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On the equivalence between standard and sequentially ordered hidden Markov models

Chopin (2007) introduced a sequentially ordered hidden Markov model, for which states are ordered according to their order of appearance, and claimed that such a model is a re-parametrisation of a standard Markov model.

Bayesian terms, as both formulations generate equivalent posterior distributions, but does not hold in Frequentist terms, as both formulations generate incompatible likelihood functions. Perhaps surprisingly, this shows that Bayesian re-parametrisation and Frequentist re-parametrisation are not identical concepts. Key-words: Bayesian inference; Frequentist inference; hidden Markov models; re-parametrisation; sequentially ordered hidden Markov models.

A standard hidden Markov model assumes that the observed process (y t ) follows a mixture distribution:

y t |{s t = k} ∼ f (y t |ξ k ) t = 0, 1, . . . (1) 
where {f (•|ξ) ξ ∈ Ξ} is a parametric family of probability densities, and that the unobserved assignment variable (s t ) is a K-state Markov chain:

p(s t+1 = l|s t = k) = q kl , k, l = 1, . . . , K. (2) 
If necessary, distribution (1) can also depends on y t-1 , y t-2 , . . . The transition matrix is denoted by Q = (q kl ), and the vector of unknown parameters, which includes both the q kl 's and the ξ k 's, is denoted by θ. Lastly, it is often assumed that

p(s 0 = k) = ϑ k , k = 1, . . . , K, (3) 
where ϑ = (ϑ 1 , . . . , ϑ K ) is the the stationary distribution of the chain, i.e. the solution of ϑQ = ϑ. See e.g. [START_REF] Macdonald | Hidden Markov and other models for discrete-valued time series[END_REF], McLachlan and Peel (2000, Chap. 13), [START_REF] Scott | Bayesian methods for hidden Markov models: Recursive computing in the 21st Century[END_REF] or [START_REF] Cappé | Inference in Hidden Markov Models[END_REF] for more background on hidden Markov models and their numerous applications.

The sequentially ordered hidden Markov model introduced by [START_REF] Chopin | Inference and model choice for sequentially ordered hidden markov models[END_REF] has the same observation equation as (1), i.e.

y t |{z t = k} ∼ f (y t |ξ k ) t = 0, 1, . . . (4) 
but diers with respect to the behaviour of the hidden process, now denoted by (z t , m t ):

(z 0 , m 0 ) = (1, 1),

p(z t+1 = l|z t = k, m t = m) =            q kl if k, l ≤ m ≤ K, K i=m+1 q ki if k < l = m + 1 ≤ K, 0 otherwise, (5) 
m t+1 = max(m t , z t+1 ),
for t = 0, 1, . . . For sake of clarity, parameters in this second formulation are barred, e.g. θ, ξ k , q kl , etc. The quantity m t represents the number of states that have appeared up to time t, and z t represents the current state, as labelled with respect to the order of appearance of state values; e.g. z 0 = 1, as rst state to appear is always labelled `1', then z 1 = 1 with probability q 11 , and z 1 = 2 otherwise, etc. The pair (z t , m t ) is a K -state Markov chain, with A last advantage of these models, which was not mentioned by [START_REF] Chopin | Inference and model choice for sequentially ordered hidden markov models[END_REF] is that they are slightly more parsimonious, since they do not require the specication of a distribution for the initial state s 0 , as in (3).

K = K(K + 1)/2,
The rest of the paper is organised as follows. Section 1 proves that the two formulations generate equivalent posterior distributions. Section 2 shows that the two formulations lead to likelihood functions that cannot be compared with each other. Section 3 discusses this paradox, and mentions possible extensions of sequentially ordered hidden Markov models.

1 Bayesian equivalence

We assume that (y t ) is the stochastic process dened by ( 1) and (2), i.e. a standard hidden Markov model, where dependencies on parameter θ are interpreted as conditional dependencies on random variable θ, with prior probability density π. We prove that, under the following two mild conditions, one may dene a latent process (z t , m t ) and a random parameter θ distributed according to π, such that the distribution of (y t ) conditional on θ corresponds to (4) and

(5), i.e. a sequentially ordered hidden Markov model.

Condition 1. The prior distribution π is invariant with respect to state re-labelling, that is, for any permutation τ of the rst K integers, if θ ∼ π, then

θ τ = (ξ τ (1) , . . . , ξ τ (K) , q τ (1)τ (1) , . . . , q τ (K)τ (K-1) )
is also distributed according to π.

Condition 2. Under the prior distribution π, all the components of matrix Q are positive with probability one.

Let σ t be the random sequence of increasing size that records sequentially the state values as they appear for the rst time in s 1:t ; e.g. if x 1:5 = (4, 3, 4, 7, 3) then σ 9 = (4, 3, 7). With an abuse of notations, σ t shall also stand for any permutation τ of the rst K integers such that τ

(i) = σ t (i), for 1 ≤ i ≤ k,
where k is the length of sequence σ t . In particular, let z t = σ -1 t (s t ) and m t = max 1≤t ≤t z t

According to Condition 2 and basic properties of Markov chains, there exists almost surely a vector σ of size K and a nite time ζ such that σ t = σ for all t ≥ ζ. Let θ = σ(θ) and Q = σ(Q), which are obtained respectively by re-ordering the components of θ and Q according to σ; e.g. Q = (q σ(i)σ(j) ). We show now that (z t , m t ) verify (5). Clearly, (z 0 , m 0 ) = (1, 1) with probability 1. Then, compare

p(σ 2:K = τ |z 1 = 2, s 0 = k, θ) = p(σ 2:K = τ |s 1 = k, s 0 = k, θ) with p(σ 2:K = τ |z 1 = 1, s 0 = k, θ) = p(σ 2:K = τ |s 0 = s 1 = k, θ),
where τ is a vector of size K -1, and '1' and `2' are the two only possible values for z 1 . Since (s t ) is Markov, conditional on s 0 the order of appearance σ 2:K of the states that dier from s 0 does not depend on the (random) date η where s t changes value for the rst time; i.e. s 0 = s 1 = . . . = s η-1 = s η . In particular, both probabilities above equal

p(σ 2:K = τ |s 0 = k, θ)
and one deduces that, conditional on σ(1) (which equals s 0 ) and θ, σ 2:K and z 1 are independent random variables. Thus

p(z 1 = 1|σ, θ) = p(s 1 = s 0 |s 0 , θ) = q s0s0 = q 11
almost surely. Since θ is a deterministic function of σ and θ, and q 11 is a deterministic function of θ, one has:

p(z 1 = 1|θ) = q 11 ,
and,

p(z 1 = 2|θ) = 1 -p(z 1 = 1|θ) = K i=2 q 1i .

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

This reasoning can be generalised to further time steps: for k, l ≤ m, where m is the length of integer sequence s, σ m+1:K and z t+1 are independent variables, conditional on z t = k, m t = m, and σ 1:m . Thus, for k, l ≤ m, and for some arbitrary permutation τ ,

p(z t+1 = l|z t = k, m t = m, σ = τ, θ) (6) = p(s t+1 = τ (l)|s t = τ (k), m t = m, σ = τ, θ) = p(s t+1 = τ (l)|s t = τ (k), m t = m, σ 1:m = τ 1:m , θ) = q τ (k)τ (l)
which gives:

p(z t+1 = l|z t = k, m t = m, σ, θ) = q σ(k)σ(l) = q kl ,
with probability one, and, since probabilities sum up to one,

p(z t+1 = m + 1|z t = k, m t = m, σ, θ) = K l=m+1 q kl . (7) 
One can replace (σ, θ) with θ in the conditioning of ( 6) and ( 7), since the righthand sides depend only on θ, a deterministic function of (σ, θ). This gives the desired result.

Frequentist equivalence

The two formulations dene two incompatible data generating processes. For instance, under the rst model, the marginal distribution of y 0 is a mixture:

p(y 0 |θ) = K k=1 ϑ k f (y 0 |ξ k ),
whereas, under the second model, this distribution is f (y 0 |ξ 1 ). However, this distinction seems relevant only when one would observe repeated samples y (i) 1:T

for the same parameter value θ, which seldom happens in practice. More importantly, the two formulations dene non equivalent likelihood functions, in the sense that, for t ∈ Θ, the likelihood of the rst model p(y 1:T |θ = t) is generally not equal to the likelihood of the second model p(y 1:T |θ = t), if only because the former likelihood is invariant with respect to state relabelling, whereas the latter is not.

In fact, our time-ordered model corresponds to a re-parametrisation of the full vector of unknowns, that is, (θ, s 1:T ) transformed into (θ, z 1:T ), and therefore the complete likelihood p(y 1:T z 1:t |θ) is a re-parametrised version of p(y 1:T s 1:T |θ), but this property does not extend to the marginal likelihood function p(y 1:T |θ).

A practical consequence is that maximum likelihood (or similar) estimators obtained from either formulations cannot be compared easily; thus one should refrain in principle from applying Frequentist estimation procedures to sequentially ordered hidden Markov models.

Discussion and extensions

This example shows that Bayesian re-parametrisation is more powerful a concept than Frequentist re-parametrisation. Since Bayesian analysis treats equally all unknown quantities as random variables, whether they are `parameters' or `latent variables', one can re-parametrise (apply a one-to-one transform to) the full vector of unknowns, i.e. (θ, z) above, rather than re-parametrise only the parameter vector θ. This explains why both formulations are equivalent in terms of posterior distributions, but not in terms of (marginal) likelihood functions.

The author believes that this is yet another example of the greater internal consistency of the Bayesian approach.

Finally, denote by

  σ a:b any sub-vector (σ(a), . . . , σ(b)) of σ, where a, b are positive integers.

  since z t ≤ m t with probability one.

[START_REF] Chopin | Inference and model choice for sequentially ordered hidden markov models[END_REF] 

discusses several advantages of time-ordered hidden Markov models. First, they are identiable, provided T ≥ K, whereas standard hidden Markov models are invariant with respect to state re-labelling. Second, they are still hidden Markov models, with hidden chain (z t , m t ), so standard algorithms for hidden Markov models (such as Gibbs sampling) can be adapted with little extra eort. Third, one may conveniently estimate m t in order to evaluate how many states are required to model the data. Fourth, in sequential settings, that is, where statistical inference is performed at each time t where a new data-point is available, states are automatically and consistently ordered at all iterations.
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One can easily derive sequentially ordered formulations for models closely related to hidden Markov models, e.g. hidden semi-Markov models, or continuoustime jump Markov models. The proof of the validity of these sequentially ordered formulations is a simple extension of Section 1. For instance, a hidden Markov model is a semi-Markov model where times between changes are geometrically distributed, but since our proof is not based on this particular assumption, it extends readily to semi-Markov models, up to cosmetic changes in the notations. In the same way, a continuous-time jump Markov process is a process that stays in a given state k, for a random, exponentially-distributed duration, and then switch to another state according to some probability transition matrix with zeros on its main diagonal.