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On the modelling of highly elastic flows of amorphous thermoplastics  
 
 
Łukasz Figiel∗ and C. Paul Buckley 
Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, UK  
 

 

Abstract  
Two approaches to the kinematic structuring of constitutive models for highly elastic 

flows of polymer melts have been examined systematically, assuming either: (1) 

additivity of elastic and viscous velocity gradients, or (2) multiplicability of elastic and 

viscous deformation gradients. A series of constitutive models was compared, with 

differing kinematic structure but the same linear responses in elastic and viscous limits. 

They were solved numerically and their predictions compared, and they were also 

compared to those of the Giesekus model. Several variants, previously proposed as 

separate models, are shown to be equivalent and qualitatively in agreement with 

experiment, and therefore a sound basis for construction of models. But the assignment of 

viscous spin is critical: if it is assumed equal to the total spin with approach (1), or equal 

to zero with approach (2), then unphysical viscoelastic behaviour is predicted.  

 

Keywords: viscoelastic flow; thermoplastic polymers, constitutive model; finite strain. 

 

1. Introduction  

Industrial forming processes for thermoplastic polymers frequently involve large 

deformations in a time/temperature range where flow is highly elastic. Physically, this 

arises from the great lengths of the molecules. All molecules with molar mass M larger 

than a monomer-specific critical value Me, are topologically constrained by their 

neighbours, linking them into a continuous molecular network even in the molten state – 

that is, when they are amorphous and above the glass transition temperature Tg. 

Connectivity is provided by molecular entanglements. Such a network has an elastic, 

rubber-like, constitutive response when unrelaxed. It can relax fully, but only by the 

                                                 
∗ Corresponding author. Tel.: +44 1865 283487; fax: +44 1865 273 906. E-mail address: 
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tortuous process of molecular disengagement that has come to be known as “reptation”, 

with an associated relaxation time τd. Industrial polymers usually have M>>Me, and τd ∝ 

(M÷Me)β where β ~ 3.4 (Ferry, 1980), so relaxation times are exceptionally long 

compared to other viscoelastic liquids. Moreover, economic necessity requires industrial 

forming processes for polymers to be as rapid as possible. Consequently polymers are 

frequently melt-processed on time scales not far below τd.  

In such flows, elastic stretch of the entanglement network is only partially 

relaxed. This is especially true of processes such as stretch-blow moulding and 

thermoforming of sheets where substantial elasticity of the melt is advantageous to 

stability of the process. Network stretch, and hence mutual alignment of the molecules, is 

also an essential requirement for stress-induced crystallisation (e.g. during blow-

moulding of polyester bottles or spinning of polyamide fibres). Moreover, the complexity 

of nonlinear viscoelastic material behaviour is often combined with large-scale 

geometrical nonlinearity. An example of this is the finite rotation encountered when the 

flow has a large shear component, for example around rigid particles in modelling of the 

forming of particulate-reinforced polymers.  

This paper is motivated by the engineering need to model highly elastic polymer 

flows, in a manner suitable for optimisation in the context of numerical simulation of 

polymer processes. Clearly, numerical modelling of such processes requires a constitutive 

model that is robust under arbitrarily large deformations and in the presence of a high 

degree of elasticity. The question of how best to achieve this remains a matter of dispute. 

A particular difficulty is that solutions have been proposed in two different branches of 

the literature – solid mechanics and fluid mechanics – and hence it has been unclear how 

they are all related. The present note aims to clarify the issues, and assist the development 

of suitable constitutive models, by comparing systematically the kinematic assumptions 

embedded in various approaches, and highlighting how they are related.  

Previous authors attempting to capture accurately, but empirically, highly elastic 

flows of amorphous polymers have adopted a range of strategies. Some have ignored the 

problem altogether and have approximated the polymer response as wholly viscous 

(G’Sell and Jonas, 1979; Chevalier and Marco, 2007) or wholly elastic but with rate and 

temperature-dependent parameters (Sweeney et al. 1995; Matthews et al. 1997). While it 
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is possible to fit experimental data for a given monotonic strain sequence in this way, it is 

clearly impossible to capture an arbitrary deformation history with such approaches. 

Other authors proposing finite deformation viscoelastic models, in view of the lack of 

experimental evidence for how the antisymmetric part of the velocity gradient (i.e. the 

spin) should be apportioned between viscous flow and elastic deformation, have 

cautiously declined to speculate on this point and their proposed models are incomplete 

in this respect (Vigny et al. 1999; Adams et al. 2000; Dooling et al. 2002; Makradi et al. 

2005).  

Those authors that have proposed complete three-dimensional models have 

adopted one of three approaches. One group have employed models based on additive 

split of the rate of deformation tensor (Nemat-Nasser, 1979, 1982) together with the 

assumption of zero viscous spin (Leonov, 1976). Another group assumed multiplicative 

decomposition of the deformation gradient (Kröner, 1960; Lee, 1969), together with a 

particular, convected, interpretation of the viscous velocity gradient and the assumption 

of zero viscous spin (Boyce et al. 2000; Dupaix and Boyce, 2007; Drozdov et al. 2008). 

Finally, several authors have employed models expressed in terms of convected 

derivatives of stress, such as the upper convected Maxwell model (UCM), see for 

example Poitou et al. (2003), or the more robust Giesekus modified UCM or a finite 

extensibility adaptation of it (Doufas et al. 2000). In addition, the literature provides a 

number of physically based models with similar structure, that quite successfully capture 

polymer melt viscoelasticity under a wide range of conditions. An attractive feature of 

these is that they embody awareness of molecular architecture. Examples are the Pom-

Pom model (McLeish and Larson, 1998) for branched molecules and the Rolie-Poly 

model (Likhtman and Graham, 2003) for linear molecules. However these do not yet 

capture accurately the highly elastic extensional flows of interest here, without empirical 

extensions. For authoritative reviews of polymer melt constitutive models to date, and 

their links to molecular structure, the reader is referred to Larson (1988) and Dealy and 

Larson (2006).  

The present paper considers classes of constitutive models that may be 

conveniently fitted to experimental data under relevant conditions. These models are 

kinematically structured a priori to capture naturally the geometrical nonlinearity, before 
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insertion of a description of the physical response, that may be either empirical or 

physically-inspired. Two approaches to their kinematic structure are compared in this 

work: (1) approach I is based on additive decomposition of the velocity gradient tensor, 

while (2) approach II is based on multiplicative decomposition of the deformation 

gradient tensor. In order to highlight the consequences of purely geometric non-linearity 

arising from different kinematic assumptions made, models considered here based on 

each approach are linear in both the elastic and viscous limits. Thus elastic response is 

taken to be neo-Hookean, while viscous response is taken to be Newtonian.  

The Giesekus model provides a convenient bench-mark, as its variable parameter 

α  ( 0 1α≤ ≤ ) allows several models to be recovered from a single equation. 

 

2. Approaches  

Consistent with the aim of modelling highly elastic flows where stresses may be 

sufficient for detectable volume change to occur, in the models considered here there is a 

reversible volumetric contribution to the deformation gradient. Thus we begin with a 

multiplicative decomposition of the deformation gradient F  into its volumetric ( volF ) 

and isochoric ( F̂ ) parts (Flory, 1961)  

vol
ˆ=F F F , where 

1
3ˆ −

= JF F , and det=J F . 
(1) 

J is the volume ratio. The viscoelastic response is then all contained within the isochoric 

part of the velocity gradient F̂ . Its corresponding left Cauchy-Green tensor and velocity 

gradient, and the latter’s symmetric (deformation rate) and skew-symmetric (spin) parts 

are defined by  

Tˆ ˆ ˆ=B FF ; -1ˆ ˆ ˆ
•

=L F F , and ˆ ˆsym ⎡ ⎤= ⎣ ⎦D L , and ˆ ˆskew ⎡ ⎤= ⎣ ⎦W L . 
(2) 

In order to avoid unnecessary complexity, we now restrict attention to only those 

materials whose response to volume change is purely elastic (a good approximation in the 

case of elasto-viscous polymer melts). In the two limits of fast (elastic) deformation, or 

slow (viscous) deformation respectively, the deviatoric Cauchy stress may then be written 

ˆˆ ˆ ( , )= B Jσ σ , or ˆˆ ˆ ( , )= D Jσ σ   (3) 
respectively, where the two functions must be determined by experiment. In the general 

case of an intermediate rate (viscoelastic) deformation, we assume that “elastic” and 
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“viscous” deformation gradients exist, EF̂  and VF̂ , such that the instantaneous Cauchy 

stress is given in terms of the left Cauchy-Green tensor and the rate of deformation 

derived from them respectively, thus 

E
ˆˆ ˆ ( , )= B Jσ σ , and V

ˆˆ ˆ ( , )= D Jσ σ . (4) 

Completion of a three-dimensional constitutive model requires knowledge of how EB̂  

and VD̂  are related to F̂ .  

 

2.1 Approach based on additive decomposition of the velocity gradient (Approach I) 

In this approach, additive decomposition of the isochoric velocity gradient  L̂  into elastic 

 I
EL̂  and viscous  I

VL̂  parts is assumed a priori  

  I  I
E V

ˆ ˆ ˆ= +L L L , hence  I  I
E V

ˆ ˆ ˆ= +D D D  and I I
E V

ˆ ˆ ˆ= +W W W , (5)  

where superscript I is introduced to distinguish elastic and viscous quantities from their 

counterparts in approach II presented in the next section. The second of Eq. (5) expresses 

the additivity of rates of deformation proposed by Nemat-Nasser and others, where I
VD̂  is 

defined by a flow rule (see Section 3).  

There is no attempt to attribute precise physical meaning to  I
EF̂  and  I

VF̂  in terms 

of macroscopic response. In terms of polymer physics, I
EF̂  relates to molecular chain 

configurations, whose perturbation from equilibrium at any instant gives rise to the 

entropic stress dependent on I
EB̂ . To exploit Eq.(5), we make use of the following 

kinematic identity for the time derivative of I
EB̂  with respect to a fixed reference frame  

( )( ) ( )T T I  I  I  I  I  I  I
E E E E E E E

ˆ ˆ ˆ ˆ ˆ ˆ ˆ +
• •

B = F F = L B B L , 
(6) 

where superscript T denotes the usual transpose, and the definition of the co-rotational 

(Jaumann) derivative of  I
EB̂   

 I  I   I  I  
E E E E

ˆ ˆ ˆ ˆ ˆ ˆ +   
•

≡  −
D

B B W B   B W .  
(7) 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

There is no means of completing the model rigorously. An assumption must be made 

concerning apportionment of spin Ŵ  between elastic and viscous parts of the velocity 

gradient, in the third of Eq.(5). Here we consider two possible cases: 

(i) Case 1: We follow Giesekus’ plausible physical argument for polymers that  I
VL̂  must 

be an inner variable of the configurational state, as expressed by symmetric tensor I
EB̂ , 

and hence must itself be symmetric, giving  I
V

ˆ =W 0  (Giesekus, 1982). Hence, it follows 

from Eq.(5) that  I  
E

ˆ ˆ=W W . Then, combining Eqs.(6)-(7) with the a priori assumption 

Eq.(5) gives   

( ) { } { } I  I  I  I  I   I  I  I  I
E E E E E V E E V

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ +  + = = − −
D  B D  B  B D D D B  B D D .  (8) 

We shall refer to Eq. (8) as the Leonov equation after its original proposer (Leonov, 

1976). When constitutive representations are provided for I
VD̂  and I

EB̂  in terms of σ̂ , Eq. 

(8) may be integrated to obtain the evolution of stress for a given deformation history. 

This approach has been used by Tervoort et al. (1998) in modelling elastic-viscoplastic 

deformation of glassy polymers.  

(ii) Case 2: We assume that  I
E

ˆ =W 0 , hence I  
V

ˆ ˆ=W W  and Eq.(8) is replaced by  

( ) { } { } I  I  I  I  I   I  I  I  I
E E E E E V E E V

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ +  + 
•

= = − − B D  B  B D D D B  B D D .  (9) 

 

2.2. Approach based on multiplicative decomposition of the deformation gradient 

(Approach II)  

An alternative approach begins with the a priori presumption of multiplicative 

decomposition of the total isochoric deformation gradient. Thus, following Kröner 

(1960), Lee (1969) and many other authors  

II II
E V

ˆ ˆ ˆF = F F .  (10) 

A physical interpretation of Eq.(10) is that, at any instant, II
VF̂  is the permanent 

deformation that would remain on removal of the stress. In this case, kinematics gives the 

isochoric part of the velocity gradient as follows:  
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( ) ( ) ( )
( ) ( ) ( ) ( )

-1 -1  II II II II
E V E V

-1 -1 -1 -1II II II II II II II II II II
E E E V V E E E V E

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ              

• •

• •

=

= + = +

L = F F = F F F F

F F F F F F L F L F
  

(11) 

Then, we may extract the elastic part of the isochoric velocity gradient  

( ) 1 II  II II II
E E V E

ˆ ˆ ˆ ˆ ˆ −
−L = L F L F ,  (12) 

and use it to determine the elastic part of the deformation gradient by solving the 

differential equation for II
EF̂   

  
 II   II  II  II

E E E V
ˆ ˆ ˆ ˆ ˆ
•

−F = L F F L ,  
(13) 

to finally obtain the elastic part of the left Cauchy-Green tensor  

( )T II  II  II
E E E

ˆ ˆ ˆB = F F ,  (14) 

and hence the stress σ̂ . Again, we find this cannot be completed rigorously, since II
VL̂  

appears in Eq.(13) but only its symmetric part II
VD̂  is defined by the flow rule (see the 

next section). Once again, a decision is required on how to calculate the spin contribution 

to  II
VL̂ . There exist some physically-based constitutive expressions for II

VŴ  in the case of 

crystal-plasticity (see e.g. van der Giessen, 1991), but physics alone provides no similar 

expressions for amorphous polymers. Hence, an assumption must be made concerning 
II

VŴ . Here we consider three cases, proposed by different authors for different situations.   

(i) Case 1: We assume the viscous part II
VF̂  of the deformation gradient is symmetric, 

hence it follows that II
VŴ =0, and  

II II
V V

ˆ ˆ=L D .  (15) 

This is one of the cases considered by Boyce et al for describing elasto-plastic flow of 

glassy polymers (Boyce et al. 1989). 

(ii) Case 2: We assume the elastic part II
EF̂  of the deformation gradient is symmetric, 

( )TII II
E E

ˆ ˆF = F  (Dafalias, 1987; Boyce et al., 1989; Reinhardt and Dubey, 1998). Then the 
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components of inelastic spin, expressed with respect to the principal axes of elastic 

stretch, can be shown to be  

{ }
II II
(E) (E)II II

(V) (V) II II
(E) (E)

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ
−

= − +
+

M N
MN MN MN MN

M N

W W D D
λ λ
λ λ

,  
(16) 

where II
(E)

ˆ
M,Nλ  (M,N = 1..3) are the eigen values of the elastic left stretch tensor II II

E E
ˆ ˆ=V F  

in this case.  

(iii) Case 3: A convected viscous velocity gradient II
V
�̂L  is defined, and assumed to be 

symmetric  

The corresponding rate of deformation tensor II
V
�̂D  is chosen to be constitutively 

prescribed in terms of stress. Then, again, II
EF̂  may be found by integration of its 

derivative via Eq.(12)  

( )II   II II
E V E

ˆ ˆ ˆ ˆ
•

− �F = L D F  
(18) 

and from this II
EB̂  and the stress σ̂  may be calculated. This approach was employed by 

Boyce et al. (2000), Dupaix and Boyce (2007) and Drozdov et al. (2008), when 

modelling highly elastic flows of polymer melts.  

An interesting feature of Case 3 may be seen by using the transpose of Eq.(18) 

and Eq.(18) itself, to compute the time derivative of II
EB̂  and hence  

{ } { }II II II II II II II II II
E E E E E V E E V

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ +  + = = − −
D � �B D  B  B D D D B  B D D .  

(19) 

Eq.(19) is close to Eq. (9) of approach I - case 1: the only difference is that II
V
�̂D  replaces 

II
VD̂ . 

 

 

 

( )-1 II II II II II
V E V E V

ˆ ˆ ˆ ˆ ˆ≡ =� �L F L F D .  (17) 
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3. Constitutive model 

3.1. Linear viscoelastic model to study approaches 1 and 2  

To expose the effects of different kinematic assumptions in the approaches outlined  

above, we consider the case of a hypothetical isotropic material that behaves physically 

as a  compressible neo-Hookean solid in the elastic limit and a Newtonian fluid in the 

viscous limit. Then the Cauchy stress is related to J, I
EB̂  (or II

EB̂ ) and  I
VD̂  (or II

VD̂ , or 

 II
V
�̂D ) as follows: 

{ }I,II
m E

ˆˆ= log+ = + −GK J
J

σσ 1 σ 1 1B ,  
(20) 

I,II II
V V

ˆ ˆˆ ˆand 2    or   2    (approach 2 - case 3 only)= = �η ηD Dσ σ  , (21) 

where mσ , K and G are the mean stress, bulk and shear modulus respectively; η is the 

Newtonian shear viscosity; 1 is the second-order identity tensor. Such a viscoelastic 

material has a characteristic time constant / Gτ η= . 

 

3.2. Reference model – the Giesekus model  

The particular constitutive model due to Giesekus (1982) provides a convenient 

benchmark for comparison of the approaches presented above. It is widely-used in 

describing polymer melt behaviour, where large elastic strains and rotations are present. 

In elastic and viscous limits it is neo-Hookean and Newtonian respectively, consistent 

with the material model described above. The Giesekus model is expressed in terms of 

the upper convected (Oldroyd) time derivative (Oldroyd, 1950; Giesekus, 1984) of the 

stress tensor, and in compressible form is  

 ˆ ˆ ˆˆ ˆ 2
G

∇ ⋅JJ ατ ησ σσ σ  +    +    =  D , where =
G
ητ  

(22) 

  
Tˆ ˆˆ ˆ ˆ ˆ  

∇ •
= −σ σ σ   −  σL L   

(23) 

ˆ log K Jσ 1 σ=   +  , (24) 

The adjustable parameter α is helpful in fitting experimental data in the viscoelastic 

regime. The limit α = 0 corresponds to the upper convected Maxwell model (UCM). But 
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the UCM is well-known to have several weaknesses when compared to experimental data 

for polymer melts (Larson, 1988). Several of these are side-stepped by taking 0α > . For 

example, unphysical stress growth at high rates of extensional flow is avoided*, and the 

observed stress overshoot in start-up shear flows is predicted naturally. Interestingly, the 

case α = 1 can be shown to be identical to the Leonov equation combined with the model  

in Section 3.1 – see Appendix A.  

 

4. Case studies and discussion  

The behaviours of the various models were compared by means of a number of case 

study simulations. For that purpose a series of constitutive models based on each of the 

approaches I and II outlined above, together with Eqs. (20) and (21), were implemented 

as user-defined material subroutines, and solved numerically using the FEM-based 

package (ABAQUS/Standard) for a single element, as a convenient solver. The simple 

Euler method was used to calculate the elastic part of the deformation gradient from the 

rate equation provided by each kinematic approach. The Giesekus model (Eqs (22) – 

(24)) was implemented similarly. Table 1 contains the numerical values of model 

parameters employed throughout. The specific values were measured in a recent study of 

poly(ethylene terephthalate) in the authors’ laboratory, in the temperature region 

characteristic of industrial processes such as thermoforming of sheets and injection 

stretch-blow moulding of bottles. They are typical of amorphous thermoplastic polymers 

in highly elastic flows at temperatures above the glass transition.  

Table 1. Model parameters 

Property Value 
Bulk modulus K 1.8 GPa 
Shear modulus G 3.29MPa 
Viscosity η 16.5 MPa s 
 

                                                 
* The UCM predicts that no steady state flow can be achieved in uniaxial extension, for true strain-rates 
greater than 1/2τ. 
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From Table 1, the time constant in all cases was τ = 5.0 s. Two loading conditions were 

considered: (1) uniaxial elongation at constant extension rate, and (2) simple shear at 

constant shear rate.  

Figure 1 shows the example of uniaxial extension in the 1-direction (horizontal), 

at an extension rate of 0.4 s-1. In this case no rotations are expected. Hence, approaches I 

and II (cases 1 and 2) gave identical predictions. As expected from Eq.(19) and Appendix 

A, approach II – case 3 and the Giesekus model for α=1.0 coincide with predictions of 

approach I – case 1, and hence they are not shown in Figure 1 and subsequent figures. 

Predictions made with the Giesekus model and lower values of α agree only up to applied 

extensions ∼ 1. The exaggerated prediction of stress for the UCM case (α = 0) is clearly 

in evidence. Figure 2 shows the predicted stress plotted as extensional viscosity 

11 /σ ε� versus time (with logarithmic scales) for three extension-rates 0.04, 0.4 and 4 s-1. 

At the highest rate the UCM case reveals unphysical growth of stress, for which it is 

well-known (Larson, 1988). An obvious conclusion is that approaches I (all 2 cases) and 

II (all 3 cases), and the Giesekus model with α = 1 can be used interchangeably when no 

rigid body rotation is involved.  

To discriminate between the approaches, simple shear tests in the 1-2 plane were 

simulated, with displacement in the 1-direction. Predictions of shear stress for a shear rate 

of 0.4 s-1 are shown in Figure 3. Interestingly, discrepancies (similarities) between some 

cases of approach I and II now appear, depending on the definition of the inelastic spin. 

All approaches and models agree up to applied shear γ ∼ 1. Then, approach I – case 2 

does not predict the stress overshoot, observed experimentally (Larson, 1988), and 

follows to some extent the Giesekus model with α = 0.0. Further, approach II - case 1 

predicts a rapid increase of shear stress, failing to converge on a steady state, and hence at 

variance with experimental observations. Interestingly, approach II - case 2 recovers the 

results of approach I. In fact, it can be shown analytically (see Appendix B), that 

approach II - case 2 is equivalent to approach II - case 3 (identical to approach I – case 1) 

in the case of simple shear. However, this situation might not hold in general, e.g. if the 

uniaxial tension and shear are superimposed.  
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Another comment might be made in relation to approach II – case 2 . The off-

diagonal components of II
(V) 

ˆ
MND  (Eq.(16)) are zero since II

(V) D̂  is determined from a flow 

rule using a stress tensor (see Eq.(21)), which becomes diagonal when transformed to the 

axes of  II
(E)

ˆ
M,Nλ . Hence,  II

(V) 
ˆ

MNW  is unaffected by  II
(V) 

ˆ
MND  and Eq.(16) provides the  same 

results as the approach proposed for elastic-plastic deformation of metals by Reinhardt 

and Dubey (1998), provided that their modified spin *
VŴ  satisfies * II

V V
ˆ ˆ=W W . 

Hence, approach I – case 1 (and the identical approach II – case 3, and Giesekus 

model with α = 1), along with approach II - case 2, all show a stress overshoot before 

arriving at the steady state, as observed experimentally (Larson, 1988).  

Also of interest in relation to simple shear deformation are the normal stresses 

that accompany it. The first normal stress difference is defined 1 11 22N σ σ= − . This 

difference is frequently measured for polymer melts and gives rise to a force that tends to 

separate (or pull together) the shearing plates in a simple shear experiment. Here N1 is 

predicted to be positive, in agreement with experiment, and hence it tends to push apart 

the shearing plates. Typical experimental data show a steady-state being reached, 

preceded by an overshoot at highest strain rates (Larson, 1988). As shown in Figure 4, 

approach I – case 1 (and the identical approach II - case 3 and the Giesekus model with α 

= 1) and also case 2 of approach II agree qualitatively with experiment. However, it may 

be seen that a zero value of N1 is obtained (i.e. 11 22=σ σ ) with approach I – case 2 (i.e. 

I
E

ˆ =W 0 ), and also no steady-state is reached using approach II - case 1 (i.e. II
V

ˆ =W 0 ). 

Hence, again we see the critical importance of the assignment of viscous spin if approach 

I and approach II are to be employed. Predictions of the Giesekus model with α = 0 and 

0.5 are shown in Figure 4 for completeness. They show the correct qualitative trend, 

differing in the magnitude of N1 predicted.  

The predicted second normal stress difference 2 22 33N σ σ= −  is shown in Figure 

5. Again approach I – case 1 (identical approach II – case 3 and the Giesekus model with 

α = 1) and approach II – case 2 predict correctly the observed trend of tending towards a 

steady (in this case, negative) value. And again approach I – case 2 and approach II - case 

1 shows an unphysical divergence of stress, and moreover its sign is predicted to be 
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positive, at variance with experiment. The Giesekus model again gives the correct trend, 

and shows a steady state value of N2 that is highly sensitive to α. The Giesekus model (α 

= 0) predicts N2 = 0, while α = 0.5 gives a steady state value 2 1 / 4N N−∼  typical of 

experimental data (Dealy and Larson, 2006).  

The variation of shear response with shear rate is shown in Figure 6 for three 

shear rates. approach I – case 1 (identical approach II – cases 2 and 3 and the Giesekus 

model (α > 0)) reproduce correctly the trends seen in experimental data: a stress 

overshoot that increases with strain-rate, and a steady-state viscosity that decreases with 

increasing strain-rate (i.e. shear-thinning) (Larson, 1988). It is worth emphasising the 

difference between the responses in shear and extension. Approach I – case 1, combined 

with the model of Section 3.1, is intrinsically Newtonian in steady-state uniaxial 

extension: the steady-state elongational viscosity is independent of extension-rate. But 

the same model shows a shear viscosity that decreases with increasing shear-rate. The 

difference is clearly a consequence of the finite rotations occurring during shear 

deformation and their absence during extension, and hence arises directly from the 

kinematic structure of the model. However, approach I – case 2 shows that in the 

presence of viscous spin, the shear viscosity will be over-predicted with increasing strain 

rate, as shown for 14s−=�γ  Figure 6 also includes the prediction for approach II case 1, 

but this can be seen to depart dramatically from the pattern observed experimentally, at 

all shear-rates. As may be seen, at the lowest rate, grossly unphysical behaviour is 

observed. Multiple simulations with varying time-step size confirmed that the wild 

divergence of predicted viscosity is a genuine feature of the model and not an artefact of 

the numerical integration of it. 

 

5. Conclusions  

Two approaches to the kinematic structuring of constitutive models for highly elastic 

flows of polymer melts have been examined systematically: assuming additivity of elastic 

and viscous velocity gradients, or assuming multiplicability of their deformation 

gradients. A series of constitutive models was compared, with differing kinematic 

structure but the same linear responses in elastic and viscous limits. They were solved 

numerically and their predictions compared, and they were also compared to those of the 
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Giesekus model. Differences between the approaches appear only in the presence of 

finite rotations. Three clear results emerge. 

 First, the approach of assuming additivity of elastic and viscous velocity 

gradients, and symmetry of the latter (i.e. approach I – case 1), produces viscoelastic 

response qualitatively in agreement with experiment. However, the same additivity 

assumption, but with a symmetric elastic velocity gradient (i.e. approach I – case 2) leads 

to unphysical predictions of the normal stress differences and sometimes shear flow 

thickening.  

 Second, the approach of assuming multiplicability of elastic and viscous 

deformation gradients, and symmetry of the viscous deformation gradient, (approach II - 

case 1) is not satisfactory: it predicts behaviour grossly at variance with experimental 

observations on polymer melts in shear flows, when the shear exceeds approximately 

unity. The predictions of shear stress and the first and second normal stress differences all 

show major errors.  

 Third, however, alternatives to approach II – case 1 assume: (1) symmetry of the 

elastic deformation gradient, which leads to a closed-form expression for the inelastic 

spin in principal axes of the elastic stretch (approach II - case 2), or (2) the viscous 

velocity gradient, when convected to the current configuration, is symmetric and 

constitutively defined by the viscous-limit flow rule (approach II - case 3). In both cases, 

the model is then indistinguishable from approach I – case 1 in uniaxial extension and 

simple shear. However, approach II – case 2 may not agree with approach I – case 1 in a 

general case, if e.g. extension and shear are superimposed. Furthermore, approach I – 

case 1 and approach II – case 3, when the elastic and viscous limits are neo-Hookean and 

Newtonian respectively, are indistinguishable from the Giesekus model with α = 1.  

 The major conclusion of this work is that, for consistency with experimental data, 

empirical constitutive models for highly elastic flows of polymer melts should be based 

on the kinematic structures of approach I – case 1, or its equivalent approach II - case 3. 
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Appendix A: Proof of the equivalence between approach I – case 1, and the Giesekus 

model with α = 1.  

Combining the upper convected derivative of the elastic part of the left Cauchy-Green 

tensor is (Larson, 1983)  
  
 I  I  I I
E E E E

ˆ ˆ ˆ ˆ ˆ ˆ 
∇

≡ − −
D

  B B B D B D , where I  I
E V

ˆ ˆ ˆ= +D D D  
(A1) 

with the kinematic identity of Leonov (Larson, 1983) 

 I  I  I  I I
E E E E E

ˆ ˆ ˆ ˆ ˆ − − =
D

 B B D D B 0 ,  
(A2) 

one arrives at  

 I  I  I  I  I
E E V V E

ˆ ˆ ˆ ˆ ˆ +
∇

=B + B D D B 0 . 
(A3) 

Substitution of the isochoric part of the stress tensor from Eqs (20) and (21) into equation 

A3 gives 

ˆ ˆ ˆ ˆ
∇ ∇ ⎧ ⎫1 ⋅ + =⎨ ⎬

⎩ ⎭
J Jτ τ

η η η
σ σ σ σ+ 1 + 0 , and 1

G
=τ

η
 

(A4) 

where ˆ2
∇

= −1 D  (and 1  denotes a second-order identity tensor), hence finally Eq. (A4) 

becomes  
   1 ˆˆ ˆ ˆ ˆ 2

G

∇

⋅ + =J Jτ ησ σ σ σ+ D ,  
(A5) 

which is equivalent to Eq. (22) for α = 1.  

 
 
Appendix B: On the connection between cases 2 and 3 of the approach II.  

Firstly, let us consider approach II-case 2, hence assume ( )TII  II
E E

ˆ ˆF = F  and  II  II
E E

ˆ ˆ=F V . 

The time derivative of the elastic deformation gradient and its transpose can be expressed 

as 

II II II II
E E E V

ˆ ˆ ˆ ˆ ˆ−�F = L F F L  and ( ) ( ) ( )
T T TII II II II

E E V E
ˆ ˆ ˆ ˆ ˆ−�F = F L L F  

(B1) 

Now let us consider the material time derivative of the elastic left Cauchy-Green tensor – 
hence using Eq.(B1)  
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( ) ( )( )

( )

T   T TII II II II II II II II II T II II II II
E E E E E E E E E E V V E

II II II II T II II II II II T II II II
E E E E E V E E E E V E

II II
E E

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ    2 2
ˆ ˆ ˆ ˆ ˆ ˆ    

• • •⎛ ⎞
+ = + − + =⎜ ⎟

⎝ ⎠

+ − = + − =

+ + −

B = F F F F LF F F F L F L L F

= LV V V V L V D V LB B L V D V

= D W B B D( ) II II II
E V E

II II II II II II II
E E E E E V E

ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ    2 .

− =

+ + − −

W V D V

= DB B D WB B W V D V

 

(B2) 

 
Secondly, let us consider approach II - case 3, where the material time derivative of 
elastic deformation gradient is  

II II II
E E V E

ˆ ˆ ˆ ˆ ˆ−� �F = LF L F  and ( ) ( ) ( ) ( )TT T TII II T II II
E E E V

ˆ ˆ ˆ ˆ ˆ−� �F = F L F L , where  II  II
V V

ˆ ˆ=� �L D  
(B3) 

Then, consider the time derivative of II
EB̂  

( )

( ) ( ) ( ) ( ) ( )
( ) ( )

T    TII II II II II
E E E E E

TT T T TII II ΙΙ II II II II T II II II
E E V E E E E E E V

II II II II II II
E V E E E V

II II II
E E E E

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ     

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ     

ˆ ˆ ˆ ˆ ˆ ˆ ˆ     

• • •⎛ ⎞
+ =⎜ ⎟

⎝ ⎠

= − + − =

+ − + − − =

+ + −

� �

� �

B = F F F F

LF F L F F F F L F F L

= D W B D B B D W B D

= DB B D WB B II II II II II II II
V E E E E V

ˆ ˆ ˆ ˆ ˆ ˆ ˆ− −� �W D V V V V D

 

(B4) 

Since  

( )T
II II II II II II
V E E E E V

ˆ ˆ ˆ ˆ ˆ ˆ� �D V V = V V D  
(B5) 

then, Eq.(B4) can be given by 
 
II II II II II II II II
E E E E E V E E

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2
•

+ + − − �B = DB B D WB B W D V V  
(B6) 

Hence, by comparing Eq.(B2) of case 2 with Eq.(B6) of case 3, it is clear  that both 
approaches are identical if  

II II II II II II
E V E V E E

ˆ ˆ ˆ ˆ ˆ ˆ�V D V = D V V . (B7) 

It can be shown that Eq.(B7) is only true if: (1) II II
V V

ˆ ˆ=�D D , and (2) simple shear or 
irrotational deformations are considered. However, it can also be shown that Eq.(B7) 
cannot be generalised to other loading cases (e.g. where shear and uniaxial extension are 

superimposed), even if II II
V V

ˆ ˆ=�D D . Hence, in general, case 2 is not identical to case 3 (and 
thus to approach I – case 1).  
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FIGURE CAPTIONS 
 

Fig. 1. Simulation of uniaxial extension using different approaches and models; the 
applied nominal strain rate is 0.4 s-1. 
 
Fig. 2. Elongational viscosity predicted for uniaxial extension at various constant rates of 

elongation: { }{ }E 111 22= − + �e eη σ σ  where e is the applied nominal strain.  
Logarithmic scales. 

 
Fig. 3. Simulation of start up of simple shear flow using different approaches and models; 

the applied shear rate is 0.4 s-1. 
 
Fig. 4. The first normal stress difference N1 as predicted for start-up of simple shear flow 
at a shear rate of 0.4 s-1. 
 
Fig. 5. The second normal stress difference N2  as predicted for start-up of simple shear 
flow at a shear rate of 0.4 s-1. 
 
Fig. 6. Shear viscosity predicted for start-up simple shear at various rates, S 12= �η σ γ  
where �γ  is the shear rate. Logarithmic scales. 
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Fig. 1. Simulation of uniaxial extension using different approaches and models; the 
applied nominal strain rate is 0.4 s-1. 
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Fig. 2. Elongational viscosity predicted for uniaxial extension at various constant rates of 

elongation: { }{ }E 111 22= − + �e eη σ σ  where e is the applied nominal strain.  
Logarithmic scales. 
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Fig. 3. Simulation of start up of simple shear flow using different approaches and models; 

the applied shear rate is 0.4 s-1. 
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Fig. 4. The first normal stress difference N1 as predicted for start-up of simple shear flow 

at a shear rate of 0.4 s-1. 
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Fig. 5. The second normal stress difference N2  as predicted for start-up of simple shear 
flow at a shear rate of 0.4 s-1. 
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Fig. 6. Shear viscosity predicted for start-up simple shear at various rates, S 12= �η σ γ  
where �γ  is the shear rate. Logarithmic scales. 
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