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ABSTRACT:

15-deoxi-Δ12,14-prostaglandin J2 (15d-PGJ2) is known to play an important role in 

the pathophysiology of carcinogenesis, however the molecular mechanisms underlying 

these effects are not yet fully understood. Recently, we have shown that 15d-PGJ2 is a 

potent inducer of breast cancer cell death and that this effect is associated with a 

disruption of the microtubule cytoskeletal network. Here, we show that treatment of the 

MCF-7 breast cancer cell line with 15d-PGJ2 induces an accumulation of cells in the 

G2/M compartment of the cell cycle and a marked disruption of the microtubule 

network. 15d-PGJ2 treatment causes mitotic abnormalities that consist of failure to form 

a stable metaphase plate, incapacity to progress through anaphase, and failure to 

complete cytokinesis. 15d-PGJ2 binds to tubulin through the formation of a covalent 

adduct with at least four cysteine residues in - and -tubulin, as detected by hybrid 

triple-quadrupole mass spectrometry analysis. Overall, these results support the 

hypothesis that microtubule disruption and mitotic arrest, as a consequence of the 

binding of 15d-PGJ2 to tubulin, can represent one important pathway leading to breast 

cancer cell death.

Keywords: 15d-PGJ2, cell death, cytoskeleton, mitosis, tubulin, cancer.
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INTRODUCTION

Cyclopentenone prostaglandins are potent bioactive molecules involved in regulating 

many physiological as well as pathological processes [1, 2]. Some of these 

prostaglandins have been shown to induce cell cycle arrest and apoptosis in a number of 

cancer cell types [3]. In particular, the terminal derivative of prostaglandin J2

metabolism, 15-deoxi-Δ12,14-prostaglandin J2 (15d-PGJ2), is emerging as the most potent 

antineoplastic agent of this class of prostaglandins. Anticancer activity of 15d-PGJ2 has 

been reported both in vitro and in vivo in a multiplicity of tissues including breast, 

prostate, colon, lung, brain, skin, and lymphoid [4-11]. However, the mechanism of 

15d-PGJ2 antineoplastic activity has not been fully elucidated as yet. 

Although 15d-PGJ2 was identified as a high-affinity natural ligand for peroxisome 

proliferators-activated receptor (PPAR)  [12], it is now thought to exert its effects 

through PPAR-dependent and –independent mechanisms. Among these PPAR-

independent mechanisms are pathways that operate through NF-B and AP1, and other 

signal transducers and activators of transcription [13-16]. 15d-PGJ2 has also been 

reported to induce apoptosis of several types of cancer cells and normal cells 

independently of PPAR activation including breast cancer cells, dentritic cells, and 

hepatic myofibroblasts [17-19]. For example, hepatic myofibroblasts do not express 

PPAR, but still undergo apoptosis when exposed to 15d-PGJ2. We have also reported 

that 15d-PGJ2 is a potent inhibitor of mitochondrial function through PPAR-

independent means [20].

We have recently shown that 15d-PGJ2 inhibits neoplastic breast cancer cell 

proliferation, induces apoptosis, and disrupts microtubule (MT) assembly, suggesting 
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that the anti-neoplastic effects of 15d-PGJ2 can be triggered by multiple mechanisms, 

one of them probably involving MT dynamics [8]. Microtubules are the principal 

components of the cytoskeleton network of eukaryotic cells and have been shown to be 

involved in various cellular functions, including cell division, cytokinesis, maintenance 

of cell morphology, and signal transduction [21, 22] Microtubules are intracellular, 

filamentous, polymeric structures composed of two structurally similar protein subunits, 

namely, - and -tubulin (molecular weight, 50 kDa each). During mitosis, 

microtubules undergo rapid polymerization and depolymerization to enable movement 

of chromosomes. As cell division approaches metaphase, microtubules are disrupted 

and form a spindle surrounding the centrosome, thereby facilitating chromosomal 

alignment on the metaphase plate. In this process, tubulin subunits freely exchange on 

the microtubules. If such free exchange of tubulin subunits is disrupted, the mitotic 

spindle is compromised and the cell cannot divide. Certain drugs have already been 

discovered which bind tubulin (e.g., Vinca alkaloids and the colchicine-site binders), 

thereby preventing them from being incorporated into growing microtubules. As a 

consequence cells undergoing division, and particularly those cells showing rapid 

division (i.e., cancer cells), are killed. Thus, in the field of antineoplastic chemotherapy, 

anti-microtubule agents constitute an important class of compounds, with broad activity 

both in solid tumors and in hematological malignancies [21, 23, 24].

Here, we show that upon treatment with 15d-PGJ2, MCF-7 breast cancer cell line 

arrest at the G2/M phase of the cell cycle. 15d-PGJ2 also causes a depolymerization of 

the microtubule network and inhibits assembly of purified tubulin in vitro, probably due 

to the covalent modification of at least four cysteine residues in polymerized - and -

tubulin. This microtubule disorganization is accompanied by mitotic abnormalities and 
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incapacity to progress through anaphase. This study identifies tubulin as a molecular 

target of the pro-apoptotic 15d-PGJ2 compound.



Page 6 of 44

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6

MATERIALS AND METHODS

Cell culture. MCF-7 human mammary epithelial cells were grown as previously 

described [7]. For microscopy experiments cells were grown on glass coverslips.  

Experimental cultures were stimulated with the appropriate ligand, as indicated.

Antibodies. Pericentrin rabbit polyclonal antibody was from Covance (Berkeley, 

California). Mouse monoclonal anti-α-tubulin (Clone DM 1A) and anti-β-tubulin 

(Clone SDL.3D10) antibodies were from Sigma (St Louis, MO). Biotin goat polyclonal 

and Alexa secondary antibodies were from Vector Laboratories (Burlingame, USA)

Cell cycle analysis.  MCF-7 cells were treated with 10 μM 15dPG-J2 (Cayman 

Chemical, MI, USA) or 30 μM rosiglitazone (Cayman Chemical, MI, USA) in regular 

RPMI medium for 24 h. Cells were then fixed in 70% ethanol/PBS, pelleted and 

resuspended in buffer containing 10 μg/ml RNAse A and 0.01 mg/ml propidium iodide. 

Cell cycle distribution was determined by flow cytometric analysis utilizing a Cyan 

MLE-R Cytometer (DAKO-Cytomation, Glastrup, Denmark). Data analysis was 

performed using the Summit Software (DAKO).

In vitro tubulin polymerization assay. In vitro tubulin assembly was evaluated using the 

HTS-Tubulin Polimerization Assay Kit (Cytoskeleton, Denver, CO), according to the 

manufacturer's instructions. Absorbance readings were taken at 340 nm every 30 s for 1 

h, using a Varioscan (Thermo Electron Corporation) plate reader and Skanit 2.0 

Research Edition. 
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Separation of soluble and polymerized tubulins. Separation of soluble and polymerized 

tubulins was carried out as described by Minotti et al [25]. Briefly, 12 h after 15d-PGJ2

(10 M) or rosiglitazone (30 M) treatment, MCF-7 cells were lysed using 120 μl of 

microtubule-stabilizing buffer [20 nM Tris-HCl (pH 6.8), 1 mM MgCl2, 2 mM EGTA, 

0.5% NP-40, 2 mM PMSF, 1 mM benzamidine]. After vortexing, 120 μg of protein 

were centrifuged at 13,000 rpm for 15 minutes at room temperature and soluble 

(supernatant) and polymerized (pellet) tubulin analyzed by SDS-PAGE and 

immunoassay as described [8]. 

Biotinylated 15dPG-J2 pull down and western blot analysis. For in vivo incorporation 

of 15d-PGJ2 into - and -tubulin in intact cells, MCF-7 cells were incubated with 10 

M biotinylated 15d-PGJ2 for 2 h, lysed in lysis buffer [10 mM Tris-HCl (pH 7.5), 0.1 

mM EDTA, 0.1 mM EGTA, 0.5% SDS, 0.1 mM 2-mercaptoethanol and 1mM PMSF], 

and biotinylated proteins were purified by adsorption onto Neutravidin beads (Pierce 

Biotechnology, Inc. Rockford, IL), as described by the manufacturer’s. Proteins were 

detected by Western blot using anti-- and anti- antibodies, as previously described 

[8].

Immunofluorescence and confocal microscopy. Confocal microscopy was used to detect 

cytoskeleton organization. MCF-7 cells were plated on glass coverslips in 24-well cell 

culture plates and grown in regular medium for 12 h before switching to new medium 

with the corresponding treatment. Cells were then fixed for 10 min with methanol at –

20°C, and washed with PBS. After one hour incubation with the appropriate primary 

antibody, cells were washed and incubated with DAPI, Alexa Fluor 488, Alexa Fluor 

546, or Alexa Fluor 647 secondary antibodies (Molecular Probes) for 45 min at 37°C. 
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Images were acquired using a Radiance 2100 laser scanning confocal microscope (Bio-

Rad, Hercules, CA) using a 60x NA 1.40 oil immersion objective (Nikon). The images 

were obtained using a series of 0.5 m (depth) spaced cell fluorescent slices (Z axis). 

Confocal microscope settings were adjusted to produce the optimum signal-to-noise 

ratio. Images were collected and processed using Lasersharp 2000 and Adobe 

Photoshop version 8.0, respectively.

Time-Lapse microscopy. MCF-7 cells were plated and placed in a chamber in complete 

medium with CO2 exchange at 37ºC. Cells were imaged every 1 min for 1-2 days using 

a 40x objective on an inverted microscope (Zeiss Axiovert 135 TV). Images were 

captured on a JVC (TK-C1481EG) digital video camera. Where indicated, 10 M 15d-

PGJ2 or 30 M rosiglitazone were added to live microscopy media. Resulting movies 

were collected and processed by using image analySIS software (Soft Imaging System) 

and exported as Quicktime (Apple Computer, Cupertino, CA) and are shown at 7 

frames per second (Supplemental videos 1-3 online).

Off line nanospray characterization of 15d-PGJ2 by mass spectrometry. About 1 µl 

containing 5 µg of 15d-PGJ2 was dissolved in 20 µl of 50% CH3CN, 0.5% acetic acid. 

5 µl was introduced into the off line nanospray medium needle and infused using the 

Protana nanosprayTM ion source. The 15d-PGJ2 was ionized into a triple quadrupole 

mass spectrometer (4000 Q Trap LC-MS/MS hybrid system, Applied Biosystems, MDS 

Sciex), and data were acquired for 2 min. The needle voltage was set at 1300 V, and the 

declustering potential was set at 50 V to minimize in-source fragmentation. A collision 

energy between 25 and 30 was used to induce the fragmentation of the 15d-PGJ2

molecule.
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Protein digestion and sample preparation for MS analysis. Untreated or 15d-PGJ2-

treated microtubules samples were incubated with 1 g trypsin (Promega Sequencing 

Grade) for 2 h at 37ºC. Reaction mixtures were dried in vacuo and dissolved in 5% 

CH3CN, 0.5% CH3COOH, for later MS analysis.

Nano-HPLC and tandem triple-quadrupole MS analysis of peptides. The tryptic 

peptides from control, and 15d-PGJ2-treated samples were injected with a Famos (LC 

Packings) autosampler onto a PepMapTM C18 reversed phase micro-column (300 µm 

ID x 5 mm) from LC Packings and washed to remove salts. Samples were eluted onto a 

C18 reversed phase nano-column (100 µm ID x 15 cm, Teknokroma, Mediterranea sea), 

which was developed with a CH3CN gradient (5-47.5% CH3CN over 45 min, followed 

by a 1 min increase to 85.5% CH3CN) generated by an Ultimate Nano-HPLC (LC 

Packings). A flow rate of ca. 300 nl min-1 was used to elute peptides from the nano-

column to a New Objective PicoTip™ emitter nano-spray needle (3000 V) in a Protana 

nanospray ion source, and ions were analyzed with the 4000 Q-Trap system. In the 

enhanced resolution mode, the linear ion trap was scanned at m/z 250/s, and the ion of 

interest was selected in Q1 by precursor ion scanning. N2 was used as the curtain (value 

of 15) and collision gas (set to high).

Multiple Reaction Monitoring (MRM). 15d-PGJ2-bound tryptic peptides from treated 

and untreated microtubules were analyzed in the MRM mode. Q1 was set on the m/z 

corresponding to charged parent ions from masses 1, 2, 3, and 4 previously observed 

(see results; m/z at 644.4, 662.9, 726.4, and 989.9, respectively), and Q3 was set on 

specific fragment ions for each parent mass (m/z at 482.3 corresponding to y4 fragment 
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ion for mass 1, m/z at 948.2 corresponding to 15d-PGJ2-modified y6 fragment ion for 

mass 2, m/z at 841.4 corresponding to y7 fragment ion for mass 3, and m/z 1326.1 

corresponding to doubly-charged, y25 fragment ion for mass 4; Supplementary Fig. 2). 

Collision energy was set to 30 eV. 

MS data analysis. All the chromatograms and MS/MS spectra from the 4000 Q Trap 

System were analyzed with Analyst 1.4.1 software (Applied Biosystems). Analyses of 

15d-PGJ2-binding to microtubules by MS were repeated with two independent samples.

Statistical analysis. The data shown are the means±s.d. of at least three independent 

experiments. Statistical comparisons for significance between cells with different 

treatments were performed using the Student’s t test.
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RESULTS

15d-PGJ2 arrests the cell cycle at G2/M phase and causes a disruption of MCF-7 

microtubule network. To determine the effect of 15d-PGJ2 on cell cycle, exponentially 

growing MCF-7 cells were treated with 15d-PGJ2 for 24 h and their cell cycle 

progression was followed by fluorescence activated cell sorting analysis. Fig. 1 

demonstrates that treatment with 15d-PGJ2 led to significant increased numbers of 

G2/M phase cells, compared with non-treated control cells. On the contrary, the 

percentage of cells in the G2/M cell cycle state did not differ markedly between control 

and MCF-7 cells treated with rosiglitazone (RSG), a specific synthetic PPARγ agonist. 

Nocodazole, a potent anti-microtubule agent capable of rapidly depolymerizing the MT 

network, was used as control [26].

It has been very well documented that MT inhibitors are known to arrest cells in 

G2/M phase and induce cell death [21, 22]. Based on this observation, and our previous 

results [8], we then reasoned that the induction of G2/M arrest by 15d-PGJ2 could be 

attributed to the disruption of the cytoskeleton. To test this hypothesis, we first 

examined whether 15d-PGJ2 could directly affect the organization of the MT network of 

MCF-7 cells in the interphase phase. To this end, MCF-7 cells were treated with 15d-

PGJ2, rosiglitazone, or nocodazole and the MT network was visualized by 

immunofluorescence after 12 h of incubation. In control cells, the MT network 

exhibited normal arrangement with MT seen to traverse intricately throughout the cell 

and a normal compact rounded nucleus (Fig. 2A). In contrast, 15d-PGJ2 treatment led to 

a dramatic disruption of the MCF-7 cytoskeleton, producing a diffuse MT network. 

These effects, which are similar to those exerted by nocodazole, were not observed after 
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rosiglitazone treatment. The multiple-dot pericentrin pattern obtained is characteristic of 

certain breast cancer cell lines [27] and was corroborated by γ-tubulin staining (data not 

shown).

To further demonstrate that 15d-PGJ2 could promote MT depolymerization in vivo, 

we next investigated the fraction of free and polymerized -tubulin in control and 15d-

PGJ2-treated MCF-7 cells, specifically by harvesting the cells in a MT-stabilizing buffer 

and performing differential sedimentation. Our results indicate that the amount of 

polymerized -tubulin in the pellet fraction was significantly decreased 12 h after 

treatment of MCF-7 cells with 15d-PGJ2, when compared with basal cultures (Fig 2B, 

C). In contrast, we could not observe any decrease in polymerized tubulin after 

treatment with rosiglitazone, in comparison with control non-treated MCF-7 cells. 

Mitotic abnormalities following 15d-PGJ2 treatment. Microtubule targeting agents are 

known to arrest the cell cycle in early mitosis i.e. prometaphase/metaphase. Therefore, 

we next investigated the effect of 15d-PGJ2 on MCF-7 cell division. We first examined 

mitotic figures in MCF-7 cells treated or not with 15d-PGJ2 for 24 h, fixed and co-

stained with DAPI and anti--tubulin and anti-pericentrin antibodies to monitor DNA, 

the mitotic spindle, and the centrosomes, respectively. Cell morphology and the 

percentage of cells at different stages of mitosis and cytokinesis were determined using 

a confocal microscope. Control cells with no added 15d-PGJ2 rounded up at the 

beginning of mitosis and split into two symmetrical daughter cells as expected (Fig. 

3A). In contrast, although 15d-PGJ2-treated cells developed spindle-like structures (Fig. 

3B), the MT fibers generally lack the organization observed in control cells. Also, in the 

cultures treated with 15d-PGJ2, we could not detect any cell proceeding to either 
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anaphase or telophase/cytokinesis and these cells displayed distinct signs of arrest in the 

metaphase stage of mitosis as the nuclear membrane has disappeared and the chromatin 

was condensed. The major changes, however, were the complete absence of anaphase 

and telophase cells and the large increase in the percentage of metaphase cells 

exhibiting metaphase plates with incomplete chromosome alignment, following 15d-

PGJ2 treatment. Cells with such characteristics were unable to undergo cytokinesis. The 

stage of mitosis at which the block occurred was further determined by counting the 

number of cells at each stage of mitosis. As shown in Fig. 3C, in the 15d-PGJ2-treated 

MCF-7 cells, the number of cells in anaphase and telophase/cytokinesis decreased to 

zero, indicating a block specifically at the transition from metaphase to anaphase. These 

results suggest that 15d-PGJ2 acts as a mitotic inhibitor. 

Time-lapse microscopy was utilized to characterize the fate of MCF-7 cells treated 

with 15d-PGJ2 and rosiglitazone (Fig. 4 and Supplementary Videos 1-3 online). We 

have found that the majority of control non-treated cells undergo cell division within 80 

to 90 min (Fig. 4 and Supplementary Video 1 online). Non-treated cells were able to 

segregate chromosomes, proceed through anaphase, initiate furrow formation and 

elongate the midbodies. Eventually the cells segregate and flatten out. However, the 

majority of 15d-PGJ2-treated cells took 3 h or longer for a significant number of cells to 

proceed to metaphase. During that time, cells could go through the nuclear envelope 

breakdown but they were unable to form a stable metaphase plate with all the 

chromosomes aligned to it and eventually proceed to anaphase. The single prominent 

phenotype associated with 15d-PGJ2 treatment was failure to complete cytokinesis. 

After more than 7 h in a “metaphase-like” stage, cells eventually shriveled and died 

(Fig. 4 and Supplementary Video 2 online). When MCF-7 cells were treated with 
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rosiglitazone, no significant differences in the process of mitosis were observed (Fig. 4 

and Supplementary Video 3 online). Cells treated with rosiglitazone were able to 

complete mitosis within a period of time similar to the one observed for control non-

treated cells. When taken together with the images shown in Fig. 3, these results provide 

compelling evidence that treatment of MCF-7 cells with 15d-PGJ2 results in failure of 

cell division through arrested metaphase.

Effect of 15d-PGJ2 on tubulin polymerization in vitro. Because 15d-PGJ2 markedly 

disrupted the cellular MT network, we tested whether 15d-PGJ2 could directly affect 

tubulin, the main component of this network. An in vitro biochemical tubulin 

polymerization assay was carried out to investigate the activity of 15d-PGJ2 on MT 

function. Results presented in Fig. 5 shows that 15d-PGJ2 significantly inhibited the 

polymerization of tubulin, similar to the effect elicited by nocodazole, a well-known 

MT destabilizer. On the contrary, the addition of paclitaxel, in agreement with previous 

reports, favors tubulin polymerization. In contrast, rosiglitazone was found to have a 

negligible effect upon the polymerization of tubulin in vitro, relative to the vehicle 

control (data not shown), in agreement with its lack of effect upon the cellular MT 

network. This again, distinguishes the mechanism of action of both PPAR ligands and 

suggests that the effects of 15d-PGJ2 are independent of PPAR activation. These data 

suggest that 15d-PGJ2 could bind directly to tubulin and thereby prevent its 

polymerization and identify tubulin as a molecular target of 15d-PGJ2.

The possibility that 15d-PGJ2 could directly bind to, both - and -tubulin in vivo

was investigated by using a biotinylated 15d-PGJ2 derivative. To this end, we first 

analyzed the incorporation of biotinylated 15d-PGJ2 into - and -tubulin by 
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Neutravidin-gel pull down followed by Western blot with anti--tubulin or anti--

tubulin antibodies. Fig. 6A shows that - and -tubulin present in lysates from 

biotinylated 15d-PGJ2-treated MCF-7 cells were retained on Neutravidin beads, 

suggesting that 15d-PGJ2 is able to react with endogenous - and -tubulin in intact 

MCF-7 cells. To further analyze the in vivo association between tubulin and 15d-PGJ2

in the living cell, we performed confocal microscopy analysis of MCF-7 cells treated or 

not with biotinylated 15d-PGJ2 for 2 h and stained with anti-- or anti--tubulin. As 

shown in Fig. 6B, a biotinylated 15d-PGJ2 network, which colocalized with the 

endogenous tubulin network was clearly seen. This colocalization is also observed as 

the cell progresses into the cell cycle (Fig. 6C). These results further suggest a direct 

binding between 15d-PGJ2 and the MT network.

Binding of 15d-PGJ2 to tubulin. The above results indicate that 15d-PGJ2 binds to both 

- and -tubulin, therefore we next analyzed untreated and 15d-PGJ2-treated 

microtubules samples by mass spectrometry (MS) to characterize the binding site(s) of 

15d-PGJ2 within the tubulin. We used a recently reported approach based on hybrid 

triple-quadrupole mass spectrometry to find the 15d-PGJ2-binding site(s) [28].

We first made the characterization of 15d-PGJ2 molecule by off line mass 

spectrometric analysis, and an ion at m/z 317.4 Da, corresponding to the monoisotopic, 

protonated 15d-PGJ2 molecule, was observed (Supplementary Fig. 1A). In order to find 

the main fragments corresponding to single or multiple cleavage sites within the 15d-

PGJ2 molecule, an enhanced product ion experiment was performed (Supplementary 

Fig. 1B). The most intense fragment ions were selected as potential markers for later 

precursor ion scanning experiments. The fragment ion at m/z 299.4 Da, out of the seven
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tested (145.2, 169.2, 183.2, 197.2, 215.4, 281.4, and 299.4), was the signal of choice for 

precursor ion filtering experiments (Supplementary Fig. 1C). The efficiency of 

precursor ion scanning experiments was lower when using the other seven fragment 

ions present in the MS/MS spectrum from the 15d-PGJ2 molecule (Supplementary Fig 

1C).

Precursor ion scanning-MS chromatograms of trypsin-digested microtulules from 

untreated (Fig. 7A, upper panel) or 15d-PGJ2-treated (Fig. 7A, lower panel) samples 

were analyzed. Although no differential, intense chromatographic peaks were found, an 

exhaustive mass composition chromatographic analysis revealed six time positions (1-6 

in Fig. 7A) along the chromatograms corresponding to differential signals producing the 

15d-PGJ2-derived fragment ion at m/z 299.4 Da. These time positions marked the 

elution time for differential signals tagged with 15d-PGJ2 (Fig. 7B), which were only 

present in the 15d-PGJ2-treated sample, as indicated by the asterisks (Fig. 7B).

MS/MS-based peptide sequencing of differential masses 1, 2, and 4 (Supplementary 

Figs. 2A, 2B, and 2D, respectively) demonstrated that these sequences (353-

TAVCPGDIPPR-361, 300-NMMAACPGDPR-308, and 219-

LTTPTYGDLNHLVSATMSGVTTCPGLR-243, respectively) mapped into -tululin, 

while the sequences from differential masses 3 (312-YMACCPGLLYR-320), and 5 

(309-HGKYMACCPGLLYR-320; one missed cleavage at K311; not shown) 

corresponded to -tubulin-derived peptides (Supplementary Fig. 2C). A comprehensive 

study of the fragmentation spectra from the parent ions corresponding to masses 1-5 

revealed that in all cases the cysteine within the sequence was the 15d-PGJ2-binding 

residue (superscripted PG-cysteine in text and Supplementary Fig. 2). For peptides 3 
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and 5, only one of the two cysteine residues was modified by 15d-PGJ2. Differential 

mass 6 corresponded to the unbound 15d-PGJ2 dimer, appearing later on the 

chromatogram due to the highly hydrophobic nature of the molecule. 

These results were verified by Multiple Reaction Monitoring (MRM) experiments 

(Fig. 8). Ions at m/z 644.4, 662.9, 726.4, and 989.9 (corresponding to differential 

masses 1, 2, 3, and 4, respectively) were isolated and fragmented in untreated and 15d-

PGJ2-treated microtubules samples. As can be observed, only in the 15d-PGJ2-treated 

chromatogram, the four differential, intense chromatographic peaks were detected (Fig. 

8). 
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DISCUSSION

Although it has been clearly established that 15d-PGJ2 is a potent inducer of cell death 

in many cancer cell lines, including human breast cancer cells, our knowledge of the 

mechanisms of action by which 15d-PGJ2 causes cell death remains incomplete. In the 

present study, we show that cell death induced by 15d-PGJ2 in human MCF-7 cells is 

preceded by a marked G2/M arrest. The cells also displayed morphological features that 

identified a mitotic arrest, specifically in metaphase. Our studies also show that 15d-

PGJ2 binds to microtubules, forming a covalent bond with several cysteine residues in 

- and -tubulin. Overall these results point to a role of 15d-PGJ2 in breast cancer cells 

independent of PPAR activation and possibly involving a direct binding to tubulin and 

posterior disruption of microtubules. This idea is further substantiated by the fact that 

these effects are not observed in rosiglitazone-treated MCF-7 cells. 

We have previously demonstrated that 15d-PGJ2 inhibits proliferation and induces 

cellular differentiation and apoptosis in the breast cancer cell line MCF-7, in part by 

blocking the ErbB receptor signaling pathway [7] and by inducing early mitochondrial 

alterations [8]. Our results suggest that the effects of 15d-PGJ2 can be, both dependent 

and independent of PPAR activation [8, 20, 29]. This is in accordance with the 

description by other groups of PPAR-independent pleiotropic effects of 15d-PGJ2

responsible for its antiproliferative activity [30, 31]. Our data also indicated a possible 

involvement of the cytoskeleton in this process [8]. Consistent with this idea, in this 

study we demonstrate that 15d-PGJ2 treatment of MCF-7 cells causes extensive MT 

depolymerization and disruption of the MT network in interphase cells, similar to the 

one observed in cells treated with nocodazole. This effect is probably due to the 

observed in vitro and in vivo binding of 15d-PGJ2 to, both  and -tubulin subunits. 
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Centrosomes abnormalities are hallmarks of various cancers and are found in 

essentially all high-grade cancers and in cell lines derived from tumors [32-37]. These 

anomalies are usually associated with an increase in pericentrin staining and the 

appearance of clusters of pericentrin staining material, which may represent multiple 

centrosomes clumped together at a single pole or an inappropriate accumulation of 

pericentrin. On the contrary, non-tumor tissues present a low level of diffuse staining, 

probably reflecting the modest level of cytoplasmic pericentrin known to be present in 

normal cells, or a single discrete focus of pericentrin [35]. Our results show that, in the 

presence of 15d-PGJ2, MCF-7 cells exhibited fewer pericentrin foci and pericentrin 

staining was considerable lower than in non-treated cells. Also, the abnormal large 

aggregates of pericentrin seen in control MCF-7 cells, were not observed in 15d-PGJ2-

treated cells, indicative of a less transformed phenotype.

The ability of 15d-PGJ2 to block MCF-7 cells in G2/M phase is consistent with a 

disruption of cytoskeleton via binding to tubulin [38]. Among novel drugs for the 

treatment of advanced breast cancer are those that target microtubules. These drugs 

suppress microtubule dynamics and trigger mitotic arrest at the metaphase/anaphase 

transition [39, 40]. In the presence of these drugs, spindle form and mitosis can progress 

as far as the metaphase/anaphase transition. However, the spindles are completely 

unable to pass the mitotic cell cycle checkpoint and to initiate anaphase movements, or 

do so only after a long period of mitotic arrest. In agreement with this, our results show 

that 15d-PGJ2 completely blocks the transition to anaphase. Only a few cells appear to 

enter the anaphase state but they are unable to complete the segregation of the 

chromosomes and eventually return to a “metaphase-like” stage afterward they die.
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There is compelling evidence that tubulin-binding agents such as paclitaxel and the 

vinca alkaloids kill cancer cells primarily by apoptosis [39, 41]. Because mitotic arrest 

caused by such agents was frequently found to precede apoptosis, a hypothesis that 

arrest of the cell cycle at mitosis is the primary stimulus for apoptosis has been widely 

accepted. For example, apoptosis induced by paclitaxel was found to occur directly after 

a mitotic arrest or after an aberrant mitotic exit [42, 43]. Nevertheless, some 

investigators have provided evidence against the involvement of mitotic arrest in 

apoptosis induction by microtubule-binding agents by demonstrating apoptotic events in 

other phases of the cell cycle [44, 45]. Apoptosis is not the only mechanism by which 

cells die following a failed mitosis. Many studies have described a form of cell death 

called mitotic catastrophe. This form of cell death does not require caspase 9 or 3 and 

can still occur in the presence of caspase inhibitors such as z-VAD-fmk. In this regard, 

previous work from our laboratory have shown that the cell death induced by 15d-PGJ2

in breast cancer cells cannot be completely inhibited by treatment with this caspase 

inhibitor, albeit caspases are activated in MCF-7 cells treated with this prostaglandin 

[8]. On the other hand, we could not observe any of the common features attributed to 

mitotic catastrophe, such as giant non-viable multinucleated cells. 15d-PGJ2-arrested 

mitotic MCF-7 cells appear to remain arrested in metaphase from which they 

subsequently entered a cell death pathway without exiting mitosis. This phenomenon 

has been previously shown in endothelial cells treated with the tubulin-binding agent 

combretastin A-4-phosphate [46, 47]. These authors have shown that combretastin A-4-

phosphate damages mitotic spindles, arrests cells at metaphase, and leads to the death of 

endothelial mitotic cells with characteristic G2/M DNA content.
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MS analyses also demonstrated that 15d-PGJ2 binds covalently to tubulin and that 

this binding is probably the cause of microtubule depolymerization in 15d-PGJ2-treated 

MCF-7 cells. Our results show that 15d-PGJ2 binds covalently to at least, four cysteine 

residues into the - and -tubulin moieties, as detected by mass spectrometry. 15d-PGJ2

is characterized by the presence of a cyclopentenone ring containing an electrophilic 

carbon (C9), and an electrophilic unsaturated carbonyl group (C13) next to the 

cyclopentenone ring. These two chemically reactive centers can react covalently by 

means of Michael’s addition reaction with nucleophiles, such as the cysteinyl thiol 

groups in proteins, to form a covalent adduct which is thought to be irreversible under 

physiological conditions. Some examples of 15d-PGJ2 Michael’s addition to cysteine 

residues include PPAR (reactive carbon at position 13) and NF-B (reactive carbon at 

position 9) proteins [48]. 

Tubulin is a heterodimeric protein containing 20 cysteine residues, of which twelve 

are in the  subunit and eight in the  subunit. Five of these cysteines have been 

characterized as highly reactive [49]. We have shown here that, at least four of them 

react with 15d-PGJ2. Cysteine 305 from -tubulin is located on the surface of the 

microtubule near the pore, and probably does not have any effect on microtubule 

stability. In contrast, cysteines 241 and 356 are located at the inner face, between the 

GTP and the taxol binding sites, and the binding of 15d-PGJ2 to these residues could 

alter the normal curvature of the heterodimer, inducing the microtubule 

depolymerization. In addition, cysteine 316 from -tubulin is located in the interphase 

between an -subunit and a -subunit, and, consequently, it is very likely that 15d-

PGJ2-binding to this residue could also interfere in the microtubule assembly. Thus, 
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covalent binding of 15d-PGJ2 to cysteine residues in microtubules is probably the cause 

of the observed microtubules depolymerization.

In summary, our data add a new anti-tumoral role for 15d-PGJ2 based on the ability 

to directly binding to cysteine residues in - and -tubulin independently of PPAR. As 

a consequence, 15d-PGJ2 disrupts the MT structure in the cytoplasm of interphase cells 

and the spindle apparatus of mitotic cells leading to a mitotic arrest at the 

metaphase/anaphase transition, an accumulation of cells in G2/M phase, and ultimately 

breast cancer cell death. 
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FIGURE LEGENDS

Figure 1. Effect of 15d-PGJ2 and rosiglitazone on cell cycle distribution of 

exponentially dividing MCF-7 cells. The numbers indicate the percentage ± SD of cells 

in each phase of the cell cycle. Cells were exposed to 10 M 15d-PGJ2, 30 M 

rosiglitazone (RSG) or 1 μM nocodazole for 24 h and DNA flow cytometry was 

performed on cells. Data are representative of three independent experiments. *, P < 

0.05; *** P < 0.001.

Figure 2. Disruption of microtubules in 15d-PGJ2-treated MCF-7 cells. (A) Cells were 

treated for 12 h with 1 M nocodazole, 10 M 15d-PGJ2 or 30 M rosiglitazone (RSG), 

fixed and stained with anti--tubulin and anti-pericentrin. DNA was stained with DAPI. 

Scale bar, 10 m. (B) Polymerized tubulin (P) was differentially extracted from soluble 

(S) tubulin in control, rosiglitazone (RSG)- and 15d-PGJ2-treated MCF-7 cell lysates 

prepared in a MT-stabilizing buffer. Soluble and polymerized tubulin fractions were 

then analyzed by blotting for -tubulin. (C) Tubulin bands were quantified by 

densitometric analysis and expressed as a percentage of total tubulin levels. *, P < 0.05.

Figure 3. Treatment of MCF-7 cells with 15d-PGJ2 perturbs mitotic progression. 

Control (A) and cells treated for 24 h with 15d-PGJ2 (B) were fixed and stained with 

anti--tubulin and anti-pericentrin. DNA was stained with DAPI. Shown are 

representative confocal images of MCF-7 cells mitotic progression. Scale bar, 10 m. 

(C) Frequency of mitotic stages in control and 15d-PGJ2-treated MCF-7 cells was 

quantified and expressed as a percentage of total cells. ***, P < 0.001.
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Figure 4. Analysis of mitosis in live MCF-7 cells. Representative images from time-

lapse analysis of live cells showing the different phases of mitosis are shown. Time 

zero, shown in minutes, is the time point at which the nuclear envelope is breakdown 

and chromatin condensation is evident, just at prophase onset. Cultures were incubated 

with 10 M 15d-PGJ2 or 30 M rosiglitazone (RSG) and areas were subsequently 

followed by time-lapse microscopy. Cells treated with 15d-PGJ2 remained in metaphase 

for more than 8 h afterward they die. In contrast, non-treated- and rosiglitazone-treated 

cells escaped mitosis after ~ 1 h. Scale bars, 50 (lower magnification) and 10 (higher 

magnification) m. Time-lapse movies for the sequential images shown in this Fig. can 

be found online.

Figure 5. Effect of 15d-PGJ2 on tubulin polymerization in vitro. Purified bovine brain 

tubulin was incubated in the presence of buffer (blank), 1 M nocodazole, 10 M 15d-

PGJ2, or 200 M paclitaxel at 37ºC, and absorbance readings were recorded at 340 nm 

each 30 s for 1 h. Data are representative of two independent experiments performed in 

triplicate. 

Figure 6. Binding of biotinilated 15d-PGJ2 to - and -tubulin in vivo. (A) MCF-7 cells 

were incubated or not with biotinilated 15d-PGJ2 for 2 h and cell lysates were subjected 

to pull-down assays with Neutravidin-gel beads. The presence of - and -tubulin was 

assessed by Western blot analysis with specific antibodies. (B) MCF-7 cells were 

treated as in A and cellular accumulation of biotinylated 15d-PGJ2 was evaluated by 

confocal microscopy. Tubulin was detected with a specific mouse monoclonal antibody 

and 15d-PGJ2 with an anti-biotin antibody. Scale bar, 10 m. (C) Same staining as in B, 

showing colocalisation of biotynilated 15d-PG2 in mitotic cells. Scale bar, 20 m.
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Figure 7. MS analyses of 15d-PGJ2 binding to microtubules. Total ion chromatogram 

(TIC) of the precursor ion scanning of fragment at m/z 299.4 from control (A, upper 

panel) or 15d-PGJ2-treated (A, lower panel) microtubules samples, digested with 

trypsin. Arrows labeled as 1-4 indicate retention times corresponding to different 

peptide mass composition between control and 15d-PGJ2-treated microtubules samples. 

These differences are detailed in (B) with labels 1-4 indicating the 15d-PGJ2-modified 

sequences. C means control-, and PG means 15d-PGJ2-treated microtubules samples. 

Differential masses absent in the control mass spectrum are labeled as an (*). Peaks 5 

and 6 correspond to differential chromatographic peaks. Peak 5 contains the peptide 

with sequence 309-HGKYMACCPGLLYR-320 (one missed cleavage at K311). Peak 6 

corresponds to the 15d-PGJ2 dimer.

Figure 8. MRM experiments with control and 15d-PGJ2-treated microtubules samples.

MRM experiments from tryptic, 15d-PGJ2-modified peptides 1-4. The inset shows the 

MRM results for the corresponding control microtubules sample.
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Supplemental Figure 1. Off line nanospray characterization of 15d-PGJ2 by triple 

quadrupole MS. An ion at m/z 317.3 Da, corresponding to the monoisotopic, 

protonated 15d-PGJ2 molecule, was observed (A). In order to find the main fragments 

corresponding to single or multiple cleavage sites within the 15d-PGJ2 molecule, an 

enhanced product ion experiment was performed. The ion at m/z 317.3 Da was isolated 

and fragmented (B). The most intense fragment ions were selected as potential markers 

for later precursor ion scanning experiments in order to find the best marker mass to 

select precursor ions for filtration of peptides that were tagged with 15d-PGJ2. The 

fragment ion at m/z 299.4 Da was the signal of choice for precursor ion filtering 

experiments (C). The efficiency of precursor ion scanning experiments was lower when 

using other fragment ions present in the MS/MS spectrum from the 15d-PGJ2 molecule 

(black arrows) (C). 

 

Supplemental Figure 2. Characterization of 15d-PGJ2 binding site by triple 

quadrupole MS. The figure displays the main fragmentation series (carboxy, y, and 

amino, b, series) for the doubly-charged parent ions from peak 1-3 (A-C, respectively), 

and for the triply-charged parent ion from peak 4 (D). On each panel the corresponding 

peptide sequence is shown, as well as fragments containing the 15d-PGJ2 (superscripted 

PG). Numbers in boxes (including the filtering mass at m/z 299.4 Da for the precursor 

ion scanning experiments) indicate masses resulting from fragmentation of the 15d-

PGJ2 molecule. Water loss of some fragments are marked with an (*), and some 

secondary fragmentation series peptides (a series) are also indicated. 

 

Supplemental Video 1. Mitosis progression in control MCF-7 cells. Time-lapse 

sequence taken from control MCF-7 cells progressing through mitosis. Images were 

collected every minute, and the movie runs at 7 frames per second. Bar, 50 µm. Video 

corresponds to the cell shown in Figure 4 (two upper panels). 

 

Supplemental Video 2. Mitosis progression in 15d-PGJ2-treated MCF-7 cells. 

Time-lapse sequence taken from MCF-7 cells progressing through mitosis in the 

presence of 15d-PGJ2. Images were collected every minute, and the movie runs at 7 

frames per second. Bar, 50 µm. Video corresponds to the cell shown in Figure 4 (two 

middle panels). 

 

supplemental figure legends
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Supplemental Video 3. Mitosis progression in rosiglitazone-treated MCF-7 cells 

Time-lapse sequence taken from MCF-7 cells progressing through mitosis in the 

presence of rosiglitazone. Images were collected every minute, and the movie runs at 7 

frames per second. Bar, 50 µm. Video corresponds to the cell shown in Figure 4 (two 

lower panels). 
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Graphical Abstract

http://ees.elsevier.com/bcp/download.aspx?id=144057&guid=e237ee4f-905a-4587-a5d7-d48130eae6a8&scheme=1

