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Fast and accurate simulation of mechanical structures with complex geometry requires application of the finite element method. Τhis leads frequently to models with a relatively large number of degrees of freedom, which may also possess nonlinear properties. Things become more complicated for systems involving unilateral contact and friction. In classical structural dynamics approaches, such constraints are usually modeled by special contact elements. The characteristics of these elements must be selected in a delicate way, but even so the success of these methods can not be guaranteed. This study presents a numerical methodology, which is suitable for determining dynamic response of large scale finite element models of mechanical systems with multiple unilateral constraints. The method developed is based on a proper combination of results from two classes of direct integration methodologies. The first one includes standard methods employed in determining dynamic response of structural models possessing smooth nonlinearities. The second class of methods includes specialized methodologies that simulate response of dynamical systems with unilateral constraints. The validity and effectiveness of the methodology developed is illustrated by numerical results.

Introduction

Accurate modeling and prediction of the response of mechanical systems with complex geometry requires application of approximate methods, like the finite element method. The various substructures of these systems are usually supported or connected to each other with special elements, which involve a suitable combination of discrete springs and dampers. In typical applications of structural dynamics, the finite elements that are used to model the action of the structural components have linear properties, while the action of the supports and the connecting elements is characterized by nonlinear properties. This category of systems has already been studied intensively in the past and a series of reliable numerical methods is available, furnishing the dynamic response when the nonlinearities involved are smooth (e.g., [START_REF] Bathe | Finite Element Procedures in Engineering Analysis[END_REF][START_REF] Hughes | The Finite Element Method[END_REF][START_REF] Craig | Structural Dynamics -An Introduction to Computer Methods[END_REF][START_REF] Nayfeh | Applied Nonlinear Dynamics[END_REF]). On the other hand, some important phenomena arise in mechanical structures, such as the establishment or loss of contact and the transition from sticking to sliding or the
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-2opposite, that may take place between two contacting surfaces of a composite structure. The response of these structures involves jumps in the acceleration and possibly in the velocity. For this reason, these structures are included in the general class of non-smooth dynamical systems.

The importance of and the challenges associated with predicting accurately the response of nonsmooth systems is demonstrated easily by the continuous and vast amount of research efforts devoted to this area. These efforts can roughly be classified in two big categories. In the first one, the emphasis is put on considering dynamical systems with relatively simple sets of unilateral constraints and the main objective is to develop a better understanding on fundamental issues related to the dynamic response, stability and bifurcation of non-smooth systems (e.g., [START_REF] Masri | On the stability of the impact damper[END_REF][START_REF] Shaw | A periodically forced piecewise linear oscillator[END_REF][START_REF] Shaw | On the dynamic response of a system with dry friction[END_REF][START_REF] Natsiavas | Dynamics of piecewise linear oscillators with van der Pol type damping[END_REF][START_REF] Metallidis | Vibration of a continuous system with clearance and motion constraints[END_REF][START_REF] Khulief | A continuous force model for the impact analysis of flexible multibody systems[END_REF][START_REF] Cardona | Kinematic and dynamic analysis of mechanisms with cams[END_REF][START_REF] Bauchau | Analysis of flexible multi-body systems with intermittent contacts[END_REF][START_REF] Leine | Stick-slip vibrations induced by alternate friction models[END_REF][START_REF] Dankowicz | On the origin and bifurcations of stick-slip oscillations[END_REF][START_REF] Luo | Grazing and chaos in a periodically forced piecewise linear oscillator[END_REF]). On the other hand, a parallel and equally intensive effort is also underway, where the attention is focused on developing accurate and efficient numerical methodologies for capturing the response of models involving more complex sets of multiple unilateral constraints, by employing set-valued force law theory (e.g., [START_REF] Pfeiffer | Multibody Dynamics with Unilateral Contacts[END_REF][START_REF] Brogliato | Non-Smooth Mechanics[END_REF][START_REF] Glocker | Set-Valued Force Laws, Dynamics of Non-Smooth Systems[END_REF][START_REF] Leine | Dynamics and Bifurcations of Non-Smooth Mechanical Systems[END_REF][START_REF] Simo | An augmented Lagrangian treatment of contact problems involving friction[END_REF][START_REF] Studer | Simulation of non-smooth mechanical systems with many unilateral constraints[END_REF][START_REF] Renouf | A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media[END_REF][START_REF] Chetouane | NSCD discrete element method for modelling masonry structures[END_REF]).

However, with a few exceptions, most of the research results presented up to now in the latter scientific area refer to relatively simple systems, with rigid components and a rather small number of degrees of freedom. Moreover, most of the earlier studies devoted to systems with multiple contacts were related mainly to dynamics of granular materials or rigid and flexible blocks or metal forming (e.g., [START_REF] Simo | An augmented Lagrangian treatment of contact problems involving friction[END_REF][START_REF] Studer | Simulation of non-smooth mechanical systems with many unilateral constraints[END_REF][START_REF] Renouf | A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media[END_REF][START_REF] Chetouane | NSCD discrete element method for modelling masonry structures[END_REF]) and not to classical structural dynamics applications.

The main objective of the present study is to develop and assess an appropriate direct integration scheme for determining and investigating the dynamic response of mechanical systems possessing a relatively large number of degrees of freedom and involving multiple unilateral constraints. For such structures, the classical numerical integration methods do not work properly or fail to work at all.

Currently, the main methods used to simulate the response of non-smooth dynamical systems are based on either event-driven [START_REF] Pfeiffer | Multibody Dynamics with Unilateral Contacts[END_REF][START_REF] Natsiavas | Dynamics of multiple degree of freedom oscillators with colliding components[END_REF] or time-stepping [START_REF] Moreau | Non-Smooth Mechanics and Applications[END_REF][START_REF] Jean | The non-smooth contact dynamics method[END_REF][START_REF] Brogliato | Numerical simulation of finite dimensional multibody nonsmooth mechanical systems[END_REF] approaches. In general, the former are not efficient when the number of unilateral constraints is large. For such cases, the most frequently applied methods are those employing time-stepping schemes. Among them, the midpoint rule proposed by Moreau is the most commonly employed method [START_REF] Moreau | Non-Smooth Mechanics and Applications[END_REF]. However, this scheme requires a relatively small step of time integration. Therefore, more efficient and reliable numerical integration techniques are needed, when the number of the degrees of freedom is large. For this reason, a new method is developed in the present work for studying dynamics of a quite general class of mechanical models. This is achieved by combining a time-stepping integration scheme with a more classical direct integration scheme, which is applicable to systems with smooth nonlinearities.

Another key feature of the methodology developed is also related directly to the characteristics of the class of systems examined. More specifically, the equations of motion of these systems are set up by applying the finite element method. As a consequence, a large portion of the original degrees of freedom is associated with the deformability of the system components. On the other hand, the external forcing is such that the essential dynamics of the system can frequently be described accurately by a relatively small number of low frequency modes. In such cases, the calculations can be
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-3facilitated greatly by first applying a suitable coordinate transformation methodology [START_REF] Craig | Structural Dynamics -An Introduction to Computer Methods[END_REF][START_REF] Fey | Long term structural dynamics of mechanical systems with local nonlinearities[END_REF][START_REF] Chen | Coupled lateral-torsional vibration of a gear-pair system supported by a squeeze film damper[END_REF][START_REF] Bennighof | Meeting the NVH computational challenge: automated multi-level substructuring[END_REF][START_REF] Papalukopoulos | Dynamics of large scale mechanical models using multi-level substructuring[END_REF]. For large order systems, this leads to a drastic reduction in the original dimension of the system, without causing a noticeable effect in the accuracy of the results. In particular, the coordinate reduction method applied in the present study is based on a multi-level substructuring of the system, taking into account the structure of the equations of motion and the frequency content of the external excitation [START_REF] Bennighof | Meeting the NVH computational challenge: automated multi-level substructuring[END_REF][START_REF] Papalukopoulos | Dynamics of large scale mechanical models using multi-level substructuring[END_REF]. In this way, one can carry out a systematic study of the dynamics of mechanical systems possessing even an excessive number of degrees of freedom [START_REF] Papalukopoulos | Dynamics of large scale mechanical models using multi-level substructuring[END_REF].

The accuracy and robustness of the methodology developed is first illustrated by presenting characteristic numerical results for three selected finite element models of moderate dimension size.

Then, the finite element model of a more complex mechanical structure is also examined. Among other things, it is shown that the method developed can be employed in order to capture the dynamic response of the class of dynamical systems examined in an accurate and computationally efficient manner. Moreover, it is demonstrated that this method presents some significant computational advantages compared to current state of the art numerical codes. At the same time, the results illustrate the effect of some important parameters of the models examined, including material properties, coefficient of friction as well as size of the time step and the finite element mesh.

The organization of this paper is as follows. The class of mechanical systems examined and the form of the corresponding equations of motion are first presented in the following section. Then, the basic steps of the numerical integration methodology developed for the purposes of the present study are presented in the third section. Next, a section is devoted to presenting typical numerical results for four characteristic finite element models involving multiple unilateral contacts and dry friction. These results illustrate the performance of the method developed as well as the effect of some important mechanical parameters on the response. The final section includes a synopsis of the study.

Class of mechanical systems examined -Equations of motion

A quite general class of dynamical systems consists of complex mechanical systems involving several structural components, which are deformable and possess linear characteristics, together with an appropriate set of interconnecting elements, possessing nonlinear properties. In such a case, the corresponding equations of motion can be cast in the following system of ordinary differential equations

) ( ) , ( t f x x h x K x C x M = + + + . ( 1 
)
The set of the generalized coordinates x is selected as minimal, so that the forces developed at all the points with bilateral constraints drop out from Eq. (1). Moreover, the terms M , C and K represent the classical mass, damping and stiffness matrix of the system, respectively, while the vector Prediction of the response of dynamical systems represented by Eq. ( 1) is a difficult task, since in most practical cases the number of the equations of motion is quite large and the nonlinearities are strong. As a result, such systems can only be studied by applying special numerical methodologies [START_REF] Craig | Structural Dynamics -An Introduction to Computer Methods[END_REF][START_REF] Nayfeh | Applied Nonlinear Dynamics[END_REF]. In many cases, the resulting computations are facilitated by first applying appropriate methodologies leading to a significant reduction of the original coordinates associated with the system deformability, without affecting considerably the accuracy of the results. Besides the classical coordinate reduction approaches which are available in Structural Dynamics and have been applied successfully in the past (e.g., [START_REF] Craig | Structural Dynamics -An Introduction to Computer Methods[END_REF][START_REF] Fey | Long term structural dynamics of mechanical systems with local nonlinearities[END_REF][START_REF] Chen | Coupled lateral-torsional vibration of a gear-pair system supported by a squeeze film damper[END_REF]), a new class of coordinate reduction methods has been developed recently [START_REF] Bennighof | Meeting the NVH computational challenge: automated multi-level substructuring[END_REF]. The basic steps of this method are presented in the following paragraphs.

More details about the theoretical foundation as well as the numerical accuracy and efficiency of this method can be found in earlier work [START_REF] Papalukopoulos | Dynamics of large scale mechanical models using multi-level substructuring[END_REF].

In brief, neglecting temporarily the damping and the nonlinear forces and taking into account the sparsity pattern of the stiffness matrix, the equations of motion of the original system are first reordered and then split automatically in a number of mathematical substructures. As a consequence, the equations of motion for the i -th substructure alone appear in the following linear form

) (t f x K x M i i i i i = + , (2) 
where i M and i K are the mass and stiffness matrix, respectively, while ) (t f i represents the terms arising from external forcing on the i -th component. Next, the displacement vector is split in the form

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = i B i I i x x t x ) (
, where i I

x and i B

x represent the internal and the boundary degrees of freedom of the i -th substructure, respectively. Based on this, Eqs. (2) are partitioned in the form

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ i B i I i B i I i BB i BI i IB i II i B i I i BB i BI i IB i II f f x x K K K K x x M M M M . Next, through application of a Ritz coordinate transformation ) ( ) ( t q T t x i i i = , (3) 
the original set of equations ( 2) is replaced by a considerably smaller set, which appears in the form

) (t f q K q M i i i i i = + , ( 4 
)
with i i T i i T M T M = , i i T i i T K T K = and ) ( ) ( t f T t f i T i i = .
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The columns of matrix i T include the fixed interface normal modes of the system up to a prespecified frequency plus a number of static correction modes [START_REF] Craig | Structural Dynamics -An Introduction to Computer Methods[END_REF]. This means that Eq. ( 3) can be expanded in the form

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ Ψ Φ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ i B i i BB i i i B i I x I x x η 0 ,
where the matrices i Φ and i Ψ are determined as solution of the following eigenvalue and linear algebraic problems x .

i i i II i i II M K Λ Φ = Φ and i IB i i II K K - = Ψ ,
After treating and connecting each component together, the linear undamped terms appearing in the equations of motion of the composite system can eventually be cast in the vectorial form Note that the upper part of the transformed stiffness matrix, corresponding to the generalized sets of coordinates i η , is diagonal. Likewise, the corresponding diagonal blocks of the mass matrix are occupied with identity matrices, while from the off diagonal blocks only those involving coupling between the involved substructures are nonzero. Finally, the last part of vector q , represented by B x , includes all the boundary degrees of freedom of the system. The corresponding parts of the mass and stiffness matrix, represented by B B M , and B B K , , are full. However, the dimensions of these submatrices are usually much smaller than the dimensions of matrices M and K , which in turn are much smaller than the dimension of the mass and stiffness matrices of the original system.

) (t f q K q M - + ≡ , with ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ = B x q 2 1 η η , ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = B B B B M sym I I M , , 2 2 
The set of the degrees of freedom is selected so that it includes all the points where nonlinear action is present. In this way, the exact nonlinear characteristics of the system are preserved [START_REF] Papalukopoulos | Dynamics of large scale mechanical models using multi-level substructuring[END_REF]. In a similar fashion, if in addition to these complications the mechanical system is allowed to exhibit contact/detachment and sticking/sliding phenomena between its components, the involved degrees of
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-6freedom are also included in the set of the degrees of freedom. Clearly, the study of such systems becomes more difficult and challenging. In this case, after adding all these effects, the equations of motion are frequently cast in the following form

) ( ) , ( ) , ( t f q t W q q h q K q C q M = + + + + λ , (5) 
where n q ℜ ∈ and the additional term λ ) , ( q t W involves the non-smooth forces developed at the points where the unilateral constraints are imposed. More specifically, vector m t ℜ ∈ ) ( λ includes quantities related to the forces developed at the contact points, while the columns of matrix

m n q t W × ℜ ∈ ) , (
determine the direction of the corresponding constraint forces. Obviously, the dimension of vector λ -and consequently the number of columns of matrix ) , ( q t W -is time variable. Moreover, it is frequently convenient to split vector λ in two sets, say N λ and T λ , including the constraint forces developed along the normal and tangential directions at the contact points, respectively. This implies that the term representing the non-smooth constraint forces can also be split accordingly in the form

T T N N W W W λ λ λ + = . ( 6 
)
The normal forces N λ are discontinuous at instants of impact, while the tangential forces T λ exhibit discontinuities at the transition from slip to stick and when the corresponding relative sliding velocity changes sign. This is exactly the class of mechanical systems considered in the present study. Adopting the notation and the approach style introduced in references [START_REF] Glocker | Set-Valued Force Laws, Dynamics of Non-Smooth Systems[END_REF] and [START_REF] Leine | Dynamics and Bifurcations of Non-Smooth Mechanical Systems[END_REF], it is first mentioned that the generalized coordinates q are assumed to be absolutely continuous functions of time, while the corresponding generalized velocities are defined according to q u = . [START_REF] Shaw | On the dynamic response of a system with dry friction[END_REF] The last definition holds for almost all time, since the set of the time intervals where discontinuities occur has zero measure. In particular, in view of the occurrence of impacts, the generalized velocities are assumed to be functions of locally bounded variation, with no singular part.

The set of unknowns involved in the equations of motion ( 5) includes the elements of the generalized coordinates vector q plus the elements of the constraint forces vector λ . Therefore, besides providing the initial conditions First, if ) , ( q t g N is a vector containing the relative normal distances at the C n potential contact points of the system, while the vector ) (t N λ includes the corresponding normal forces, the condition for no interpenetration in the normal direction at the contact points can originally be expressed by the

following complementarity relations 0 ≥ N g , 0 ≥ N λ , 0 = N T N g λ . ( 9 
)
The validity of the last two inequalities is meant to hold for each component separately. Alternatively, the above conditions, known as Signorini's normal contact law, can be cast in the form of non-smooth potential functions and eventually as

) ( N C N N N g λ ∈ - , (10) 
where

) ( N C N N λ represents the normal cone of the convex set } , , 2 , 1 ; 0 | { c N n N N n i C i C … = ≥ ℜ ∈ = λ λ at point N λ [18].
When some continuity conditions are satisfied, the above formulations can be raised to the velocity level [START_REF] Jean | The non-smooth contact dynamics method[END_REF]. First, by considering the system kinematics it turns out that the vector including the relative normal velocities at the contact points is obtained in the form

) , ( ) , ( ) , ( ) , , ( q t w u q t W q t g u q t N T N N N + = = γ with ) , ( ) , ( q t q g q t W N T N ∂ ∂ = and ) , ( ) , ( ~q t t g q t w N N ∂ ∂ = .
Then, provided that the contact has been established ( 0 = N g ), the normal contact law can be expressed in the equivalent velocity level form [START_REF] Leine | Dynamics and Bifurcations of Non-Smooth Mechanical Systems[END_REF] 0

≥ N γ , 0 ≥ N λ , 0 = N T N λ γ . ( 11 
)
Alternatively, the above conditions can also be cast in the following form of a non-smooth potential function

) ( N C N N N λ γ ∈ - . ( 12 
)
Finally, application of Coulomb's friction law is also performed on the velocity level. In particular, by considering the system kinematics, again, the vector of the relative velocities along the tangent planes at the contact points can be cast in the affine form

) , ( ) , ( ) , , ( q t w u q t W u q t T T T T + = γ .

A c c e p t e d m a n u s c r i p t -8 -

Then, the law employed in the tangential plane of each contact point is the set-valued dry friction law, which can eventually be put in the form

) ( T C T T N λ γ ∈ - . (13) 
Here,

) ( T C T N λ is the normal cone of the convex set i i C N i T n T T C λ μ λ λ ≤ ℜ ∈ = | { ; } , , 1 C n i … = at point T λ .

Numerical integration

The solution of the mathematical problem posed in the previous section can be obtained numerically by applying an event-driven [START_REF] Pfeiffer | Multibody Dynamics with Unilateral Contacts[END_REF] or a time-stepping methodology [START_REF] Glocker | Set-Valued Force Laws, Dynamics of Non-Smooth Systems[END_REF][START_REF] Leine | Dynamics and Bifurcations of Non-Smooth Mechanical Systems[END_REF]. In brief, when an event-driven method is applied, the smooth form of the equations of motion, expressed by Eq. ( 5), is integrated numerically with any standard ordinary differential equation solver up until an event related to the unilateral constraints (e.g., contact detachment or transition from sticking to slipping) occurs. At that point, known as a switching point, the new contact state of the system is determined by some means (for instance, through the solution of a linear or nonlinear complementarity problem [START_REF] Pfeiffer | Multibody Dynamics with Unilateral Contacts[END_REF][START_REF] Glocker | Set-Valued Force Laws, Dynamics of Non-Smooth Systems[END_REF]) and the numerical integration is continued by using this new state in order to set up the initial conditions for the integration within the time interval extending up until the next event.

In general, the event-driven methods do not work properly for a large number of unilateral constraints or when accumulating switching points are possible to occur [START_REF] Glocker | Set-Valued Force Laws, Dynamics of Non-Smooth Systems[END_REF][START_REF] Leine | Dynamics and Bifurcations of Non-Smooth Mechanical Systems[END_REF][START_REF] Brogliato | Numerical simulation of finite dimensional multibody nonsmooth mechanical systems[END_REF]. For this reason, the response of systems involving many unilateral constraints is most frequently determined by employing time-stepping integration schemes. Traditionally, the midpoint rule proposed by Moreau is the most commonly employed time-stepping scheme [START_REF] Moreau | Non-Smooth Mechanics and Applications[END_REF]. This method is able to capture events like contact-detachment and sticking-sliding transitions, but makes necessary the choice of a relatively small time step. Therefore, more efficient and faster numerical integration techniques are needed, especially when the number of the degrees of freedom is relatively large. The family of the Newmark integration schemes is a common example of such techniques [START_REF] Bathe | Finite Element Procedures in Engineering Analysis[END_REF][START_REF] Hughes | The Finite Element Method[END_REF][START_REF] Craig | Structural Dynamics -An Introduction to Computer Methods[END_REF][START_REF] Nayfeh | Applied Nonlinear Dynamics[END_REF]. These methods are adequate to handle nonlinear smooth forces but they are not appropriate for systems involving set-valued forces. In the present study, a time-stepping method is applied in combination with a Newmark integration scheme, in order to predict response of large scale mechanical models, which possess components involving unilateral contacts and friction. The basic steps of this method are presented in the remaining paragraphs of this section.

In order to be able to capture the dynamics of the non-smooth class of systems examined, the equations of motion ( 5) are first recast in the following equality of measures form where the measures of the velocities and the contact forces can be split into a Lebesgue-measurable plus an atomic part. It is noted here that the present study is confined in the sequel to systems involving planar friction. In addition, the matrix W , determining the direction of the constraint forces, is constant. Extension to systems with spatial friction and variable W will be presented in future work. Furthermore, a linear complementarity problem (LCP) formulation is preferred over an augmented Lagrangean approach [START_REF] Leine | Dynamics and Bifurcations of Non-Smooth Mechanical Systems[END_REF]. This formulation takes into account that there exist some additional conditions between the quantities related to the unilateral constraints. Specifically, the following complementarity relations hold in the normal direction 0

dt f d W dt h dt q K q d C u d M = Λ + + + + , (14) 
≥ N g , 0 ≥ Λ N , 0 = Λ N T N g , ( 15 
)
where

∫ Δ Λ = Λ t N N d and t
Δ represents the time step of the numerical integration. Moreover, the equivalent form expressed in the velocity level becomes

0 ≥ N γ , 0 ≥ Λ N , 0 = Λ N T N γ . ( 16 
)
Furthermore, it is convenient to decompose the two-corner tangential contact law of Coulomb friction into two separate unilateral primitives [START_REF] Glocker | Set-Valued Force Laws, Dynamics of Non-Smooth Systems[END_REF]. To achieve this, the following quantities are defined by

) | (| 2 1 T T R γ γ γ + = , ) | (| 2 1 T T L γ γ γ - = .
These two vectors represent quantities including the right and the left sliding velocities at the contact points, respectively. Combination of the last two relations implies that

L R T γ γ γ - = .
In a similar fashion, a decomposition of the impulsive friction saturations is performed, so that

T N R Λ + Λ = Λ μ and T N L Λ - Λ = Λ μ , with } { i diag μ μ = and ∫ Δ Λ = Λ t d .
Then, the following complementarity conditions hold in the tangential direction for the right

(positive) sliding velocity 0 ≥ R γ , 0 ≥ Λ R , 0 = Λ R T R γ , ( 17 
)
while the corresponding conditions for the left (negative) sliding velocity can be stated as

0 ≥ L γ , 0 ≥ Λ L , 0 = Λ L T L γ . ( 18 
)
On the other hand, within the framework created by adopting Moreau's time-stepping technique, a version of the classical Newmark-β method is applied at this point [START_REF] Hughes | The Finite Element Method[END_REF]. The time discretization imposed in this way leads to a pretty straightforward procedure, involving a large amount of quite lengthy but
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) ( 1 , 1 , 1 = Λ - Λ - + + + j T T j N N j W W q r , ( 19 
)
where the quantities q . Therefore, by utilizing the above information and combining it with Eqs. ( 16)- ( 18), a linear complementarity problem is set up at the end of each time step. In particular, this LCP exhibits the following structure

b x A y + = , ( 20 
)
where the matrix A and the vector b involve quantities related to the system dynamics and kinematics as well as parameters of the numerical discretization scheme employed. Moreover, the unknown vector quantities in Eq. ( 20) are defined as Consequently, after substituting these quantities in Eq. ( 19) and applying a Newton-Raphson type method, the complete response for the class of the mechanical systems examined is obtained, at the end of the time step considered.

T T R T L T N x ) ( γ Λ Λ = , T T R T L T N y ) ( Λ =

Numerical results

The validity, accuracy and effectiveness of the method developed were checked and verified by a large variety of examples. First, it was applied in studying the dynamics of simple mechanical models, like discrete systems and beams, involving contacts and friction. Then, dynamics of deformable bouncing balls and blocks was investigated. Some of the numerical results, obtained for three selected finite element models of this type, are presented in the first part of this section. The dimension of these models is moderate, so that there was no need to perform coordinate reduction and the emphasis was put on examining the numerical performance and robustness of the method. Finally, the attention was shifted to studying the dynamic response of a more complex mechanical system. Among other things,
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the results demonstrate that the method developed presents some significant computational advantages compared to current state of the art numerical codes.

Results for a beam-like cantilever thin structure

The first example model is shown in Fig. 1(a). It consists of a beam-like cantilever thin structure with a length of 100 cm and a wall thickness of 1 mm. The material of the structure is a linearly elastic steel, with elasticity modulus 2.1×10 11 N/m 2 , Poisson's ratio 0.3 and mass denstity 7800 kg/m 3 . All the walls of the structure are modeled by square finite shell elements with a length of 10 cm and the resulting model possesses 240 degrees of freedom. The structure is excited by harmonic transverse forcing, applied at two adjacent nodes, as shown by the two upward arrows in Fig. 1(a), having the same magnitude, frequency and phase. Specifically, the forcing frequency is 50 Hz, so that it lies between the two lowest linear natural frequencies of the structure. As a result of the forcing imposed, the right end may occasionally come in contact with a rigid obstacle. This constraints the motion of the two corresponding nodes of the beam and leads to an LCP with a maximum dimension of 10, since each potential contacting node introduces five equations in the LCP. Namely, one equation for expressing the constraint in the normal direction and four in the tangential plane, from which two correspond to the right and two to the left sliding velocities along two perpendicular axes [START_REF] Leine | Dynamics and Bifurcations of Non-Smooth Mechanical Systems[END_REF].

At the beginning the emphasis was put on comparing the performance of the method developed with a penalty method employed in several state of the art commercial codes for similar problems of structural dynamics. In particular, a direct comparison was performed with results obtained by the MSC.Nastran code, where the contact was modeled by the CGAP element [START_REF] Msc | MSC/NASTRAN: User's Manual -Version 2005[END_REF]. This element is essentially a nonlinear spring acting in the normal direction of the common contact plane and has a different stiffness coefficient in compression than in tension. In general, the selection of the spring stiffness coefficients of this artificial element plays an important role and affects significantly the quality and the accuracy of the results obtained. In particular, Fig. 1 s. This is illustrated by the results presented in Fig. 1(c). However, this cure is based on a reduction of the original time step by an order of magnitude and leads to an analogous prolongation of the computation time and memory space needed, when compared with the new method developed.

Likewise, the results of Fig. 1(d) verify that a proper selection of A k can lead also to sufficiently accurate results, when the gap element is employed. However, the selection of the proper spring stiffness coefficient is a difficult task in the general case, since it depends strongly on the system characteristics.

Figure 1

From the time history presented in Fig. 1(d), it appears that the harmonically excited strongly nonlinear system examined settles eventually to a periodic steady state, after a sufficiently long integration time. In many cases, it is useful to capture the steady state dynamic response of a periodically excited mechanical system [START_REF] Craig | Structural Dynamics -An Introduction to Computer Methods[END_REF][START_REF] Nayfeh | Applied Nonlinear Dynamics[END_REF]. Some results along this line are presented in Fig. 2. In particular, the maximum and the minimum value obtained for the displacement at the right end of the beam structure examined is depicted for a selected set of forcing frequencies, lying within 0 and 100

Hz. The solid lines represent response obtained when the obstacle is present, while the dashed lines depict response obtained for the case where the right end of the structure is free to move. The results suggest that the obstacle absorbs a significant part of the mechanical energy within a relatively large frequency band surrounding the main resonance area. This means that the obstacle acts as an effective vibration absorber, in accordance with results presented in previous research work [START_REF] Masri | On the stability of the impact damper[END_REF][START_REF] Natsiavas | Dynamics of multiple degree of freedom oscillators with colliding components[END_REF][START_REF] Karyeaclis | Stability of a semi-active impact damper[END_REF].

However, within some range just outside this band, the response of the constrained system in the nonconstrained direction can actually become larger than that of the unconstrained system. Moreover, for forcing frequency greater than about 75 Hz, the results obtained from the structure with the free and the constrained right end coincide. This is expected, since in that frequency range the free end displacement is small enough, so that no contact occurs between the structure and the obstacle.

Figure 2

In closing the presentation of the numerical results for the first example, it is worth clarifying that there exist two factors leading to dissipation of the mechanical energy for the class of systems examined. The first is related to the existence of viscous damping forces, represented by the damping matrix C in the equations of motion. Moreover, an additional factor is associated with the occurrence of the impacts, which are assumed to be plastic [START_REF] Leine | Dynamics and Bifurcations of Non-Smooth Mechanical Systems[END_REF].

Results for an elastic spherical shell

A c c e p t e d m a n u s c r i p t -13 -

The second example model is a linearly elastic spherical shell, with a radius of 50 mm and a thickness of 1 mm. This shell is dropped from a given height and bounces on a rigid ground, as shown in Fig. 3(a), under the influence of gravity. The geometry is discretized by appropriate shell finite elements, leading to a model with 516 degrees of freedom. Moreover, the corresponding LCP has a maximum dimension of 100, since there exist 20 potential contacting nodes between the shell and the ground.

Originally, the study focused on the effect of the shell material properties on the response. In particular, the results of Fig. 3(b) were obtained by assuming that the shell is made of steel, with the same material properties as in the previous example. Likewise, the results of Fig. 3(c) were obtained for a rubber shell, with elasticity modulus 4.0×10 6 N/m 2 , Poisson's ratio 0.45 and mass denstity 1250 kg/m 3 . The continuous and dashed lines in these figures present the history of the vertical displacement of the lowest point and a neighbouring point of the shell, respectively. First, the results of Fig. 3(b) indicate that the steel shell is stiff enough, so that the contact area is relatively small and as a consequence the selected neighbouring to the lowest point never touches the ground. On the other hand, the results of Fig. 3(c) illustrate that both the lowest and the neighbouring point touch the ground, over relatively large intervals of time. In fact, there are instances where the neighbouring point is in touch with the ground, while at the same time the lowest point has been detouched from the ground. Moreover, since the contact intervals are large, the same results also demonstrate that a much larger loss of mechanical energy takes place in the case of the rubber shell. As an immediate consequence, both the amplitude and the duration of the phenomenon diminish much more quickly than in the case of the steel shell.

Similar results were also obtained for the same shell structure but with different material properties.

These results verify the validity and effectiveness of the method developed in capturing dynamic effects related to unilateral contact phenomena with relatively short or long duration. This is worth mentioning, especially in view of the fact that the example considered could not be solved by employing the gap element formulation and running MSC.Nastran, since no convergence could be achieved. On the other hand, the method developed proved to be quite robust. For instance, Fig. 3(d) presents results obtained for a spherical shell possessing material properties corresponding to values which are intermediate to the steel and rubber values employed before. The results illustrate the convergence obtained by employing three different sizes of the time integration step t Δ in the calculations. Obviously, the results obtained exhibited qualitatively similar trends in all cases examined. What is more important, however, is the fact that no sign of numerical instability was detected even for relatively large values of the time step. Of course, a large value of the time step leads to a poor accuracy in the numerical results. However, the fact that no undesirable instability occurs even for large time steps is a good numerical feature, since this gives the opportunity to the analyst to rerun the calculations and improve the accuracy by decreasing the time step. Finally, another good
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-14feature of the method is related to the numerical convergence, which is achieved indeed after reducing gradually the time step to an appropriate value.

Results for an elastic solid block

The level of complexity was raised further in the next example, where friction effects were also included in the formulation, in addition to impacts. Here, an elastic solid block, with a length of 20 mm, a width of 20 mm and a height of 10 mm, is dropped from rest at a height and hits a rigid ground, as shown in Fig. 4(a). The material of the block is steel, with the same material properties as in the first example. Originally, the block is discretized by four solid (8-node hexahedral) finite elements, leading to a mechanical model with 54 degrees of freedom and involving 45 potential unilateral constraints. At the same time, a horizontal harmonic forcing is applied on one side of the block, as indicated by the arrows in Fig. 4(a), activating friction phenomena during contact of the block with the ground.

First, Fig. 4(b) depicts results obtained for the vertical displacement of a node of the block that eventually comes in contact with the ground, when the block is dropped from two different initial heights. Clearly, the block rebounds on the ground a number of times and then stays in contact with the ground permanently, in both cases. As expected, the larger the original height of drop the longer the duration of the vertical rebounds of the block. Moreover, the rate of loss of mechanical energy seems to be larger here than in the spherical shell examined in the previous example.

The results presented next help the efforts of investigating the effect of the coefficient of friction, say μ , between the block and the ground on the horizontal motion of the block. More specifically, Fig. 4(c) depicts the horizontal displacement of the same node in the bottom of the block as a function of time, for five different values of the coefficient of friction. The results demonstrate that for sufficiently small values of this coefficient, the friction force developed between the block and the ground is not big enough to cause sticking of the block on the ground. However, after a critical value of μ (around 0.2 here), the displacement history examined starts exhibiting finite time intervals where the block sticks temporarily to the ground. Moreover, the larger the value of μ the larger the duration of the time intervals where the block sticks to the ground, as expected. At the same time, it is also clear that an increase in the value of μ causes a reduction in the amplitude of the motion. At this point, it is worth mentioning that the last example could not be solved by employing the MSC.Nastran formulation, again, since no convergence could be achieved, as in the spherical shell example.

Figure 4

Results for an experimental vehicle structure

The last example model, shown in Fig. 5, has a much bigger original dimension than the previous three examples. It represents a prototype vehicle structure used in earlier experimental studies [START_REF] Giagopoulos | Hybrid (numerical-experimental) modeling of complex structures with linear and nonlinear components[END_REF].

Basically, it consists of a metallic frame supported on the ground by four spring/mass/damper units, simulating the action of the suspension and wheel subsystems, connected at four places as shown in Fig. 5. The frame has length 2.0 m, width 1.1 m, height 1.1 m and is modeled by finite elements with the same material properties as in the first example. Moreover, the wheels are represented by lumped masses, while the suspension subsystems possess linear stiffness and nonlinear damping properties.

More specifically, the damping force in the suspension subsystems was expressed in the form

| | ) ( 3 2 1 v c v c v c v f d + + =
, which includes both viscous and dry friction effects. In the last expression, the term v represents the relative velocity of the damper ends, while the constants 1 c , 2 c and 3 c were determined through measurements [START_REF] Giagopoulos | Hybrid (numerical-experimental) modeling of complex structures with linear and nonlinear components[END_REF]. However, the most important modeling aspect for this study is that the wheels are allowed to slide on or separate from the ground.

Figure 5

Originally, the vehicle structure examined was assumed to execute a steady state cornering maneuver [START_REF] Gillespie | Fundamentals of Vehicle Dynamics[END_REF]. Namely, it was forced to move on a circular path with a radius of 30 m, with a constant speed, in an anti-clockwise direction. Under such conditions, the system response can be obtained by essentially performing a static analysis. Some characteristic results are presented in the following set of figures.

First, in Fig. 6(a) are shown the magnitudes of the forces developed in the vertical direction between the four wheels and the ground, as a function of the vehicle speed. In the small speed range, the vertical forces in the front wheels are almost indistinguishable and the same is true for the rear To study this phenomenon in a better way, Fig. 6(c) presents a zoom at the right end of the diagrams included in Fig. 6(b), corresponding to the large values of the velocity spectrum. In addition, in order to make the investigation more complete, in Fig. 6(d) is shown the radial displacement of the wheels, within the same speed range. From the information extracted by the last two figures, it is clear that the wheel that first reaches the critical capacity in carrying a horizontal load is the front left wheel. This is in agreement with the results presented in Fig. 6(a), where it is obvious that this is the wheel carrying the smallest vertical load. Moreover, the front right wheel and the rear left wheel follow this trend, after just another small increase in the speed. Eventually, after another small increase in the vehicle speed, the motion becomes unstable. This occurs when the rear right wheel, which according to Fig. 6(a) carries the maximum vertical load, reaches its maximum horizontal load capacity.

Figure 6

In the final part of this study, the same vehicle structure was considered. Here, however, this structure was assumed to move with a constant horizontal speed over a straight path, having an irregular geometric profile. More specifically, a good quality (class B) profile was selected, according to relative ISO regulations [START_REF] Gillespie | Fundamentals of Vehicle Dynamics[END_REF]. In fact, the profile over a finite length of the road was first selected and this profile was then assumed to be repeated periodically. As a consequence, the vehicle is subjected to a periodic base excitation at its four wheels and the information presented next refers to the periodic steady state motion reached by the structure examined under these loading conditions. In all cases, the emphasis was placed in detecting and studying the effect of the separation that takes place between the wheels and the ground.

For instance, the thick line in Fig. 7 In order to examine the effect of the wheel separation from the ground on the dynamic response of the system examined, Figs. 7(c) and 7(d) depict one response period of the vertical displacement histories recorded at point A of the frame of the vehicle and at a selected point B in the roof, shown in Fig. 5. In particular, the solid curves represent results obtained by allowing separation of the wheels from the ground. On the other hand, the dashed lines correspond to results determined for a similar structural model, which does not allow separation of the wheels from the ground. First, a direct comparison of the results shows that the results follow a similar global trend in both cases. However, separation of the wheels from the ground leads to observable changes in the system response, even for the good quality road selected here. Moreover, the displacement history of the point B in the roof appears in a smoother form than the displacement history of point A, due to the frame structural action. Likewise, a comparison with the results of Fig. 7(a) illustrates that both of these displacement histories appear in a much smoother form than the wheel displacement. This is mainly due to the vibration isolation action of the suspension subsystems, which damps out the high frequency components of the time signals examined.

Figure 7

Finally, in an effort to throw some more light into the investigation of the dynamic response of the structural system examined, the corresponding acceleration histories, obtained for the same points of the frame and within the same time interval, are presented in Fig. observation, the effect of the higher harmonics is more pronounced in all the acceleration signals considered, as expected. Consequently, there are more observable differences in the response captured by allowing or excluding the separation of the wheels from the ground. This is more clear in the histories obtained at point A. In addition, the acceleration levels determined are much higher in the base than in the roof of the structural system examined.

Figure 8

In closing, it is worth mentioning that the last example is almost ideal in demonstrating the main advantages of the methodology developed. Namely, the system examined possesses a relatively large number of degrees of freedom associated with the flexibility of its structural components. More specifically, after the finite element discretization, which involves mainly a combination of shell and time of about 10,800 seconds was required in order to obtain the same results, when the complete finite element model was employed, instead. In fact, these differences become even bigger as the order of the original model increases. Among other things, these results demonstrate also that the direct integration methodology developed can provide a solid basis to more systematic prediction and investigation of the response of large order nonlinear systems with unilateral constraints. One such area is the direct prediction of the long time response and stability of periodically excited non-smooth systems, by extending similar methodologies developed for smooth systems [START_REF] Nayfeh | Applied Nonlinear Dynamics[END_REF][START_REF] Fey | Long term structural dynamics of mechanical systems with local nonlinearities[END_REF][START_REF] Chen | Coupled lateral-torsional vibration of a gear-pair system supported by a squeeze film damper[END_REF].

Summary

Α computationally efficient methodology has been developed for determining dynamic response of finite element models, obtained in classical Structural Dynamics applications and involving multiple unilateral contact and dry friction constraints. The basic idea was to combine classical approaches employed for the direct integration of mechanical systems possessing smooth nonlinearities with relative recent developments in the area of non-smooth dynamics. Moreover, in order to achieve this objective in case of large scale models, an appropriate coordinate reduction method was applied first, leading to elimination of a substantial number of the original degrees of freedom associated with structural deformability. More specifically, application of this method leads to an equivalent reduced system, whose dimension depends on the frequency content of the external loading and the number of the potential contact points of the system. The validity of the methodology developed was first confirmed by presenting numerical results for some selected finite element models. It was also shown that the method developed can be employed in order to capture the dynamic response of the general class of systems examined in an accurate and computationally efficient manner. Moreover, it was demonstrated that this method presents some significant computational advantages compared to a common methodology employed by current state of the art numerical codes for modeling unilateral constraints. Besides numerical convergence, the method developed exhibited remarkable robustness characteristics. At the same time, the results presented illustrated the effect of some important parameters of the models examined, including material properties, coefficient of friction and size of the time step and the finite element mesh. 

  smooth forces imposed by the interconnecting elements. Finally, the term ) (t f includes the externally applied forces.
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 7 mathematical problem examined requires that the equations of motion (5) are complemented by constitutive laws describing the action along the normal and tangential direction at the contact points. In the present work, in order to treat the unilateral forces developed due to contact and friction within the same theoretical framework, the set-valued Signorini and Coulomb friction laws are selected, respectively, as explained next.

  of the corresponding displacement and constraint force vectors, evaluated at the end of the current time step 1 + j t . Then, by considering the last set of equations, the force quantities

  the LCP, represented by Eq. (20), yields first the quantities N Λ and T Λ .

4 A

 4 (b) shows results obtained for a gap element of 1 mm, zero stiffness coefficient in tension ( different values of the stiffness coefficient in compression, A k . Moreover, the continuous line represents results obtained by applying the present method. Direct comparison indicates that the results obtained by the present method are more accurate and reliable than those obtained by employing the gap element. Specifically, relatively small values of A k lead to interpenetration between the beam end and the obstacle. On the other hand, selection of large values of A k avoids interpenetration phenomena but leads to severe numerical instabilities, leading to divergence of the solution.The numerical instabilities observed in the previous figure for the relatively large value of A k can be removed after selecting a much smaller time step than the original, which was selected as t Δ =10 -

Finally, the results of Fig. 4 (A c c e p t e d m a n u s c r i p t - 15 -

 415 d) illustrate the effect of the block deformability on the response determined by considering a more involved finite element model than the one employed up to now.More specifically, a new mesh, with 256 solid finite elements was created for the same block, leading to a model with 1215 degrees of freedom and 425 unilateral constraints. In Fig.4(d) a comparison is performed between the history determined for the horizontal displacement of the same node of the block by the two different finite element models. These results were obtained for μ = 0.5 and show that even the predictions of the coarser finite element mesh capture the main response trends in an accurate manner.
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 16 wheels. Also, these forces have a somewhat greater magnitude in the rear wheels, due to the mass distribution of the structure examined. However, as the speed increases, some differences start becoming noticeable between the vertical ground forces on the left and the right wheels. More specifically, the vertical forces applied on the right (outer) side of the vehicle become gradually bigger than the vertical forces developed on the left (inner) side due mainly to the action of the centrifugal force developed during the motion. At the same time, in Fig.6(b) is provided similar information related to the magnitude of the radial forces applied from the ground to the wheels, within the same speed range. Clearly, the magnitude of these forces exhibits a parabolic dependence on the speed, as expected. Moreover, when the vehicle speed reaches a critical value, the results indicate that a lateral (sliding) instability occurs.
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 17 (a) represents the geometrical form of the road profile segment selected for the front left wheel, over an excitation period. On the other hand, the thinner broken line in the same figure represents the vertical displacement of the corresponding wheel. To enhance the clarity of the results, in Fig.7(b) a zoom of the same diagram is included, covering a smaller time interval, which is enclosed by the vertical lines in Fig.7(a). Obviously, the results demonstrate that there exist several time intervals where the wheel considered looses contact with the ground. Similar behavior was also exhibited by the other wheels, too.

8 .

 8 More specifically, the acceleration histories obtained at point A by employing the same structural model and by including or excluding the separation of the wheels from the ground are shown in Figs. 8(a) and 8(b), respectively. Likewise, similar time signals are included in Figs. 8(c) and 8(d), obtained at point B. As a first general
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 18 solid elements, the resulting model possesses more than 49,000 degrees of freedom. Since this number is quite large, a coordinate reduction methodology was applied, leading to an equivalent dynamical model with only 147 degrees of freedom. As a consequence, the results shown in Figs.7 and 8were obtained by running the reduced model for 38 seconds of CPU time only. On the other hand, a CPU

Fig. 1 .

 1 Fig. 1. Beam-like cantilever thin structure with a rigid obstacle: (a) deformed geometry; (b) comparison with MSC.Nastran; (c) elimination of numerical instabilities by decreasing the time step and (d) cure of numerical problems by a proper choice of the stiffness coefficient in compression.

Fig. 2 .

 2 Fig. 2. Frequency-response diagram for the displacement at the right end of the structure.
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 2234 Fig. 3. Elastic spherical shell bouncing on rigid ground: (a) deformed geometry; (b) history of vertical displacement of a steel shell; (c) history of vertical displacement of a rubber shell and (d) effect of time step size on accuracy and convergence.
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 245 Fig. 5. Prototype vehicle structure.

Fig. 6 .

 6 Fig. 6. Vehicle performing steady state cornering: (a) magnitude of vertical forces on the wheels as a function of speed; (b) magnitude of horizontal (radial) forces on the wheels as a function of speed; (c) vertical forces on the wheels in the large speed range and (d) radial (sliding) displacement of the wheels.
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 257 Fig. 7. (a) Vertical displacement of the front left wheel (thin broken line) and corresponding road profile (thick line). (b) Zoom of Fig. 7(a). (c) Vertical displacement history at point A in the base of the frame. (d) Vertical displacement history at point B on the roof of the frame.
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 268 Fig. 8. Vertical acceleration history at: (a) and (b) point A in the base of the frame; (c) and (d) point B on the roof of the frame.
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