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ABSTRACT 

 
This paper focuses on the analytical and numerical modeling of the interface between a rigid 
substrate with simple constant curvature and a thin bonded plate. The interfacial behavior is 
modeled by independent cohesive laws in the normal and tangential directions, coupled with a 
mixed-mode fracture criterion. The newly developed analytical model determines the 
interfacial shear and normal stress distributions as functions of the substrate curvature, during 
the various behavioral stages of the interface prior to the initiation of debonding. The model is 
also able to predict the debonding load and the effective bond length. In the numerical model 
the interface is modeled by zero-thickness node-to-segment contact elements, in which both 
the geometrical relationships between the nodes of the discretized problem and the interface 
constitutive laws are suitably defined. Numerical results and comparisons between the 
predictions of the two models are presented. 

 
1. INTRODUCTION 

 
The mechanics of interfacial bond between a thin plate and a flat quasi-brittle substrate 

under mode-II loading has been extensively studied (Chen and Teng 2001, De Lorenzis et al. 
2001, Yuan et al. 2004, Ferracuti et al. 2006). These investigations have clarified the whole 
range of response of a bonded joint subjected to predominant shear stresses, starting from the 
linear elastic stage, up to the final debonding. A typical example is given by fiber-reinforced 
polymer (FRP) strips bonded to concrete or masonry. 

Quite surprisingly, very limited attention has been focused on structural members with a 
curved surface, despite the fact that such members are often found in practice (De Lorenzis et 
al. 2006). The strengthening of a masonry arch with FRP strips to inhibit the formation of 
hinges constitutes a typical example (De Lorenzis 2008). In this case, the interfacial normal 
stresses are related by equilibrium to the interfacial shear stresses, and result tensile for 
concave substrates (e.g. intrados of an arch) and compressive for convex substrates (e.g. 
extrados of an arch) (Figure 1). If the FRP strip is placed at the intrados, the interfacial 
normal (peeling) tensile stresses are likely to lead to mixed-mode fracture of the masonry 
substrate, and thus to accelerate debonding with respect to the mode-II fracture case (Aiello et 
al. 2004, CNR 2004, Foraboschi 2004). Debonding phenomena have been observed in several 
experiments on arches strengthened at the intrados, so that the use of anchoring devices as 
preventive measures has been proposed (Eshwar et al. 2003, De Lorenzis et al. 2007). 
However, neither analytical nor numerical approaches have been proposed so far to tackle the 
problem from a mechanical standpoint. 

This paper is devoted to the analytical and numerical modeling of the interface between a 
rigid substrate with simple constant curvature and a thin bonded plate. The interfacial 
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behavior is modeled by independent bilinear cohesive laws in the normal and tangential 
directions, coupled with a mixed-mode fracture criterion. The newly developed analytical 
model, based on equilibrium and compatibility relationships and making use of appropriate 
simplifying assumptions, permits to determine the interfacial shear and normal stress 
distributions along the bond length as functions of the substrate curvature, during the various 
behavioral stages of the interface prior to the initiation of debonding. The evolution of the 
interface from the initial stage of loading up to the onset of debonding can thus be examined. 
The model is also capable of predicting the debonding load and the effective bond length of 
the interface. The numerical model describes the interfacial behavior using zero-thickness 
node-to-segment contact elements, in which both the geometrical relationships between the 
nodes of the discretized problem and the interface constitutive laws are suitably defined. The 
predictions of the analytical and numerical models in terms of interfacial stress distributions, 
load vs. loaded-end displacement curves and debonding load are analyzed as functions of the 
substrate curvature. 

 
2. ANALYTICAL COHESIVE ZONE MODELING OF THE INTERFACIAL 
STRESSES 
 
2.1. Problem definition 

The model considers a thin plate of thickness t , unit width and length L , made of a 
linearly elastic material with elastic modulus E . The plate is bonded to a rigid substrate with 
a constant in-plane curvature radius r  and loaded with a force F  (Figure 2a). The substrate 
curvature is such that the normal stresses arising at the interface are tensile, as will be shown 
later. The force direction is tangent to the substrate surface at the loaded end. A curvilinear 
coordinate with origin at the plate free end, s , is introduced, and the corresponding polar 
coordinate is rs /=θ . The interfacial stresses can be equivalently expressed as functions of 
s  or θ . 

Figure 2b shows a differential element of the plate. Due to the small thickness, both the 
bending and shear stiffnesses of the plate are neglected, therefore only axial forces are 
considered. The circumferential stress in the plate is denoted as θσ . Normal and tangential 
stresses, Np  and Tp , arise at the interface between the plate and the substrate. Both stresses 
are considered uniform across the thickness of the adhesive layer, hence equal and opposite 
stresses are transmitted to the upper surface of the substrate. 

 
2.2. Cohesive zone modeling 

Due to its simplicity, cohesive zone modeling is largely used for a variety of applications, 
including fracture of ductile and brittle solids, delamination in composites at the micro- or 
macro-scale, and behaviour of adhesive layers. Different approaches have been used in the 
literature for cohesive zone modeling of interfaces under mixed-mode conditions (De 
Lorenzis and Zavarise 2008): 
a. Uncoupled cohesive zone modeling. In this approach, the cohesive laws in the normal and 

tangential directions (i.e., respectively, the mode-I and mode-II cohesive laws) are 
independent from each other. This approach was used by Kafkalidis and Thouless (2002), 
and Li et al. (2006), among others. The energy release rates in mode I ( IG ) and mode II 
( IIG ) are identified as the areas under the respective cohesive laws. The total energy 
release rate is the sum of IG and IIG . A further distinction can be made between 
approaches in which: 
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a1.  A mixed-mode failure criterion is introduced, see e.g. Kafkalidis and Thouless (2002), 
and Li et al. (2006). Once the failure condition is reached, the element is considered no 
longer capable to bear any load. This assumption yields sudden drops in the tractions 
before the critical separation is reached. Nevertheless, this approach was shown to 
provide good capabilities to capture essential properties of adhesive joints. 

a2.  No mixed-mode fracture criterion is introduced. In this case, failure is assumed when 
either IG or IIG  reach their respective maximum values. 

b. Coupled cohesive zone modeling. In this approach, the cohesive laws in the normal and 
tangential directions are linked together, typically by means of a coupling parameter. Also 
in this case a further distinction can be made between approaches in which: 
b1.  The cohesive laws are derived from a potential. A frequently used coupled cohesive 

law of this type is that developed by Tvergaard (1990), which uses a dimensionless 
coupling parameter between the normal and tangential laws. With this approach, the 
fracture energy is the same in all mode mixities. This is often regarded as a drawback, 
as the experimental evidence indicates the fracture energy to be often significantly 
larger in mode II than in mode I (Högberg 2006).  

b2.  The cohesive laws are not derived from a potential. Laws of this type have been 
proposed by Xu and Needleman (1993), and Högberg (2006), among others. These laws 
allow for different fracture energies in different mode mixities. Also, the lack of a 
potential introduces a path-dependency, which has a physical ground considering that 
cohesive zone models can describe an irreversible damage process at an interface (van 
den Bosch et al. 2006). 

In this paper two cohesive zone laws are used to model the interfacial behavior in the 
normal and in the tangential directions. In order to keep a level of simplicity amenable to the 
obtainment of an analytical solution, the two laws are taken as independent. However, a 
mixed-mode fracture criterion is introduced to couple them in the instant of debonding. 
Hence, the adopted approach corresponds to the a1 outlined above. The choice of independent 
cohesive zone laws is also motivated by the lack of any experimental basis for the adoption of 
a given coupled law for the main application under consideration (namely, bond of FRP to 
concrete or masonry substrates). 

The choice of independent cohesive zone laws enables the use of different values for the 
mode-I and mode-II interfacial fracture energies, in agreement with the experimental 
evidence. Tension relates the relative normal displacement, 0>Ng , and the normal stress, 

Np , while shear relates the relative tangential displacement, Tg , and the tangential stress, 

Tp . The cohesive laws implemented herein are bilinear (Figure 3). The bilinear shape is 
simple but able to capture the three characteristic parameters of the interface, i.e. the fracture 
energies (areas underneath the curves), the cohesive strengths, maxNp  and maxTp , and the 
linear elastic properties (slopes of the curves in the ascending branch). For this reason the 
bilinear model is often used to model the interfacial behaviour of FRP bonded to quasi-brittle 
substrates (Yuan et al. 2004).  

The cohesive laws shown in Figure 3 give the following relationships between the 
interfacial stresses Tp , Np  and the corresponding relative displacements Tg , Ng  
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The following ratios are also defined for convenience 
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The first two ratios in Eq. (3) represent, respectively, the slopes of the initial (elastic) portions 
of the cohesive laws in the tangential and normal directions. With the above definitions, the 
cohesive laws in Eqs. (1) and (2) can be rewritten as follows 
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This model adopts a linear mixed-mode failure criterion, as follows 

 

1=+
IIf

II

If

I

G
G

G
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where the energy release rates in mode I and mode II, GI  and GII , are identified as the areas 
under the respective cohesive laws integrated up to the current values of gN  and gT , and IfG  
and IIfG  denote, respectively, the fracture energies in pure mode-I and mode-II conditions. 
These are given by the total areas underneath the respective cohesive zone laws, hence 
 

GIf =
1

2
pN maxgNu   GIIf =

1

2
pT maxgTu       (7) 

 
The linear criterion is simple but effective, as shown by Kafkalidis and Thouless (2002) and 
Li et al. (2006), among others. Moreover, it is obviously the most conservative choice for a 
convex mixed-mode failure criterion. 
 
2.3. Governing equations 

Equilibrium of forces of the differential element of the plate (see Figure 2b) along the 
tangential and the normal directions yields the following equations 

 

ds
d

tpT
θσ

=    θσ
r
tpN =        (8) 
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Equilibrium of moments does not need to be enforced, as it is automatically satisfied. Note 
that the radial coordinate of the interface has been replaced by the radius of curvature of the 
centerline of the plate, due to its small thickness. The combination of Eqs. (8) yields 
 

ds
dp

rp N
T =            (9) 

 
Eq. (9) indicates that, for 0>Tp , equilibrium dictates that the interfacial normal stress, Np , 
has to increase with s , i.e. towards the loaded end of the joint. As will be detailed later, this 
simple condition has an important consequence in the selection of the possible stages for the 
status of the interface prior to the onset of debonding. 

The linearly elastic behavior of the plate material yields 
 

θθ εσ E=            (10) 
 
where θε  is the circumferential strain of the plate. Combining Eqs. (8) and (10) results in 
 

ds
d

EtpT
θε

=    θε
r
EtpN =        (11) 

 
The interfacial relative displacements in the tangential and normal directions, Tg  and Ng , 

are defined as 
 

θθθ uuug s,T =−=   rs,rrN uuug =−=       (12) 
 
where θu  and su ,θ  are the circumferential displacements of the bottom fiber of the plate and 
of the top fiber of the substrate, respectively, and ru  and sru ,  are the radial displacements of 
the same fibers. The second equalities of Eqs. (12) stem from the assumption of rigid 
substrate. This assumption is commonly applied for the analysis of FRP bonded to concrete, 
where it is widely accepted that the substrate deformations are very low compared with the 
deformations taking place at the interface. Finally, the following compatibility equation can 
be written for the plate 
 

r
u

ds
du r+= θ

θε           (13) 

 
Note that θu  and ru  have been assumed uniform across the plate thickness. 
 
3. ANALYSIS OF THE INTERFACIAL BEHAVIOR PRIOR TO DEBONDING 

 
This section analyzes the distributions of the interfacial stresses prior to the initiation of 

debonding. In the a priori selection of the possible stages, illustrated in Figure 4, it is 
assumed that the bond length, L , is sufficiently long to guarantee that a portion of the joint 
close to the free end always remains at the elastic stage in both the tangential and the normal 
directions. For this assumption to hold, the bond length has to be larger than the effective 
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bond length, which will be introduced later. The assumption of a “sufficiently long” bond 
length will be maintained throughout this paper. 

At each stage, the interface is subdivided into regions, based on the interfacial behavior in 
the tangential and in the normal directions. Each region is labeled with two letters, with the 
first and the second indicating the status of the interface respectively in the tangential and in 
the normal direction. “E” stands for elastic, and “S” stands for softening. E.g., a region 
labeled as “SE” is one where the interfacial shear stresses are within the softening branch of 
the mode-II cohesive law, and the interfacial normal stresses are within the linear-elastic 
branch of the mode-I cohesive law. 

As will be better detailed later, some of the stages depicted in Figure 4 are not compatible 
with the equilibrium conditions prior to debonding, hence they are not possible. In particular, 
the feasible stages, which will be analyzed in the following, are only the first two, denoted as 
EE and EE-SE (Figure 4a,b).  
 
3.1. EE stage 

At small loads, the whole length of the interface is at the elastic stage in both the tangential 
and the normal directions, and no softening or debonding occur (Figure 4a).  

Combining Eqs. (4a) and (5a) with Eqs. (11) and (12) yields 
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By using Eq. (13) the following relationships are obtained 
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Simple manipulation of Eq. (15b) yields 
 

ds
du

Etrk
Etru

N
r

θ⋅
−

= 2           (16) 

 
Finally, if the first derivative of Eq. (16) is substituted into Eq. (15a), the following 
differential equation is obtained 
 

01 2
2

2
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θ λ u
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Et
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         (17) 

 
where λ  has the same definition introduced by Yuan et al. (2004), i.e. 
 

Et
kT=2λ            (18) 
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7

 
It can be shown that typical values of the material, geometrical and cohesive law 

parameters give 2rkEt N<  for the application under examination (see also the examples 
section). This assumption will be maintained throughout this paper. Therefore Eq. (17) can be 
rewritten as follows 
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2

2

=− θ
θ λ u

ds
ud
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where 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 2

2
2

2 11
rk

Et
rk

Et
Et
k

NN

T
r λλ         (20) 

 
Note that, for ∞→r , λλ →r  and Eq. (19) reduces to the same differential equation for the 
interfacial shear relative displacement found by Yuan et al. (2004) for the case of a flat 
substrate. Hence the proposed model is a general one, which reduces to the model valid for 
bond to flat substrates as a limit case. 

The solution of Eq. (19) and the substitution into Eq. (16) yield, respectively 
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where the subscript “EE” has been used to refer to the condition where the interfacial stresses 
are both at the elastic stage, and 1A  and 2A  are two constants that have to be determined. 
Finally, EE,θε  is readily obtained by substituting EE,ru  into Eq. (14b) 
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In the second equality of Eq. (22), the result of Eq. (20) has been introduced. Eqs. (21) and 
(22) are all valid for Ls ≤≤0 . The unknown constants 1A  and 2A  are easily found imposing 
two boundary conditions which express equilibrium at the ends 
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Using Eq. (22), the above conditions yield the following values for the constants 
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Substituting Eqs. (24) into Eqs. (21), the following final results are then obtained for the 
displacements 
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Therefore, from Eqs. (4a) and (5a) and recalling Eq. (12), the interfacial stresses result as 
follows 
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Hence the resulting interfacial stresses correspond to simple hyperbolic functions. Their 
distributions along the bond length will be shown in the examples section. For ∞→r , Eqs. 
(26) reduce to the equations that Yuan et al. (2004) have given for the case of a flat substrate. 
In such a case, the interfacial normal stresses are identically zero. 

As both ( )ssinh rλ  and ( )scosh rλ  are increasing functions for 0>s , Eqs. (26) show that 
the maximum values of both interfacial stresses are reached at the loaded end of the joint, i.e. 
for Ls = . 

The relationship between the applied force, F , and the displacement of the plate at the 
loaded end, )L(ud EE,θ= , can be easily computed from Eq. (25a) 
 

( )dLtanh
k

F r
r

T λ
λ

=           (27) 

 
Eq. (27) represents the linear load-displacement relationship in the elastic stage of loading, 
which is shown as segment OA in Figure 5a. 

Eqs. (26) hold until ( ) maxTEE,T pLp ≤  and ( ) maxNEE,N pLp ≤ . The force TelF , , for which the 
interface would enter the softening stage in the tangential direction, while still being at the 
elastic stage in the normal direction, is easily computed from Eq. (26a) imposing 

( ) maxTEE,T pLp =  
 

( )
r

r
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LtanhpF
λ

λ
=          (28) 

 
For an infinite bond length (in practice, for bond lengths longer than the effective bond 
length, see later sections), Eq. (28) converges to the following value 
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Conversely, the force NelF , , for which the interface would enter the softening stage in the 
normal direction, while still being at the elastic stage in the tangential direction, can be 
computed from Eq. (26b) imposing ( ) maxNEE,N pLp =  

 
rpF NNel max, =           (30) 

 
The interface exits the elastic stage when the applied force equals the smallest of TelF ,  and 

NelF , . It can be shown that the case N,elT,el FF <  is by far the most frequent for the realistic 
range of geometry, material and cohesive parameters valid for the main application of 
reference, namely, the strengthening of a masonry arch by means of FRP bonded strips (see 
also the examples section). 

 
3.2. EE-SE stage 

If NelTel FF ,, < , the softening stage is reached first in the tangential direction. This occurs 
once the interfacial shear stress reaches maxTp  at the loaded end, i.e. for TelFF ,= . As loading 
progresses, an increasingly long portion of the interface closest to the plate loaded end enters 
the softening stage in the tangential direction, while the remaining portion of length s  
remains at the elastic stage (Figure 4b). In the normal direction, the interface stays at the 
elastic stage along the whole length of the joint. During this phase the load increases as the 
length of the elastic zone, s , decreases. 

In this case, combining Eqs. (4b) and (5a) with Eqs. (11) and (12) yields 
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By using Eq. (13) the following relationships are then obtained 
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Eq. (32b) is obviously identical to Eq. (15b), hence Eq. (16) continues to hold. If the first 
derivative of Eq. (16) is substituted into Eq. (32a), the following differential equation is 
obtained 
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1

2
2

, −
=

T

r
Trs μ

λλ            (34) 

 
Eq. (33) replaces Eq. (19) in the interfacial region where tangential softening takes place. The 
solution of Eq. (33) and the substitution into Eq. (16) yield 

 
( ) ( )

( ) ( )[ ] LssssinBscosB
Etrk

Etru

scosBssinBgu

T,rsT,rsT,rs
N

SE,r

T,rsT,rsTuSE,

≤≤
⎪⎩

⎪
⎨
⎧

−
−

=

++=
for

212

21

λλλ

λλθ

   (35) 

 
where the subscript “SE” has been added to refer to the portion of the joint where the 
interfacial tangential and normal stresses are respectively within the softening and elastic 
branches of the respective cohesive laws (Figure 4b). Finally, SE,θε  is readily obtained from 
the substitution of SE,ru  into Eq. (31b) 
 

( ) ( )[ ] ( ) ( )[ ]ssinBscosBssinBscosB
Etrk

rk
T,rsT,rsT,rs

r
T,rsT,rsT,rs

N

N
SE, λλλ

λ
λλλλεθ 212

2

212

2

−=−
−

= (36) 

 
Again, the above equation is valid for Lss ≤≤ . In the elastic region, Eqs. (21) and (22) 
continue to hold but with dfferent values of the constants, hence 
 

( ) ( )
( ) ( )[ ]

( ) ( )[ ]⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+=

+
−

=

+=

ssinhCscoshC

ssinhCscoshC
Etrk

Etru

scoshCssinhCu

rr
r

EE,

rrr
N

EE,r

rrEE,

λλ
λ
λε

λλλ

λλ

θ

θ

21

2

212

21

      (37)

  
Eqs. (37) are all valid for ss ≤≤0 . The four unknown constants 1B , 2B , 1C and 2C , plus the 
length of the elastic zone, s , are found imposing the following five boundary conditions 
 

( )
( )
( )
( ) ( )
( )⎪

⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

=
=
=
=

Et
FL

ss
gsu
gsu

SE,

SE,EE,

maxTSE,

maxTEE,

EE,

θ

θθ

θ

θ

θ

ε

εε

ε 00

          (38) 

 
By using the first four conditions, the following expressions of the unknown constants as 
functions of s  are obtained 
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( )
( )( ) ( ) ( )
( )( ) ( ) ( )⎪

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⋅−−−−=
⋅−+−−=

=

=

sgsggsB
sgsggsB

s
gC

C

rTTTrsTTuTrs

rTTTrsTTuTrs

r

T

λμλλ
λμλλ

λ

tanh1sincos
tanh1cossin

cosh

0

max,max,2

max,max,1

max
2

1

   (39) 

 
Substituting these constants into Eqs. (37a,b) and (35), by straightforward manipulations, 
yields the following expressions for the displacements as functions of s  in the EE and SE 
regions, respectively 
 

( ) ( )

( ) ( )
ss

s
srk

p
u

s
s

g
u

r
rrN

T
EEr

r
r

T
EE

≤≤

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=
0for 

sinh
cosh

cosh
cosh

max
,

max
,

λ
λλ

λ
λθ

      (40) 

( ) ( )[ ] ( ) ( )[ ]
( )[ ] ( ) ( )[ ]

Lss
sssss

rk
p

u

sssss
gg

g
ggu

Trsr
r

Trs
Trs

NTrs

T
SEr

Trsr
r

Trs
Trs

TTu

Tu
TTuSE

≤≤

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

−+−=

⎭
⎬
⎫

⎩
⎨
⎧

−+−−
−

−=
for 

costanhsin

sintanhcos

,
,

,
,

max
,

,
,

,
max

max,

λλ
λ

λ
λ

λ

λλ
λ

λ
λθ  (41) 

 
Therefore the interfacial stresses as functions of s  result as follows 
 

( ) ( )

( ) ( )
ss

s
sr

p
p

s
s

p
p

r
rr

T
EEN

r
r

T
EET

≤≤

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=
0for 

sinh
cosh

cosh
cosh

max
,

max
,

λ
λλ

λ
λ       (42) 

( )[ ] ( ) ( )[ ]
( )[ ] ( ) ( )[ ]
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sssss

r
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ssssspp

Trsr
r

Trs
Trs

Trs

T
SEN

Trsr
r

Trs
TrsTSET
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⎪
⎪
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⎪
⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

−+−=

⎭
⎬
⎫

⎩
⎨
⎧

−−−=
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costanhsin

sintanhcos

,
,

,
,

max
,

,
,

,max,

λλ
λ

λ
λ

λ

λλ
λ

λ
λ

  (43) 

 
Moreover, the substitution of Eqs. (39c,d) into Eq. (36) yields 
 

( )[ ] ( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

−+−= sscosstanhsssin
Et
p

T,rsr
r

T,rs
T,rs

T,rs

maxT
SE, λλ

λ
λ

λ
λ

εθ     (44) 

 
Finally, Eq. (44) combined with the fifth boundary condition in Eq. (38) gives the relationship 
between the applied force and s  
 

( )[ ] ( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

−+−= sLcosstanhsLsin
p

F T,rsr
r

T,rs
T,rs

T,rs

maxT λλ
λ

λ
λ

λ
    (45) 
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from which, for each value of s , the corresponding value of F  can be computed. The 
displacement of the plate at the loaded end during this stage, )L(ud SE,θ= , can be easily 
computed from Eq. (41a) 
 

( ) ( )[ ] ( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

−+−−
−

−= sLsinstanhsLcos
gg

g
ggd T,rsr

r

T,rs
T,rs

maxTTu

Tu
maxTTu λλ

λ
λ

λ   (46) 

 
The combination of Eqs. (45) and (46) yields the non-linear load-displacement relationship in 
the EE-SE stage of loading, which is denoted by AB in Figure 5a.  
 
3.3. Analysis of the interfacial behavior during the EE and EE-SE stages 

The progressive configuration of the interfacial stresses during the EE and EE-SE stages 
can be easily followed using the relationships derived earlier. The main steps are outlined 
herein: 

- during the EE stage, the interfacial stresses are given by Eqs. (26) along the entire length 
of the joint. Such stresses are directly proportional to the applied load. Hence, during this 
stage, the behavior of the interface can be followed by gradually increasing the value of F. 
Assuming NelTel FF ,, < , this stage ends when the applied load reaches the value Fel ,T , given 
by Eq. (28); 

- during the EE-SE stage, the behavior of the interface can be followed by gradually 
decreasing the length of the elastic region, s . At the beginning of this stage, it is obviously 
s = L . For each value of s , the corresponding value of the applied force can be computed 
from Eq. (45), and the interfacial stress distributions are obtained from Eqs. (42) and (43). 
 
3.4. EE-ES, EE-SE-SS and EE-ES-SS stages 

If TelNel FF ,, < , the softening stage would be reached first in the normal direction. This 
would occur once the interfacial normal stress reaches maxNp  at the loaded end, i.e. for 

NelFF ,= . With the progression of loading, an increasingly long portion of the interface 
closest to the plate loaded end would be expected to enter the softening stage in the normal 
direction, with the remaining portion of length s  still at the elastic stage (EE-ES stage, Figure 
4c). 

The situation outlined above, apparently dual of the analogous one described for the EE-
SE stage, is in fact not compatible with the equilibrium requirements prior to debonding, i.e. 
with a situation of increasing applied load. Hence it is not a real possible situation prior to 

debonding. As shown by Eq. (9), equilibrium dictates that for 0>Tp  it is 0>
ds

dpN , i.e. the 

interfacial normal stress has to increase towards the loaded end of the joint. Conversely, in 
presence of a softening zone in the normal direction ( Lss ≤≤ , Figure 4c), the interfacial 
normal stress would equal maxNp  for ss =  and would have to decrease towards the loaded 
end. 

For the same reason, stages EE-ES-SS and EE-SE-SS are also not possible prior to 
debonding. More in general, stages where interfacial softening occurs in the normal direction 
are not compatible with the equilibrium requirements for an increasing external load and 
hence are not feasible prior to debonding.  
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The above considerations permit to conclude that, for TelNel FF ,, < , an applied force value 

NelFF ,=  results directly into debonding. The same conclusion can also be drawn from Eq. 
(8b) written for Ls = , i.e. at the plate loaded end 
 

r
F)L(

r
t)L(pN == θσ          (47) 

 
From Eq. (47) it is evident that the maximum value of force applicable to the joint cannot be 
larger than N,elF  as given by Eq. (30). 
 
4. COMPUTATION OF THE DEBONDING LOAD AND OF THE EFFECTIVE BOND 
LENGTH 
 
4.1. Possible paths to debonding 

As a consequence of what illustrated in the previous sections, the joint may follow three 
alternative paths to debonding: 

a. if NelTel FF ,, < , the EE stage evolves into the EE-SE stage. In this case, two subcases 
are possible: 

a1. The debonding condition is reached during the EE-SE stage (see Section 4.2), 
provided that the corresponding load N,eldeb FF < . In summary, in this case it is 

N,eldebT,el FFF << , where debF  is the debonding load (Figure 5a). Debonding is 
triggered by the combination of the interfacial tangential and normal stresses, 
according to the mixed-mode fracture criterion in Eq. (6); 

a2. If N,elF  is attained at any point during the EE-SE stage, the debonding 
condition is reached and N,eldeb FF = . In summary, in this case it is 

N,eldebT,el FFF =<  (Figure 5b). Debonding is triggered by the interfacial 
normal stresses; 

b. if TelNel FF ,, < , the debonding condition is reached directly at the end of the EE stage, 
and N,eldeb FF = . In summary, in this case it is T,elN,eldeb FFF <=  (Figure 5c). 
Debonding is triggered by the interfacial normal stresses. 

More details will be reported in the examples section. It is worth noting that the limit case 
of a flat surface falls within subcase a1, being ∞→N,elF  for ∞→r . 

Once debonding is initiated, the proposed model can no longer follow the behavior of the 
joint. In fact, assuming that the applied force maintains the initial direction during debonding, 
the presence of bending and shear forces can no longer be neglected.  

 
4.2. Computation of the debonding load and of the effective bond length at debonding 
for case a1 

In case a1, where debonding is initiated by the combination of interfacial tangential and 
normal stresses, the debonding load, debF , is reached during the EE-SE stage.  

If no mixed-mode failure criterion were introduced, debonding would occur at the end of 
the EE-SE stage, as shown in the following. F  would reach its maximum value when the 
derivative of Eq. (45) with respect to s  equals zero. Therefore, the value of s  at debonding, 
sdeb,max , would be found from the following relationship 
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tanh λr sdeb max( )=
λrs,T

λr

tan λrs,T L − sdeb max( )⎡
⎣

⎤
⎦       (48) 

 
The substitution of Eq. (48) into Eq. (45) would yield 
 

Fdeb,max =
pT max

λrs,T

gTu

gTu − gT max

sin λrs,T L − sdeb,max( )⎡
⎣

⎤
⎦       (49) 

 
where Fdeb,max  has been used to denote the debonding load which would be obtained in case 
a1 if no mixed-mode failure criterion were introduced. This is an upper bound to the actual 
debonding load.  

Note that the above relationships are analogous to those found by Yuan et al. (2004) for 
the case of a flat substrate, with the exception of the dependence on the radius of curvature 
included into rλ  and T,rsλ . The same authors also noted that, for infinite bond lengths (in 
practice, for bond lengths longer than the effective bond length), the debonding load is 
reached when pT = 0 (or, equivalently, when gT = gTu ) at the loaded end of the plate. Given 
the strict analogy in the equations, the same condition would hold for curved substrates, 
assuming that no mixed-mode effects were taken into account. Hence, debonding would occur 
at the end of the EE-SE stage. 

 When a mixed-mode failure criterion is introduced, debonding occurs before the end of 
the EE-SE stage, hence the debonding load, Fdeb , is less than Fdeb,max . Also, it is pT > 0  and 
gT < gTu  at the plate loaded end, unlike in the case of a flat substrate.  

In order to enforce the mixed-mode failure criterion, the energy release rates GI  and GII  
need to be computed. Recalling Eq. (12), the interfacial relative displacements in the 
tangential and normal directions are equal to uθ  and ur , respectively. From Eqs. (40) and (41) 
it can be shown that these are maximum at the loaded end of the joint, and these maximum 
values are given by Eqs. (41) 

 

gT (L) = uθ ,SE (L) = gTu − gT max( ) gTu

gTu − gT max

− cos λrs,T L − s( )⎡
⎣

⎤
⎦ +

λrs,T

λr

tanh λr s( )sin λrs,T L − s( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

gN (L) = ur ,SE (L) =
pT max

λrs,T kNr
sin λrs,T L − s( )⎡

⎣
⎤
⎦ +

λrs,T

λr

tanh λr s( )cos λrs,T L − s( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(50) 

 
The corresponding values of the interfacial stresses are readily obtained from Eqs. (43) 
 

pT ,SE (L) = pT max cos λrs,T L − s( )⎡
⎣

⎤
⎦ −

λrs,T

λr

tanh λr s( )sin λrs,T L − s( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

pN ,SE (L) =
pT max

λrs,T r
sin λrs,T L − s( )⎡

⎣
⎤
⎦ +

λrs,T

λr

tanh λr s( )cos λrs,T L − s( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (51) 

 
Note that all the interfacial relative displacements and stresses given above are functions of 
the length of the elastic region of the joint, s .  
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The maximum values of the mode-I and mode-II energy release rates during the EE-SE 
stage are then reached at the loaded end of the joint, and can be computed as the areas 
underneath the respective cohesize zone laws (Figure 6) 

 

GI (L) =
1

2
gN (L)pN ,SE (L) =

1

2
kN gN

2 (L)

GII (L) = GIIf −
1

2
pT ,SE (L) gTu − gT (L)[ ]

⎧

⎨
⎪⎪

⎩
⎪
⎪

       (52) 

 
recalling that the interface is in elastic conditions in the normal direction and in elastic-
softening conditions in the tangential direction. Due to the earlier results, also the energy 
release rates will be a function of s . 

As illustrated in Section 3.3, during the EE-SE stage the behavior of the interface is 
followed by gradually decreasing the length of the elastic portion s . As s  decreases, gT (L)  
and gN (L)  both increase, and the energy release rates in Eq. (52) increase correspondingly 
(see also Figure 6). For a certain value of this length, sdeb , these energy release rates will 
satisfy the mixed-mode failure criterion in Eq. (6). The load corresponding to this value of s  
through Eq. (45) is the debonding load. 

At debonding, only a limited portion of the interface is subjected to significant interfacial 
stresses, and the length of this portion is generally termed “effective bond length” (De 
Lorenzis et al. 2001, Yuan et al. 2004). Yuan et al. (2004) defined the effective bond length at 
debonding, debeffL , , as the bond length for which the debonding load is equal to 97% of that 
corresponding to a joint with an infinite bond length. The expression of Leff ,deb  can be taken 
directly from Yuan et al. (2004) as follows 

 

Leff ,deb = a +
1

2λr

ln
λr + λrs,T tan λrs,T a( )
λr − λrs,T tan λrs,T a( )       (53) 

 
where 
 

a =
1

λrs,T

arcsin 0.97
gTu − gT max

gTu

⎡

⎣
⎢

⎤

⎦
⎥         (54) 

 
For cases a2 and b, the debonding load is equal to N,eldeb FF = . In these cases, the above 

definition of the effective bond length at debonding looses significance, as the debonding load 
does no longer depend on the bond length. An alternative definition could be introduced if 
desired. This aspect deserves further investigation. 
 
5. NUMERICAL MODELING 

 
In the numerical finite element model, the cohesive laws in Eqs. (1) and (2) have been 

implemented into a contact element based on the node-to-segment strategy as employed in 
Wriggers et al. (1998), and generalized to handle cohesive forces in both the normal and 
tangential directions. In the normal direction under compression the non-penetration 
condition is enforced using the penalty method. Depending on the contact status, an automatic 
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switching procedure is used to choose between cohesive and contact models. Each element 
contribution for the cohesive and contact forces is suitably added to the global virtual work 
equation as 

 
TTNNc gFgFW δδδ +=          (55) 

 
where cWδ  is the contact contribution to the virtual work, and NF  and TF  denote, 
respectively, the normal and tangential contact force.  

Figure 7 shows two representative discretized geometries. The adherend is modeled with 
two-dimensional, finite deformation, linearly-elastic beam elements, whereas the substrate is 
discretized with 4-node isoparametric plane stress elastic elements. The substrate elements are 
characterized by a very large elastic modulus, in order to minimize the effects of the substrate 
compliance on results. The non-linear problem is solved with a Newton-Raphson procedure, 
where the global tangent stiffness matrix is properly obtained with a consistent linearization 
of all the contributions given by Eq. (55). Such linearization yields (Paggi 2005) 

 

TTNNTT
T

T
N

T

T
NT

T

N
N

N

N
c gFgFgg

g
F

g
g
F

gg
g
F

g
g
F

W δδδδδ Δ+Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

∂
∂

+Δ
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

∂
∂

+Δ
∂
∂

=Δ  (56) 

 
where the symbols δ  and Δ  denote, respectively, virtual variation and linearization. The 
geometrical parameters Ngδ , Tgδ  (with their symmetric ones NgΔ , TgΔ ), NgδΔ  and TgδΔ  
are easily determined based on the contact element geometry (Zavarise 1991, Paggi 2005). 
The partial derivatives of the normal and tangential forces with respect to both normal and 
tangential relative displacements depend on the cohesive law parameters. For the laws chosen 
in this study, it is (see also Figure 3) 

 

∂FN

∂gN

=

εN A for gN < 0

pN max

gN max

A for 0 ≤ gN < gN max

−
pN max

gNu − gN max

A for gN max ≤ gN < gNu

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

      (57) 

 

∂FT

∂gT

=

pT max

gT max

A for gT < gT max

−
pT max

gTu − gT max

A for gT max ≤ gT < gTu

⎧

⎨

⎪
⎪

⎩

⎪
⎪

      (58) 

 
Moreover, due to the uncoupled formulation, it is 

 

0=
∂
∂

=
∂
∂

N

T

T

N

g
F

g
F

          (59) 

 
where Nε  is the penalty parameter, and A  is the contact area associated to each contact 
element. 
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Also in the numerical model, the energy release rates in mode I and mode II are identified 
for each contact element as the areas under the respective cohesive laws integrated up to the 
current values of gN  and gT  for the element, and the mixed-mode failure criterion in Eq. (6) 
is assumed. Once the failure criterion is met for an element in the cohesive zone, the element 
is assumed to be no longer capable to bear any load. 

The discretization is refined appropriately to yield mesh-independent results. The model is 
implemented in the finite element code FEAP (courtesy of Prof. R.L. Taylor). 

 
6. EXAMPLES 

 
6.1. Example 1 (case a1, N,eldebT,el FFF << ) 

In the first example, the chosen input values are realistic for FRP sheets bonded to a 
concrete or masonry substrate, see e.g. Chen and Teng (2001), CNR DT200/2004, and Dai et 
al. (2004). The values thus adopted for the parameters involved in the problem are reported in 
Table 1. The curvature radius is given the values 200 mm, 500 mm, and infinite (flat 
substrate). The bond length is chosen as L = 150 mm , i.e. longer than the effective bond 
length given by Eq. (53). With reference to Eq. (17) and to the related comments, it may be 
noticed that the inequality 2rkEt N<  is largely satisfied, hence the equations presented in the 
paper are applicable. The values of T,elF , N,elF  and debF  are reported in Table 2. The value of 
Fdeb max  is also reported for comparison. 

Figures 8 and 9 illustrate the results, respectively, for the EE and for the EE-SE stages. The 
curves clearly show that the substrate curvature has no appreciable effect on the magnitude 
and distribution of the interfacial shear stresses. This applies to both the EE and the EE-SE 
stages. Conversely, a significant influence is visible on the interfacial normal stresses. These 
are identically zero in the case of a flat substrate, and their magnitude increases as the 
substrate curvature radius decreases. As expected, tensile normal stresses are obtained as a 
result of the concave shape of the substrate. An excellent agreement is found between 
analytical and numerical results, the respective curves being virtually coincident.  

Figure 10 illustrates the interfacial stress distributions at the onset of debonding. In the 
case of a flat substrate, the interfacial shear stress at debonding reaches zero at the loaded end, 
which implies that the entire EE-SE stage has been exploited. This does no longer hold in the 
case of curved substrates. Due to the presence of the interfacial normal stresses, the onset of 
debonding is predicted to occur when the combination of the mode-I and mode-II energy 
release rates at the loaded end reaches the boundary of Eq. (6). As the substrate curvature 
increases, the interfacial shear stresses undergo negligible variations whereas the normal 
stresses increase considerably (Figures 8 and 9). Correspondingly, for a given load the value 
of GII  at the loaded end remains unchanged whereas the value of GI  increases. Thus, as the 
curvature increases the load at onset of debonding decreases and the condition in Eq. (6) is 
met for a progressively larger value of the interfacial shear stress at the loaded end (Figure 
10a). 

As visible from the values in Table 2, the reduction of the debonding load due to the 
curvature for the considered example is rather weak. This is due to the fact that the interfacial 
normal stresses are considerably smaller than the shear stresses, hence the contribution of the 
mode-I component to the first member of Eq. (6) is rather small. In general, the extent to 
which the debonding load is influenced by the substrate curvature in case a1 will be a 
function of the material, geometry and cohesive parameters valid for the interface under 
examination. 
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If no mixed-mode failure criterion were assumed, the debonding load would be equal to 
Fdeb,max . This is practically insensitive to the curvature due to the fact that the interfacial shear 
stresses are practically independent from r .  

The comparison of the proposed model predictions with test results would certainly be of 
interest. Unfortunately, the few bond test results currently available in the literature are not 
suitable for a comparison with the predictions of the proposed model. In fact, some of these 
results have been obtained from bending pull-out tests (Aiello et al. 2001, 2004), and this test 
setup introduces significant spurious normal stresses due to the bending effect. The other 
results have been obtained from a direct pull-out test setup (Basilio Sanchez 2007) but 
unfortunately they are insufficiently documented to attempt a comparison. In particular, the 
radius of curvature of the substrate is not reported. Nevertheless, these latter test results show 
a reduction of 4% in the debonding load between specimens with flat and concave substrates, 
and the entity of this reduction is of the same order of magnitude of that shown in Table 1. It 
is also worth noting that tests showing a dramatic influence of the substrate curvature on the 
debonding load would likely be affected by an imperfect tangency condition between the 
plate and the substrate at the loaded end. In fact, previous research (De Lorenzis and Zavarise 
2008) demonstrated the high sensitivity of the debonding load to the angle between the 
applied load and the substrate at the loaded end of the plate. 

Figure 11 illustrates the load vs. loaded-end displacement curves. There is no appreciable 
influence of the substrate curvature on the obtained behavior, up to the debonding load which 
is moderately influenced by the curvature as mentioned earlier. The two stages in the behavior 
of the interface are clearly visible, with a linear force-displacement relationship during stage 
EE followed by a non-linear trend during stage EE-SE. The analytical and numerical curves 
are virtually coincident, showing an excellent agreement between the two models. 

Finally, Table 2 reports the effective bond length at debonding, as computed by the 
analytical model. Its value shows a weak dependence from the substrate curvature. 
 
6.2. Example 2 (case a2, N,eldebT,el FFF =< ) 

In the second example, the values adopted for the parameters involved in the problem are 
reported in Table 1. The curvature radius is given the values 150 mm, 200 mm, and 250 mm. 
The bond length is chosen as L = 150  mm. Once again the inequality 2rkEt N<  is largely 
satisfied, hence the equations presented in the paper are applicable. The values of T,elF , N,elF  
and debF  are reported in Table 3. 

Figures 12 and 13 illustrate the results respectively for the EE stage and for the EE-SE 
stage. The same observations made earlier for example 1 are still applicable in this case. 
Unlike in the first example, in this case the interfacial stress at the loaded end is significantly 
larger than zero prior to debonding. This is due to the fact that only part of the EE-SE stage is 
exploited, as debonding occurs abruptly when the applied force reaches N,elF . 

Figure 14 illustrates the load vs. loaded-end displacement curves. Once again there is no 
appreciable influence of the substrate curvature on the obtained behavior. However, the 
debonding load is now linearly dependent on the radius of curvature, being equal to N,elF . 
The two stages in the behavior of the interface are clearly visible, with a linear force-
displacement relationship during stage EE followed by a non-linear trend during stage EE-SE. 
The analytical and numerical curves are again virtually coincident, showing an excellent 
agreement between the two models. However, a small discrepancy is observed in the 
prediction of the debonding load, which is slightly overestimated by the numerical model. 
This is probably due to the error inherent to the discretization of a curved surface with linear 
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elements, and to the high sensitivity of the debonding load to very small discrepancies in 
prediction of the interfacial normal stress at the loaded end. 
 
6.3. Example 3 (case b, T,elN,eldeb FFF <= ) 

In the third example, the values adopted for the parameters involved in the problem are the 
same of example 2 (see also Table 1). The curvature radius is given the values 50 mm, 75 
mm, and 100 mm. The bond length is chosen as 75=L  mm. The values of T,elF , N,elF  and 

debF  are reported in Table 4. 
Figure 15 illustrates the results for the EE stage, which is the only stage encountered prior 

to debonding. Once again the curves clearly show that the substrate curvature has no 
appreciable effect on the magnitude and distribution of the interfacial shear stresses. 
Conversely, a significant influence is visible on the interfacial normal stresses. An excellent 
agreement is found between analytical and numerical results. 

Figure 16 illustrates the load vs. loaded-end displacement curves. There is no appreciable 
influence of the substrate curvature on the obtained behavior, which is linear with slightly 
different values of slope for the three curvature values. However, as in Example 2 the 
debonding load is equal to N,elF  and thus is linearly dependent on the radius of curvature. The 
analytical and numerical curves are virtually coincident, showing an excellent agreement 
between the two models. However, the same discrepancy evidenced for Example 2 is 
observed here, the numerical debonding load being always slightly larger than the analytical 
one. 
 
7. CONCLUSIONS 

 
A new analytical model has been developed for the interfacial stresses between a thin plate 

and a rigid substrate with simple constant curvature. Also, a numerical model where the 
interface is modeled by zero-thickness node-to-segment contact elements has been devised. 
The interfacial behavior has been described with bilinear independent cohesive laws in the 
normal and tangential directions, coupled with a mixed-mode fracture criterion.  

The models have been used to determine the interfacial shear and normal stresses as 
functions of the substrate curvature prior to the initiation of debonding, as well as to estimate 
the debonding load and the effective bond length of the joint. The evolution of the interface 
from the initial stage of loading to the onset of debonding has been examined for the three 
possible cases that have been identified. The following main conclusions can be drawn: 

- there are two feasible stages in the behavior of the interface prior to the onset of 
debonding, whereby the interfacial stresses are both within the elastic branch of the 
cohesive laws (EE stage), or within the softening branch in the tangential direction and 
within the elastic one in the normal direction (EE-SE stage); 

- stages where the interfacial normal stresses are within the softening branch of the 
cohesive law do not fulfil equilibrium requirements prior to debonding, and therefore 
are not feasible; 

- three possible paths to the initiation of debonding exist, one in which debonding is 
triggered by the combination of interfacial tangential and normal stresses, and two in 
which debonding results from the normal stresses. The path followed by the joint 
depends on the combination of material, geometry and cohesive parameters. The 
corresponding debonding load can be evaluated by the proposed analytical model; 
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- at all stages, the substrate curvature has no appreciable influence on the magnitude and 
distribution of the interfacial shear stresses, as well as on the load-displacement 
relationship, whereas it affects significantly the interfacial normal stresses; 

- if debonding is triggered by the combination of interfacial tangential and normal 
stresses, the debonding load is influenced by the substrate curvature to an extent 
depending on the combination of the different material, geometry and cohesive 
parameters. If debonding is triggered by the normal stresses, the debonding load 
depends linearly on the radius of curvature; 

- the effective bond length at debonding, defined by previous researchers (Yuan et al. 
2004), is weakly influenced by the substrate curvature for the case where debonding is 
triggered by both the tangential and normal stresses. If debonding is triggered by the 
normal stresses, the established definition of the effective bond length looses 
significance, therefore an alternative definition should be introduced; 

- the presented analytical and numerical models are effective tools to examine the 
behavior and capacity of the bonded joint and provide results which are in excellent 
mutual agreement. 

A complete assessment of the influence of the substrate curvature on the bond performance 
of thin bonded plates needs to account not only for the initiation of debonding, but also for the 
subsequent behavior during the debonding process. During this process, assuming that the 
direction of the applied load remains unchanged, the bonded plate is subjected to a “peel test” 
condition with increasing peel angle. Previous research (De Lorenzis and Zavarise 2008) 
demonstrated the high sensitivity of the debonding load to the peel angle. Therefore, unlike in 
the case of a flat substrate, the debonding process is expected to occur under a decreasing 
load. A fracture mechanics approach analyzing this process will be presented in a 
forthcoming paper. 
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Table 1. Parameters used in the examples. 
Example E  

(GPa) 
t  

(mm) 
pN max  

(MPa) 
pT max  

(MPa) 
gN max  
(mm) 

gT max  
(mm) 

gNu  
(mm) 

gTu  
(mm) 

1 250 0.165 2 4 0.01 0.02 0.1 0.2 
2, 3 250 0.165 2 16 0.01 0.06 0.1 0.6 

 
 
 

Table 2. Fel ,T , Fel ,N  and Fdeb  for example 1 (case a1). 
 Fel ,T  (N/mm) 

(Eq. 28) 
Fel ,N  (N/mm) 

(Eq. 30) 
Fdeb  (N/mm) Fdeb max (N/mm) Leff ,deb  (mm) 

(Eq. 53) 
r = 200 mm 57.6 400 180.1 182.1 96.0 
r = 500 mm 57.5 1000 181.4 181.7 95.8 

r = ∞ 57.4 ∞ 181.7 181.7 95.8 
 
 

Table 3. T,elF , N,elF  and debF  for example 2 (case a2). 
 T,elF  (N/mm) 

(Eq. 28) 
N,elF  = debF  (N/mm) 

(Eq. 30) 
r = 150 mm 199.9 300 
r = 200 mm 199.5 400 
r = 250 mm 199.3 500 

 
 

Table 4. T,elF , N,elF  and debF  for example 3 (case b). 
 T,elF  (N/mm) 

(Eq. 28) 
N,elF  = debF  (N/mm) 

(Eq. 30) 
r = 50 mm 207.7 100 
r = 75 mm 202.7 150 
r = 100 mm 201.1 200 
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Figure 1. Interfacial stresses between FRP and curved masonry substrates. 
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(a) Problem geometry (b) Differential element of the bonded plate 

Figure 2. Problem definition. 
 
 

 
(a) Tangential direction (b) Normal direction under tension 

Figure 3. Interfacial cohesive laws. 
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(a) EE stage (feasible) (b) EE-SE stage (feasible) 

  

(c) EE-ES stage (not feasible) (d) EE-SE-SS stage (not feasible) 

 

 

(e) EE-ES-SS stage (not feasible)  
Figure 4. Stages in the behavior of the interface prior to debonding. 
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(a) Case a1 
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Figure 5. Load-displacement curves prior to debonding. 
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(a) Tangential direction (b) Normal direction under tension 
Figure 6. Energy release rates during the EE-SE stage at the plate loaded end. 
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(a) 200=r  mm (b) 500=r  mm 
Figure 7. Mesh used in the numerical analyses. 
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(a) Shear stresses 

 
(b) Normal stresses 

Figure 8. Example 1 (case a1): interfacial stresses – EE stage (F = 50 N/mm). 
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(a) Shear stresses 

 
(b) Normal stresses 

Figure 9. Example 1 (case a1): interfacial stresses – EE-SE stage (F = 120 N/mm). 
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(a) Shear stresses 
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(b) Normal stresses 

Figure 10. Example 1 (case a1): interfacial stresses – EE-SE stage at the initiation of 
debonding (F = Fdeb). 
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Figure 11. Example 1 (case a1): load vs. loaded-end displacement. 
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(a) Shear stresses 

 
 

(b) Normal stresses 
Figure 12. Example 2 (case a2): interfacial stresses – EE stage (F = 50 N/mm). 
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(b) Normal stresses 

Figure 13. Example 2 (case a2): interfacial stresses – EE-SE stage (F = 250 N/mm). 
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Figure 14. Example 2 (case a2): load vs. loaded-end displacement. 
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(a) Shear stresses 

 
(b) Normal stresses 

Figure 15. Example 3 (case b): interfacial stresses – EE stage (F = 50 N/mm). 
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Figure 16. Example 3 (case b): load vs. loaded-end displacement. 
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