rs3094014	68	7	57	299	50.23	36.76
HLA-A*03	rs2734925	89	2	102	238	102.9	36.2
HLA-C*06	rs2523619	72	0	110	249	163	33.25
HLA-A*03	rs1737043	88	3	116	224	56.2	31.14
HLA-A*24	rs2394186	66	17	63	285	17.4	29.88
HLA-B*51	rs2523685	69	3	107	252	53.71	28.93
HLA-C*06	rs3130473	72	0	128	231	129.9	28.46
HLA-A*24	rs1150741	79	4	108	240	43.53	28.06
HLA-A*11	rs2076177	50	7	58	316	38.41	27.98
HLA-B*08	rs3094216	66	9	80	276	25.06	27.95
HLA-A*11	rs29226	50	7	62	312	35.5	27.64
HLA-C*1203	rs10484554	46	0	78	307	181.1	27.56
HLA-B*07	rs3093993	87	12	88	244	19.94	27.3
HLA-A*01	rs404240	46	67	4	314	53.25	26.9

¹++ refers to counts of co-occurrence of the HLA haplotype indicated and a minor
allele at the SNP indicated; + - refers to the presence of the HLA haplotype but no
copies of the minor allele at the SNP; - + refers to no copies of the HLA haplotype and
at least one copy of the minor allele at the SNP; - - refers to no copies of the HLA
haplotype indicated or the minor allele at the SNP. ²-log₁₀(p-value) is for the
association test between copies of HLA alleles and minor alleles carried.

583

584

585

586

Table 2. Sensitivity, specificity and misclassification rates for 5-SNP logistic regression models predicting HLA allele carrier

status.

		Mean Test Set				
	Mean Test Set Sensitivity	Specificity (95%	Number of CEPH	Mean CEPH	Mean CEPH	Mean CEPH
HLA Allele	(95% CI)	CI)	carriers (%)	Sensitivity (95% CI)	Specificity (95% CI)	Misclassification (95% CI)
HLA-A*01	0.953 (0.901, 1.00)	0.869 (0.745, 0.989)	23 (35.4)	0.935 (0.925, 0.944)	0.999 (0.996, 1.00)	0.0453 (0.0385, 0.0521)
HLA-A*02	0.878 (0.770, 0.987)	0.762 (0.695, 0.829)	40 (61.5)	0.937 (0.765, 1.00)	0.823 (0.776, 0.882)	0.147 (0.124, 0.170)
HLA-A*03	0.974 (0.953, 0.996)	0.949 (0.867, 1.00)	18 (27.7)	0.936 (0.875, 0.997)	0.982 (0.924, 1.00)	0.0540 (0.00501, 0.103)
HLA-A*29	0.977 (0.945, 1.00)	0.826 (0.677, 0.976)	3 (4.6)	0.997 (0.978, 1.00)	0.943 (0.678, 1.00)	0.00748 (0.000201, 0.0351)
HLA-B*07	0.907 (0.863, 0.952)	0.793 (0.656, 0.930)	19 (29.2)	0.863 (0.923, 0.903)	0.834 (0.730, 0.937)	0.147 (0.124, 0.168)
HLA-B*08	0.952 (0.921, 0.983)	0.859 (0.702, 1.00)	17 (26.2)	0.882 (0.850, 0.913)	0.914 (0.785, 1.00)	0.114 (0.0862, 0.142)
HLA-B*44 ¹	0.818 (0.726, 0.910)	0.686 (0.508, 0.863)	23 (35.4)	0.722 (0.590, 0.853)	0.938 (0.758, 1.00)	0.265 (0.135, 0.394)
HLA-B*57	0.954 (0.926, 0.982)	0.708 (0.496, 0.920)	0 (0)			
HLA-C*0701	0.828 (0.784, 0.873)	0.818 (0.690, 0.946)	22 (33.8)	0.828 (0.812, 0.843)	0.765 (0.687, 0.844)	0.191 (0.161, 0.220)
HLA-C*0702	0.889 (0.840, 0.938)	0.753 (0.608, 0.898)	3 (4.6)	0.972 (0.949, 0.995)	0.106 (0.0347, 0.177)	0.225 (0.178, 0.272)
HLA-C*05	0.964 (0.928, 1.00)	0.773 (0.638, 0.908)	4 (6.2)	0.924 (0.922, 0.927)	0.0 (0.0, 0.0)	0.247 (0.221, 0.273)
HLA-C*06	0.997 (0.992, 1.00)	0.946 (0.829, 1.00)	0 (0)			
HLA-C*16	0.977 (0.955, 0.999)	0.870 (0.375, 1.00)	3 (4.6)	0.972 (0.960, 0.985)	0.828 (0.275, 1.00)	0.0405 (0.00680, 0.0742)

¹This model contains 4 SNPs.

Table 3. Association tests for Hardy-Weinberg equilibrium, minor allele frequencies and F_{ST} for 20 most strongly associated HLA alleles, blocks and haplotypes with north-south status.

				Comb- ined	Comb- ined HWE -logu	North-South Single SNP Association –	North-South Single Block Association – log ₁₀ n-value	North-	North	North HWE _log_o	South	South HWE
Marker	Location	Gene Symbol	Function	MAF	p-value	log ₁₀ p-value ¹	$(\mathbf{r}^2 \ge 0.5)$	South F _{ST}	MAF	p-value	MAF	p-value
rs411136	33516520	SYNGAP1	Ser556Ser	0.15	4.00	32.42 (28.57)		0.29	0.33	0.37	0.034	0.00
rs1265160	31246350	POU5F1	Phe3Phe	0.070	0.66	11.15 (11.55)		0.099	0.15	1.44	0.023	0.00
rs3096702	32300309	NOTCH4	5' region	0.29	0.08	9.20 (8.29)		0.087	0.42	0.39	0.22	0.02
rs2256328	31489616	MICA	intron	0.24	0.33	8.87 (9.10)		-0.0021	0.12	0.93	0.31	0.24
rs2256594	32294850	NOTCH4	intron	0.13	0.00	8.46 (8.11)		0.078	0.21	0.36	0.073	0.10
rs2535318	31159367			0.49	0.06	7.48 (6.66)		0.070	0.37	0.00	0.44	0.19
rs659445	31972283 33438959-	EHMT2	intron 1-1	0.28	0.57	7.07 (5.91)		0.066	0.39	0.16	0.22	0.03
Block 20	33454164 31159367-		haplotype 2-1	0.40	0.23		6.36 (3.96)	0.030	0.42	0.35	0.60	0.09
Block 10	31186474	C6orf15	haplotype	0.42	0.51		5.65 (4.83)	0.037	0.51	0.71	0.34	0.19
rs389883	32055439	STK19	intron	0.23	0.10	5.49 (4.87)		0.050	0.31	0.07	0.17	0.33
rs2855453	33242370 30832409-	COL11A2	intron 1-1	0.31	0.97	5.44 (4.51)		0.047	0.40	0.00	0.25	0.88
Block 8 HLA-B*07/ C*0702	30847883		haplotype	0.16	0.15		5.4 (4.15)	0.031	0.72	0.00	0.85	0.10
Haplotype		HLA-B/C	 Ala3Ala, 3'				5.32 (5.32)	0.050	0.16		0.060	
rs1800684	32259972	AGER, PBX2	region	0.087	0.16	5.29 (5.07)		0.042	0.14	0.20	0.053	0.03
rs1810472	33191099			0.32	0.23	5.14 (4.74)		0.048	0.23	0.00	0.38	0.65
rs4713505 HLA-B*08/ C*0701	32212979			0.31	1.58	5.13 (4.01)		0.045	0.22	0.59	0.37	0.70
Haplotype		HLA-B/C					4.47 (4.82)	0.042	0.13		0.049	
rs8512	30819336	IER3	3' UTR	0.19	4.39	2.34 (4.74)		0.017	0.14	0.00	0.22	6.64
rs211452	33438959 32331236-		2-1	0.40	0.23	4.69 (4.11)		0.039	0.31	0.35	0.46	0.090
Block 17	32345991		haplotype	0.32	0.13		4.31 (4.64)	0.024	0.21	0.00	0.11	0.00

HLA Region LD in Europe 26

SNPs shown are associated with north-south status after Bonferroni correction for all allelic and genotypic tests. ¹p-values for association tests are shown as allele-based first, genotype-based in parentheses.

Table 4. North-south population membership prediction error for logistic regression models using the most associated SNPs, blocks and HLA-A/B and HLA-B/C haplotypes.

Population	Population	Misclassification			
removed	Predicted	rate			
Catalan	Catalan	0.18			
Catalan	CEPH	0.23			
Bergamo	Bergamo	0.13			
Bergamo	CEPH	0.22			
Piedmont	Piedmont	0.00			
Piedmont	CEPH	0.22			
Sicily	Sicily	0.085			
Sicily	CEPH	0.22			

