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ROBUST LINEAR LEAST SQUARES REGRESSION

By Jean-Yves Audibert∗,†, and Olivier Catoni‡,§

We consider the problem of robustly predicting as well as the
best linear combination of d given functions in least squares regres-
sion, and variants of this problem including constraints on the pa-
rameters of the linear combination. For the ridge estimator and the
ordinary least squares estimator, and their variants, we provide new
risk bounds of order d/n without logarithmic factor unlike some stan-
dard results, where n is the size of the training data. We also provide
a new estimator with better deviations in presence of heavy-tailed
noise. It is based on truncating differences of losses in a min-max
framework and satisfies a d/n risk bound both in expectation and in
deviations. The key common surprising factor of these results is the
absence of exponential moment condition on the output distribution
while achieving exponential deviations. All risk bounds are obtained
through a PAC-Bayesian analysis on truncated differences of losses.
Experimental results strongly back up our truncated min-max esti-
mator.
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1. Introduction.

Our statistical task. Let Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) be n ≥ 2
pairs of input-output and assume that each pair has been independently
drawn from the same unknown distribution P . Let X denote the input space
and let the output space be the set of real numbers R, so that P is a
probability distribution on the product space Z , X × R. The target of
learning algorithms is to predict the output Y associated with an input
X for pairs Z = (X,Y ) drawn from the distribution P . The quality of a
(prediction) function f : X → R is measured by the least squares risk:

R(f) , EZ∼P

{
[Y − f(X)]2

}
.

Through the paper, we assume that the output and all the prediction func-
tions we consider are square integrable. Let Θ be a closed convex set of Rd,
and ϕ1, . . . , ϕd be d prediction functions. Consider the regression model

F =

{
fθ =

d∑

j=1

θjϕj ; (θ1, . . . , θd) ∈ Θ

}
.

The best function f∗ in F is defined by

f∗ =
d∑

j=1

θ∗jϕj ∈ argmin
f∈F

R(f).
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Such a function always exists but is not necessarily unique. Besides it is
unknown since the probability generating the data is unknown.

We will study the problem of predicting (at least) as well as function
f∗. In other words, we want to deduce from the observations Z1, . . . , Zn a
function f̂ having with high probability a risk bounded by the minimal risk
R(f∗) on F plus a small remainder term, which is typically of order d/n up
to a possible logarithmic factor. Except in particular settings (e.g., Θ is a
simplex and d ≥ √

n), it is known that the convergence rate d/n cannot be
improved in a minimax sense (see [11], and [12] for related results).

More formally, the target of the paper is to develop estimators f̂ for which
the excess risk is controlled in deviations, i.e., such that for an appropriate
constant κ > 0, for any ε > 0, with probability at least 1− ε,

(1.1) R(f̂)−R(f∗) ≤ κ
d+ log(ε−1)

n
.

Note that by integrating the deviations (using the identity EW =
∫ +∞
0 P(W >

t)dt which holds true for any nonnegative random variable W ), Inequality
(1.1) implies

(1.2) ER(f̂)−R(f∗) ≤ κ
d+ 1

n
.

In this work, we do not assume that the function

f (reg) : x 7→ E[Y |X = x],

which minimizes the risk R among all possible measurable functions, belongs
to the model F . So we might have f∗ 6= f (reg) and in this case, bounds of
the form

(1.3) ER(f̂)−R(f (reg)) ≤ C[R(f∗)−R(f (reg))] + κ
d

n
,

with a constant C larger than 1 do not even ensure that ER(f̂) tends to
R(f∗) when n goes to infinity. This kind of bounds with C > 1 have been
developed to analyze nonparametric estimators using linear approximation
spaces, in which case the dimension d is a function of n chosen so that
the bias term R(f∗) − R(f (reg)) has the order d/n of the estimation term
(see [6] and references within). Here we intend to assess the generalization
ability of the estimator even when the model is misspecified (namely when
R(f∗) > R(f (reg))). Moreover we do not assume either that Y −f (reg)(X) and
X are independent or that Y has a low-tailed distribution: for the moment,
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we just assume that Y −f∗(X) admits a finite second order moment in order
that the risk of f∗ is finite.

Several risk bounds with C = 1 can be found in the litterature. A survey
on these bounds is given in [1, Section 1]. Let us mention here the closest
bound to what we are looking for. From the work of Birgé and Massart [3],
we may derive the following risk bound for the empirical risk minimizer on
a L∞ ball (see Appendix B of [1]).

Theorem 1.1. Assume that F has a diameter H for L∞-norm, i.e.,
for any f1, f2 in F , supx∈X |f1(x)− f2(x)| ≤ H and there exists a function
f0 ∈ F satisfying the exponential moment condition:

(1.4) for any x ∈ X , E

{
exp
[
A−1

∣∣Y − f0(X)
∣∣
] ∣∣∣X = x

}
≤M,

for some positive constants A and M . Let

B̃ = inf
φ1,...,φd

sup
θ∈Rd−{0}

‖∑d
j=1 θjφj‖2∞
‖θ‖2∞

where the infimum is taken with respect to all possible orthonormal basis of
F for the dot product (f1, f2) 7→ Ef1(X)f2(X) (when the set F admits no
basis with exactly d functions, we set B̃ = +∞). Then the empirical risk
minimizer satisfies for any ε > 0, with probability at least 1− ε:

R(f̂ (erm))−R(f∗) ≤ κ(A2 +H2)
d log[2 + (B̃/n) ∧ (n/d)] + log(ε−1)

n
,

where κ is a positive constant depending only on M .

The theorem gives exponential deviation inequalities of order at worse
d log(n/d)/n, and asymptotically, when n goes to infinity, of order d/n. This
work will provide similar results under weaker assumption on the output
distribution.

Notation. When Θ = R
d, the function f∗ and the space F will be

written f∗lin and Flin to emphasize that F is the whole linear space spanned
by ϕ1, . . . , ϕd:

Flin = span{ϕ1, . . . , ϕd} and f∗lin ∈ argmin
f∈Flin

R(f).

The Euclidean norm will simply be written as ‖ · ‖, and 〈·, ·〉 will be its
associated inner product. We will consider the vector valued function ϕ :

X → R
d defined by ϕ(X) =

[
ϕk(X)

]d
k=1

, so that for any θ ∈ Θ, we have

fθ(X) = 〈θ, ϕ(X)〉.
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The Gram matrix is the d× d-matrix Q = E
[
ϕ(X)ϕ(X)T

]
, and its smallest

and largest eigenvalues will respectively be written as qmin and qmax. The
empirical risk of a function f is

r(f) =
1

n

n∑

i=1

[
f(Xi)− Yi

]2

and for λ ≥ 0, the ridge regression estimator on F is defined by f̂ (ridge) =
fθ̂(ridge) with

θ̂(ridge) ∈ argmin
θ∈Θ

{
r(fθ) + λ‖θ‖2

}
,

where λ is some nonnegative real parameter. In the case when λ = 0, the
ridge regression f̂ (ridge) is nothing but the empirical risk minimizer f̂ (erm).
Besides, the empirical risk minimizer when Θ = R

d is also called the ordinary
least squares estimator, and will be denoted f̂ (ols).

In the same way, we introduce the optimal ridge function optimizing the
expected ridge risk: f̃ = fθ̃ with

(1.5) θ̃ ∈ argmin
θ∈Θ

{
R(fθ) + λ‖θ‖2

}
.

Finally, let Qλ = Q + λI be the ridge regularization of Q, where I is the
identity matrix.

Why should we be interested in this task. There are four main reasons.
First we intend to provide a non-asymptotic analysis of the parametric linear
least squares method. Secondly, the task is central in nonparametric esti-
mation for linear approximation spaces (piecewise polynomials based on a
regular partition, wavelet expansions, trigonometric polynomials. . . )

Thirdly, it naturally arises in two-stage model selection. Precisely, when
facing the data, the statistician has often to choose several models which
are likely to be relevant for the task. These models can be of similar struc-
tures (like embedded balls of functional spaces) or on the contrary of very
different nature (e.g., based on kernels, splines, wavelets or on parametric
approaches). For each of these models, we assume that we have a learning
scheme which produces a ’good’ prediction function in the sense that it pre-
dicts as well as the best function of the model up to some small additive
term. Then the question is to decide on how we use or combine/aggregate
these schemes. One possible answer is to split the data into two groups, use
the first group to train the prediction function associated with each model,
and finally use the second group to build a prediction function which is as
good as (i) the best of the previously learnt prediction functions, (ii) the best
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convex combination of these functions or (iii) the best linear combination of
these functions. This point of view has been introduced by Nemirovski in [8]
and optimal rates of aggregation are given in [11] and references within. This
paper focuses more on the linear aggregation task (even if (ii) enters in our
setting), assuming implicitly here that the models are given in advance and
are beyond our control and that the goal is to combine them appropriately.

Finally, in practice, the noise distribution often departs from the nor-
mal distribution. In particular, it can exhibit much heavier tails, and con-
sequently induce highly non Gaussian residuals. It is then natural to ask
whether classical estimators such as the ridge regression and the ordinary
least squares estimators are sensitive to this type of noise, and whether we
can design estimators robust to this type of noise.

Outline and contributions. Section 2 provides a new analysis of the ridge
estimator and the ordinary least squares estimator, and their variants. Theo-
rem 2.1 provides an asymptotic result for the ridge estimator while Theorem
2.2 gives a non asymptotic risk bound of the empirical risk minimizer, which
is complementary to the theorems put in the survey section. In particular,
the result has the benefit to hold for the ordinary least squares estimator
and for heavy-tailed outputs. We show quantitatively that the ridge penalty
leads to an implicit reduction of the input space dimension. Section 3 shows
a non asymptotic d/n exponential deviation risk bound under weak moment
conditions on the output Y and on the d-dimensional input representation
ϕ(X).

The main contribution of this paper is to show through a PAC-Bayesian
analysis on truncated differences of losses that the output distribution does
not need to have bounded conditional exponential moments in order for
the excess risk of appropriate estimators to concentrate exponentially. Our
results tend to say that truncation leads to more robust algorithms. Lo-
cal robustness to contamination is usually invoked to advocate the removal
of outliers, claiming that estimators should be made insensitive to small
amounts of spurious data. Our work leads to a different theoretical expla-
nation. The observed points having unusually large outputs when compared
with the (empirical) variance should be down-weighted in the estimation
of the mean, since they contain less information than noise. In short, huge
outputs should be truncated because of their low signal-to-noise ratio.
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2. Ridge regression and empirical risk minimization. We recall
the definition

F =
{
fθ =

d∑

j=1

θjϕj ; (θ1, . . . , θd) ∈ Θ
}
,

where Θ is a closed convex set, not necessarily bounded (so that Θ = R
d is

allowed). In this section, we provide exponential deviation inequalities for
the empirical risk minimizer and the ridge regression estimator on F under
weak conditions on the tail of the output distribution.

The most general theorem which can be obtained from the route followed
in this section is Theorem 4.5 (page 29) stated along with the proof. It is
expressed in terms of a series of empirical bounds. The first deduction we can
make from this technical result is of asymptotic nature. It is stated under
weak hypotheses, taking advantage of the weak law of large numbers.

Theorem 2.1. For λ ≥ 0, let f̃ be its associated optimal ridge function
(see (1.5)). Let us assume that

E
[
‖ϕ(X)‖4

]
< +∞,(2.1)

and E

{
‖ϕ(X)‖2

[
f̃(X) − Y

]2}
< +∞.(2.2)

Let ν1, . . . , νd be the eigenvalues of the Gram matrix Q = E
[
ϕ(X)ϕ(X)T

]
,

and let Qλ = Q + λI be the ridge regularization of Q. Let us define the
effective ridge dimension

D =

d∑

i=1

νi
νi + λ

1(νi > 0) = Tr
[
(Q+ λI)−1Q

]
= E

[
‖Q−1/2

λ ϕ(X)‖2
]
.

When λ = 0, D is equal to the rank of Q and is otherwise smaller. For any
ε > 0, there is nε, such that for any n ≥ nε, with probability at least 1− ε,

R(f̂ (ridge)) + λ‖θ̂(ridge)‖2

≤ min
θ∈Θ

{
R(fθ) + λ‖θ‖2

}

+
30E

{
‖Q−1/2

λ ϕ(X)‖2
[
f̃(X) − Y

]2}

E
{
‖Q−1/2

λ ϕ(X)‖2
}

D

n

+ 1000 sup
v∈Rd

E

[
〈v, ϕ(X)〉2

[
f̃(X)− Y

]2]

E(〈v, ϕ(X)〉2) + λ‖v‖2
log(3ε−1)

n

≤ min
θ∈Θ

{
R(fθ) + λ‖θ‖2

}
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+ ess supE
{
[Y − f̃(X)]2

∣∣X
} 30D + 1000 log(3ε−1)

n
.

Proof. See Section 4.2 (page 23).

This theorem shows that the ordinary least squares estimator (obtained
when Θ = R

d and λ = 0), as well as the empirical risk minimizer on any
closed convex set, asymptotically reaches a d/n speed of convergence under
very weak hypotheses. It shows also the regularization effect of the ridge
regression. There emerges an effective dimension D, where the ridge penalty
has a threshold effect on the eigenvalues of the Gram matrix.

Let us remark that the second inequality stated in the theorem provides
a simplified bound which makes sense only when

ess supE
{[
Y − f̃(X)

]2 |X
}
< +∞,

implying that ‖f̃ −f (reg)‖∞ < +∞. We chose not to hide the first inequality
in the proof, since it does not require such a tight relationship between f̃
and f (reg).

On the other hand, the weakness of this result is its asymptotic nature
: nε may be arbitrarily large under such weak hypotheses, and this shows
even in the simplest case of the estimation of the mean of a real valued
random variable by its empirical mean (which is the case when d = 1 and
ϕ(X) ≡ 1).

Let us now give some non asymptotic rate under stronger hypotheses and
for the empirical risk minimizer (i.e., λ = 0).

Theorem 2.2. Assume that E
{
[Y − f∗(X)]4

}
< +∞ and

B = sup
f∈span{ϕ1,...,ϕd}−{0}

‖f‖2∞/E[f(X)2] < +∞.

Consider the (unique) empirical risk minimizer f̂ (erm) = fθ̂(erm) : x 7→
〈θ̂(erm), ϕ(x)〉 on F for which θ̂(erm) ∈ span{ϕ(X1), . . . , ϕ(Xn)}1. For any
values of ε and n such that 2/n ≤ ε ≤ 1 and

n > 1280B2

[
3Bd+ log(2/ε) +

16B2d2

n

]
,

with probability at least 1− ε,

1When F = Flin, we have θ̂(erm) = X
+
Y, with X = (ϕj(Xi))1≤i≤n,1≤j≤d, Y = [Yj ]

n
j=1

and X
+ is the Moore-Penrose pseudoinverse of X.
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(2.3) R(f̂ (erm))−R(f∗)

≤ 1920B
√

E[Y − f∗(X)]4

[
3Bd+ log(2ε−1)

n
+

(
4Bd

n

)2
]
.

Proof. See Section 4.2 (page 23).

It is quite surprising that the traditional assumption of uniform bounded-
ness of the conditional exponential moments of the output can be replaced
by a simple moment condition for reasonable confidence levels (i.e., ε ≥ 2/n).
For highest confidence levels, things are more tricky since we need to con-
trol with high probability a term of order [r(f∗)−R(f∗)]d/n (see Theorem
4.6). The cost to pay to get the exponential deviations under only a fourth-
order moment condition on the output is the appearance of the geometrical
quantity B as a multiplicative factor.

To better understand the quantity B, let us consider two cases. First,
consider that the input is uniformly distributed on X = [0, 1], and that
the functions ϕ1, . . . , ϕd belongs to the Fourier basis. Then the quantity B
behaves like a numerical constant. On the contrary, if we take ϕ1, . . . , ϕd as
the first d elements of the wavelet expansions, the more localized wavelets
induce high values of B, and B scales like

√
d, meaning that Theorem 2.2

fails to give a d/n-excess risk bound in this case. This limitation does not
appear in Theorem 2.1.

To conclude, Theorem 2.2 is limited in at least four ways: it involves the
quantity B, it applies only to uniformly bounded ϕ(X), the output needs to
have a fourth moment, and the confidence level should be as great as ε ≥ 2/n.
These limitations will be addressed in the next section by considering a more
involved algorithm.

3. A min-max estimator for robust estimation. This section pro-
vides an alternative to the empirical risk minimizer with non asymptotic
exponential risk deviations of order d/n for any confidence level. Moreover,
we will assume only a second order moment condition on the output and
cover the case of unbounded inputs, the requirement on ϕ(X) being only
a finite fourth order moment. On the other hand, we assume here that the
set Θ of the vectors of coefficients is bounded. The computability of the
proposed estimator and numerical experiments are discussed at the end of
the section.



10 3 A min-max estimator for robust estimation

3.1. The min-max estimator and its theoretical guarantee. Let α > 0,
λ ≥ 0, and consider the truncation function:

ψ(x) =





− log
(
1− x+ x2/2

)
0 ≤ x ≤ 1,

log(2) x ≥ 1,

−ψ(−x) x ≤ 0,

For any θ, θ′ ∈ Θ, introduce

D(θ, θ′) = nαλ(‖θ‖2 − ‖θ′‖2) +
n∑

i=1

ψ
(
α
[
Yi − fθ(Xi)

]2 − α
[
Yi − fθ′(Xi)

]2)
.

We recall f̃ = fθ̃ with θ̃ ∈ argminθ∈Θ
{
R(fθ) + λ‖θ‖2

}
, and the effective

ridge dimension

D =
d∑

i=1

νi
νi + λ

1(νi > 0) = Tr
[
(Q+ λI)−1Q

]
= E

[
‖Q−1/2

λ ϕ(X)‖2
]
.

Let us assume in this section that

(3.1) E
{
[Y − f̃(X)]4

}
< +∞,

and for any j ∈ {1, . . . , d},

(3.2) E
[
ϕ4
j (X)

]
< +∞.

Define

S = {f ∈ Flin : E[f(X)2] = 1},(3.3)

σ =

√
E
{
[Y − f̃(X)]2

}
=

√
R(f̃),(3.4)

χ = max
f∈S

√
E[f(X)4],(3.5)

κ =

√
E
{
[ϕ(X)TQ−1

λ ϕ(X)]2
}

E
[
ϕ(X)TQ−1

λ ϕ(X)
] ,(3.6)

κ′ =

√
E
{
[Y − f̃(X)]4

}

E
{
[Y − f̃(X)]2

} =

√
E
{
[Y − f̃(X)]4

}

σ2
,(3.7)

T = max
θ∈Θ,θ′∈Θ

√
λ‖θ − θ′‖2 + E[fθ(X)− fθ′(X)]2.(3.8)



3.1 The min-max estimator and its theoretical guarantee 11

Theorem 3.1. Let us assume that (3.1) and (3.2) hold. For some nu-
merical constants c and c′, for

n > cκχD,

by taking

(3.9) α =
1

2χ
[
2
√
κ′σ +

√
χT
]2
(
1− cκχD

n

)
,

for any estimator fθ̂ satisfying θ̂ ∈ Θ a.s., for any ε > 0 and any λ ≥ 0,
with probability at least 1− ε, we have

R(fθ̂) + λ‖θ̂‖2 ≤ min
θ∈Θ

{
R(fθ) + λ‖θ‖2

}

+
1

nα

(
max
θ1∈Θ

D(θ̂, θ1)− inf
θ∈Θ

max
θ1∈Θ

D(θ, θ1)

)

+
cκκ′Dσ2

n
+

8χ
( log(ε−1)

n + c′κ2D2

n2

)[
2
√
κ′σ +

√
χT
]2

1− cκχD
n

.

Proof. See Section 4.3 (page 33).

By choosing an estimator such that

max
θ1∈Θ

D(θ̂, θ1) < inf
θ∈Θ

max
θ1∈Θ

D(θ, θ1) + σ2
D

n
,

Theorem 3.1 provides a non asymptotic bound for the excess (ridge) risk
with a D/n convergence rate and an exponential tail even when neither the
output Y nor the input vector ϕ(X) has exponential moments. This stronger
non asymptotic bound compared to the bounds of the previous section comes
at the price of replacing the empirical risk minimizer by a more involved
estimator. Section 3.3 provides a way of computing it approximately.

Theorem 3.1 requires a fourth order moment condition on the output. In
fact, one can replace (3.1) by the following second order moment condition
on the output: for any j ∈ {1, . . . , d},

E
{
ϕj(X)2[Y − f̃(X)]2

}
< +∞,

and still obtain a D/n excess risk bound. This comes at the price of a more
lengthy formula, where terms with κ′ become terms involving the quantities
maxf∈S E

{
f(X)2[Y − f̃(X)]2

}
and E

{
ϕ(X)TQ−1ϕ(X)[Y − f̃(X)]2

}
.
(
This

can be seen by not using Cauchy-Schwarz’s inequality in (4.28) and (4.29).
)
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3.2. The value of the uncentered kurtosis coefficient χ. Let us discuss
here the value of the constant χ, which plays a critical role in the speed of
convergence of our bound. With the convention 0

0 = 0, we have

χ = sup
u∈Rd

E
(
〈u, ϕ(X)〉4

)1/2

E
(
〈u, ϕ(X)〉2

) .

Let us first examine the case when ϕ1(X) ≡ 1 and ϕ2(X), . . . , ϕd(X)
are independent. To compute χ, we can assume without loss of generality
that ϕ2(X), . . . , ϕd(X) are centered and of unit variance. In this situation,
introducing

χ∗ = max
j=1,...,d

E
[
ϕj(X)4

]1/2

E
[
ϕj(X)2

] ,

we see that for any u ∈ R
d with ‖u‖ = 1, we have

E
(
〈u, ϕ(X)〉4

)
=

d∑

i=1

u4iE(ϕi(X)4) + 6
∑

1≤i<j≤d

u2i u
2
jE
[
ϕi(X)2

]
E
[
ϕj(X)2

]

+ 4

d∑

i=2

u1u
3
iE
[
ϕi(X)3

]

≤ χ2
∗

d∑

i=1

u4i + 6
∑

i<j

u2iu
2
j + 4χ

3/2
∗

d∑

i=2

|u1ui|3

≤ sup
u∈Rd

+,‖u‖=1

(
χ2
∗ − 3

) d∑

i=1

u4i + 3

(
d∑

i=1

u2i

)2

+ 4χ
3/2
∗ u1

d∑

i=2

u3i

≤ 33/2

4
χ
3/2
∗ +

{
χ2
∗, χ2

∗ ≥ 3,

3 + χ2
∗−3
d , 1 ≤ χ2

∗ < 3.

Thus in this case

χ ≤




χ∗
(
1 + 33/2

4
√
χ∗

)1/2
, χ∗ ≥

√
3,

(
3 + 33/2

4 χ
3/2
∗ + χ2

∗−3
d

)1/2
, 1 ≤ χ∗ <

√
3.

If moreover the random variables ϕ2(X), . . . , ϕd(X) are not skewed, in
the sense that E

[
ϕj(X)3

]
= 0, j = 2, . . . , d, then




χ = χ∗, χ∗ ≥

√
3,

χ ≤
(
3 + χ2

∗−3
d

)1/2
, 1 ≤ χ∗ <

√
3.
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In particular in the case when ϕ2(X), . . . , ϕd(X) are Gaussian random vari-
ables, we have χ = χ∗ =

√
3 (as could be seen in a more straightforward

way, since in this case 〈u, ϕ(X)〉 is also Gaussian !).
In particular, this situation arises in compress sensing using random pro-

jections on Gaussian vectors. Specifically, assume that we want to recover a
signal f ∈ R

M that we know to be well approximated by a linear combina-
tion of d basis vectors f1, . . . , fd. We measure n≪M projections of the sig-
nal f on i.i.d. M -dimensional standard normal random vectors X1, . . . ,Xn:
Yi = 〈f,Xi〉, i = 1, . . . , n. Then, recovering the coefficient θ1, . . . , θd such
that f =

∑d
j=1 θjfj is associated to the least squares regression problem

Y ≈ ∑d
j=1 θjϕj(X), with ϕj(x) = 〈fj , x〉, and X having a M -dimensional

standard normal distribution.
Let us discuss now a bound which is suited to the case when we are using

a partial basis of regression functions. The functions ϕj are usually bounded
(think of the Fourier basis, wavelet bases, histograms, splines ...).

Let us assume that for some positive constant A and any u ∈ R
d,

‖u‖ ≤ AE
[
〈u, ϕ(X)〉2

]1/2
.

This appears as some stability property of the partial basis ϕj with respect
to the L2-norm, since it can also be written as

d∑

j=1

u2j ≤ A2
E

[( d∑

j=1

ujϕj(X)

)2
]
, u ∈ R

d.

This will be the case if ϕj is nearly orthogonal in the sense that

E
[
ϕj(X)2

]
≥ 1, and

∣∣∣E
[
ϕj(X)ϕk(X)

]∣∣∣ ≤ 1−A−2

d− 1
.

In this situation, by using

E
[
〈u, ϕ(X)〉4

]
≤ ‖u‖2 ess sup‖ϕ(X)‖2E

[
〈u, ϕ(X)〉2

]
,

one can check that

χ ≤ A

∥∥∥∥∥

( d∑

j=1

ϕ2
j

)1/2
∥∥∥∥∥
∞
.

Therefore, if X is the uniform random variable on the unit interval and ϕj ,
j = 1, . . . , d are any functions from the Fourier basis (meaning that they are
of the form

√
2 cos(2kπX) or

√
2 sin(2kπX)), then χ ≤

√
2d (because they

form an orthogonal system, so that A = 1).
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On the other hand, a localized basis like the evenly spaced histogram basis
of the unit interval

ϕj(x) =
√
d1
(
x ∈

[
(j − 1)/d, j/d

[)
,

will also be such that χ ≤
√
d. Similar computations could be made for other

local bases, like wavelet bases. Note that when χ is of order
√
d, Theorem 3.1

means that the excess risk of the min-max truncated estimator f̂ is upper
bounded by C d

n provided that n ≥ Cd2 for a large enough constant C.
Let us discuss the case when X is some observed random variable whose

distribution is only approximately known. Namely let us assume that (ϕj)
d
j=1

is some basis of functions in L2

[
P̃
]
with some known coefficient χ̃, where

P̃ is an approximation of the true distribution of X in the sense that the
density of the true distribution P of X with respect to the distribution P̃

is in the range (η−1/2, η). In this situation, the coefficient χ satisfies the
inequality χ ≤ ηχ̃. Indeed

EX∼P

[
〈u, ϕ(X)〉4

]
≤ ηE

X∼P̃

[
〈u, ϕ(X)〉4

]

≤ ηχ̃2
E

X∼P̃

[
〈u, ϕ(X)〉2

]2 ≤ η2χ̃2
EX∼P

[
〈u, ϕ(X)〉2

]2
.

Let us conclude this section with some scenario for the case when X is a
real-valued random variable. Let us consider the distribution function of P̃

F̃ (x) = P̃(X ≤ x).

Then, if P̃ has no atoms, the distribution of F̃ (X) is uniform in (0, 1).
Starting from some suitable partial basis (ϕj)

d
j=1 of L2

[
(0, 1),U

]
where U is

the uniform distribution, like the ones discussed above, we can build a basis
for our problem as

ϕ̃j(X) = ϕj

[
F̃ (X)

]
.

Moreover, if P is absolutely continuous with respect to P̃ with density g,
then P ◦ F̃−1 is absolutely continuous with respect to P̃ ◦ F̃−1, with density
g ◦ F̃−1, and of course, the fact that g takes values in (η−1/2, η) implies the
same property for g ◦ F̃−1. Thus, if χ̃ is the coefficient corresponding to
ϕj(U) when U is the uniform random variable on the unit interval, then the
true coefficient χ (corresponding to ϕ̃j(X)) will be such that χ ≤ ηχ̃.

3.3. Computation of the estimator. For ease of description of the algo-
rithm, we will write X for ϕ(X), which is equivalent to considering without
loss of generality that the input space is Rd and that the functions ϕ1, . . . ,ϕd
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are the coordinate functions. Therefore, the function fθ maps an input x to
〈θ, x〉. Let us introduce

Li(θ) = α
(
〈θ,Xi〉 − Yi

)2
.

For any subset of indices I ⊂ {1, . . . , n}, let us define

rI(θ) = λ‖θ‖2 + 1

α|I|
∑

i∈I
Li(θ).

We suggest the following heuristics to compute an approximation of

argmin
θ∈Θ

sup
θ′∈Θ

D(θ, θ′).

• Start from I1 = {1, . . . , n} with the ordinary least squares estimate

θ̂1 = argmin
Rd

rI1 .

• At step number k, compute

Q̂k =
1

|Ik|
∑

i∈Ik
XiX

T
i .

• Consider the sets

Jk,1(η) =

{
i ∈ Ik : Li(θ̂k)X

T
i Q̂

−1
k Xi

(
1 +

√
1 +

[
Li(θ̂k)

]−1
)2

< η

}
,

where Q̂−1
k is the (pseudo-)inverse of the matrix Q̂k.

• Let us define

θk,1(η) = argmin
Rd

rJk,1(η),

Jk,2(η) =
{
i ∈ Ik :

∣∣Li

(
θk,1(η)

)
− Li

(
θ̂k
)∣∣ ≤ 1

}
,

θk,2(η) = argmin
Rd

rJk,2(η),

(ηk, ℓk) = arg min
η∈R+,ℓ∈{1,2}

max
j=1,...,k

D
(
θk,ℓ(η), θ̂j

)
,

Ik+1 = Jk,ℓk(ηk),

θ̂k+1 = θk,ℓk(ηk).
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• Stop when
max

j=1,...,k
D(θ̂k+1, θ̂j) ≥ 0,

and set θ̂ = θ̂k as the final estimator of θ̃.

Note that there will be at most n steps, since Ik+1  Ik and in practice much
less in this iterative scheme. Let us give some justification for this proposal.
Let us notice first that

D(θ + h, θ) = nαλ(‖θ + h‖2 − ‖θ‖2)

+
n∑

i=1

ψ
(
α
[
2〈h,Xi〉

(
〈θ,Xi〉 − Yi

)
+ 〈h,Xi〉2

])
.

Hopefully, θ̃ = argminθ∈Rd

(
R(fθ)+λ‖θ‖2

)
is in some small neighbourhood

of θ̂k already, according to the distance defined by Q ≃ Q̂k. So we may
try to look for improvements of θ̂k by exploring neighbourhoods of θ̂k of
increasing sizes with respect to some approximation of the relevant norm
‖θ‖2Q = E

[
〈θ,X〉2

]
.

Since the truncation function ψ is constant on (−∞,−1] and [1,+∞),
the map θ 7→ D(θ, θ̂k) induces a decomposition of the parameter space into
cells corresponding to different sets I of examples. Indeed, such a set I is
associated to the set CI of θ such that Li(θ)−Li(θ̂k) < 1 if and only if i ∈ I.
Although this may not be the case, we will do as if the map θ 7→ D(θ, θ̂k)
restricted to the cell CI reached its minimum at some interior point of CI ,
and approximates this minimizer by the minimizer of rI .

The idea is to remove first the examples which will become inactive in
the closest cells to the current estimate θ̂k. The cells for which the contribu-
tion of example number i is constant are delimited by at most four parallel
hyperplanes.

It is easy to see that the square of the inverse of the distance of θ̂k to the
closest of these hyperplanes is equal to

1

α
XT

i Q̂
−1
k XiLi(θ̂k)

(
1 +

√
1 +

1

Li(θ̂k)

)2

.

Indeed, this distance is the infimum of ‖Q̂1/2
k h‖, where h is a solution of

〈h,Xi〉2 + 2〈h,Xi〉
(
〈θ̂k,Xi〉 − Yi

)
=

1

α
.

It is computed by considering h of the form h = ξ‖Q̂−1/2
k Xi‖−1Q̂−1

k Xi and
solving an equation of order two in ξ.
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This explains the proposed choice of Jk,1(η). Then a first estimate θk,1(η)
is computed on the basis of this reduced sample, and the sample is read-
justed to Jk,2(η) by checking which constraints are really activated in the

computation of D(θk,1(η), θ̂k). The estimated parameter is then readjusted
taking into account the readjusted sample (this could as a variant be iterated
more than once). Now that we have some new candidates θk,ℓ(η), we check

the minimax property against them to elect Ik+1 and θ̂k+1. Since we did
not check the minimax property against the whole parameter set Θ = R

d,
we have no theoretical warranty for this simplified algorithm. Nonetheless,
similar computations to what we did could prove that we are close to solving
minj=1,...,kR(fθ̂j), since we checked the minimax property on the reduced

parameter set {θ̂j , j = 1, . . . , k}. Thus the proposed heuristics is capable of
improving on the performance of the ordinary least squares estimator, while
being guaranteed not to degrade its performance significantly.

3.4. Synthetic experiments. In Section 3.4.1, we detail the different kinds
of noises we work with. Then, Sections 3.4.2, 3.4.3 and 3.4.4 describe the
three types of functional relationships between the input, the output and the
noise involved in our experiments. A motivation for choosing these input-
output distributions was the ability to compute exactly the excess risk, and
thus to compare easily estimators. Section 3.4.5 provides details about the
implementation, its computational efficiency and the main conclusions of the
numerical experiments. Figures and tables are postponed to Appendix A.

3.4.1. Noise distributions. In our experiments, we consider different types
of noise that are centered and with unit variance:

• the standard Gaussian noise: W ∼ N (0, 1),
• a heavy-tailed noise defined by:W = sign(V )/|V |1/q, with V ∼ N (0, 1)

a standard Gaussian random variable and q = 2.01 (the real number
q is taken strictly larger than 2 as for q = 2, the random variable W
would not admit a finite second moment).

• an asymmetric heavy-tailed noise defined by:

W =

{ |V |−1/q if V > 0,
− q

q−1 otherwise,

with q = 2.01 with V ∼ N (0, 1) a standard Gaussian random variable.
• a mixture of a Dirac random variable with a low-variance Gaussian

random variable defined by: with probability p, W =
√

(1− ρ)/p, and
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with probability 1− p, W is drawn from

N
(
−
√
p(1− ρ)

1− p
,

ρ

1− p
− p(1− ρ)

(1− p)2

)
.

The parameter ρ ∈ [p, 1] characterizes the part of the variance of W
explained by the Gaussian part of the mixture. Note that this noise
admits exponential moments, but for n of order 1/p, the Dirac part of
the mixture generates low signal-to-noise points.

3.4.2. Independent normalized covariates (INC(n, d)). In INC(n, d), we
consider ϕ(X) = X, and the input-output pair is such that

Y = 〈θ∗,X〉 + σW,

where the components of X are independent standard normal distributions,
θ∗ = (10, . . . , 10)T ∈ R

d, and σ = 10.

3.4.3. Highly correlated covariates (HCC(n, d)). In HCC(n, d), we con-
sider ϕ(X) = X, and the input-output pair is such that

Y = 〈θ∗,X〉 + σW,

where X is a multivariate centered normal Gaussian with covariance matrix
Q obtained by drawing a (d, d)-matrix A of uniform random variables in
[0, 1] and by computing Q = AAT , θ∗ = (10, . . . , 10)T ∈ R

d, and σ = 10.
So the only difference with the setting of Section 3.4.2 is the correlation
between the covariates.

3.4.4. Trigonometric series (TS(n, d)). Let X be a uniform random vari-
able on [0, 1]. Let d be an even number. In TS(n, d), we consider

ϕ(X) =
(
cos(2πX), . . . , cos(dπX), sin(2πX), . . . , sin(dπX)

)T
,

and the input-output pair is such that

Y = 20X2 − 10X − 5

3
+ σW,

with σ = 10. One can check that this implies

θ∗ =

(
20

π2
, . . . ,

20

π2(d2)
2
,−10

π
, . . . ,− 10

π(d2)

)T

∈ R
d.
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3.4.5. Experiments.

Choice of the parameters and implementation details.. The min-max trun-
cated algorithm has two parameters α and λ. In the subsequent experiments,
we set the ridge parameter λ to the natural default choice for it: λ = 0. For
the truncation parameter α, according to our analysis (see (3.9)), it roughly
should be of order 1/σ2 up to kurtosis coefficients. By using the ordinary
least squares estimator, we roughly estimate this value, and test values of α
in a geometric grid (of 8 points) around it (with ratio 3). Cross-validation
can be used to select the final α. Nevertheless, it is computationally expen-
sive and is significantly outperformed in our experiments by the following
simple procedure: start with the smallest α in the geometric grid and in-
crease it as long as θ̂ = θ1, that is as long as we stop at the end of the first
iteration and output the empirical risk minimizer.

To compute θk,1(η) or θk,2(η), one needs to determine a least squares
estimate (for a modified sample). To reduce the computational burden, we
do not want to test all possible values of η (note that there are at most
n values leading to different estimates). Our experiments show that testing
only three levels of η is sufficient. Precisely, we sort the quantity

Li(θ̂k)X
T
i Q̂

−1
k Xi

(
1 +

√
1 +

[
Li(θ̂k)

]−1
)2

by decreasing order and consider η being the first, 5-th and 25-th value of
the ordered list. Overall, in our experiments, the computational complexity
is approximately fifty times larger than the one of computing the ordinary
least squares estimator.

Results.. The tables and figures have been gathered in Appendix A. Tables
1 and 2 give the results for the mixture noise. Tables 3, 4 and 5 provide the
results for the heavy-tailed noise and the standard Gaussian noise. Each
line of the tables has been obtained after 1000 generations of the training
set. These results show that the min-max truncated estimator is often equal
to the ordinary least squares estimator f̂ (ols), while it ensures impressive
consistent improvements when it differs from f̂ (ols). In this latter case, the
number of points that are not considered in f̂ , i.e. the number of points with
low signal-to-noise ratio, varies a lot from 1 to 150 and is often of order 30.
Note that not only the points that we expect to be considered as outliers
(i.e. very large output points) are erased, and that these points seem to be
taken out by local groups: see Figures 1 and 2 in which the erased points
are marked by surrounding circles.

Besides, the heavier the noise tail is (and also the larger the variance of
the noise is), the more often the truncation modifies the initial ordinary
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least squares estimator, and the more improvements we get from the min-
max truncated estimator, which also becomes much more robust than the
ordinary least squares estimator (see the confidence intervals in the tables).

Finally, we have also tested more traditional methods in robust regression:
namely, the M-estimators with Huber’s loss, L1-loss, and Tukey’s bisquare
influence function, and also the least trimmed squares estimator, the S-
estimator and the MM-estimator (see [9, 13] and references within). These
methods rely on diminishing the influence of points having “unreasonably”
large residuals. They were developed to handle training sets containing true
outliers, i.e. points (X,Y ) not generated by the distribution P . This is
not the case in our estimation framework. By overweighting points hav-
ing reasonably small residuals, these methods are often biased even in set-
tings where the noise is symmetric and the regression function f (reg) : x 7→
E[Y |X = x] belongs to Flin (i.e., f (reg) = f∗lin), and also even when there is
no noise (but f (reg) /∈ f∗lin).

The worst results were obtained by the L1-loss, since estimating the
(conditional) median is here really different from estimating the (condi-
tional) mean. The MM-estimator and the M-estimators with Huber’s loss
and Tukey’s bisquare influence function give good results as long as the
signal-to-noise ratio is low. When the signal-to-noise ratio is high, a lack
of consistency drastically appears in part of our simulations, showing that
these methods are thus not suited for our estimation framework.

The S-estimator is almost consistently improving on the ordinary least
squares estimator (in our simulations). However, when the signal-to-noise
ratio is low (that is, in the setting of the forementioned simulations with
σ = 10), the improvements are much less significant than the ones of the
min-max truncated estimator.

4. Proofs.

4.1. Main ideas of the proofs. The goal of this section is to explain the
key ingredients appearing in the proofs which both allows to obtain sub-
exponential tails for the excess risk under a non-exponential moment as-
sumption and get rid of the logarithmic factor in the excess risk bound.

4.1.1. Sub-exponential tails under a non-exponential moment assumption
via truncation. Let us start with the idea allowing us to prove exponen-
tial inequalities under just a moment assumption (instead of the traditional
exponential moment assumption). To understand it, we can consider the
(apparently) simplistic 1-dimensional situation in which we have Θ = R

and the marginal distribution of ϕ1(X) is the Dirac distribution at 1. In
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this case, the risk of the prediction function fθ is R(fθ) = E(Y − θ)2 =
E(Y − θ∗)2 + (EY − θ)2, so that the least squares regression problem boils
down to the estimation of the mean of the output variable. If we only assume
that Y admits a finite second moment, say EY 2 ≤ 1, it is not clear whether
for any ε > 0, it is possible to find θ̂ such that with probability at least
1− 2ε,

(4.1) R(fθ̂)−R(f∗) = (E(Y )− θ̂)2 ≤ c
log(ε−1)

n
,

for some numerical constant c. Indeed, from Chebyshev’s inequality, the

trivial choice θ̂ =
∑n

i=1 Yi

n just satisfies: with probability at least 1− 2ε,

R(fθ̂)−R(f∗) ≤ 1

nε
,

which is far from the objective (4.1) for small confidence levels (consider
ε = exp(−√

n) for instance). The key idea is thus to average (soft) truncated
values of the outputs. This is performed by taking

θ̂ =
1

nλ

n∑

i=1

log

(
1 + λYi +

λ2Y 2
i

2

)
,

with λ =

√
2 log(ε−1)

n . Since we have

logE exp(nλθ̂) = n log

(
1 + λE(Y ) +

λ2

2
E(Y 2)

)
≤ nλE(Y ) + n

λ2

2
,

the exponential Chebyshev’s inequality guarantees that with probability at
least 1− ε, we have nλ(θ̂ − E(Y )) ≤ nλ2

2 + log(ε−1), hence

θ̂ − E(Y ) ≤
√

2 log(ε−1)

n
.

Replacing Y by −Y in the previous argument, we obtain that with proba-
bility at least 1− ε, we have

nλ

{
E(Y ) +

1

nλ

n∑

i=1

log

(
1− λYi +

λ2Y 2
i

2

)}
≤ n

λ2

2
+ log(ε−1).

Since − log(1 + x + x2/2) ≤ log(1 − x + x2/2), this implies E(Y ) − θ̂ ≤√
2 log(ε−1)

n . The two previous inequalities imply Inequality (4.1) (for c = 2),
showing that sub-exponential tails are achievable even when we only assume
that the random variable admits a finite second moment (see [5] for more
details on the robust estimation of the mean of a random variable).
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4.1.2. Localized PAC-Bayesian inequalities to eliminate a logarithm fac-
tor. Let us first recall that the Kullback-Leibler divergence between distri-
butions ρ and µ defined on F is

(4.2) K(ρ, µ) ,




Ef∼ρ log

[
dρ

dµ
(f)

]
if ρ≪ µ,

+∞ otherwise,

where
dρ

dµ
denotes as usual the density of ρ w.r.t. µ. For any real-valued

(measurable) function h defined on F such that
∫
exp[h(f)]π(df) < +∞, we

define the distribution πh on F by its density:

(4.3)
dπh
dπ

(f) =
exp[h(f)]∫

exp[h(f ′)]π(df ′)
.

The analysis of statistical inference generally relies on upper bounding the
supremum of an empirical process χ indexed by the functions in a model
F . One central tool to obtain these bounds is the concentration inequalities.
An alternative approach, called the PAC-Bayesian one, consists in using the
entropic equality

(4.4) E exp

(
sup
ρ∈M

{∫
ρ(df)χ(f)−K(ρ, π′)

})
=

∫
π′(df)E exp

(
χ(f)

)
.

where M is the set of probability distributions on F .
Let ř : F → R be an observable process such that for any f ∈ F , we have

E exp
(
χ(f)

)
≤ 1

for χ(f) = λ[R(f) − ř(f)] and some λ > 0. Then (4.4) leads to: for any
ε > 0, with probability at least 1− ε, for any distribution ρ on F , we have

(4.5)

∫
ρ(df)R(f) ≤

∫
ρ(df)ř(f) +

K(ρ, π′) + log(ε−1)

λ
.

The lefthand-side quantity represents the expected risk with respect to the
distribution ρ. To get the smallest upper bound on this quantity, a natu-
ral choice of the (posterior) distribution ρ is obtained by minimizing the
righthand-side, that is by taking ρ = π′−λř (with the notation introduced in
(4.3)). This distribution concentrates on functions f ∈ F for which ř(f) is
small. Without prior knowledge, one may want to choose a prior distribution
π′ = π which is rather “flat” (e.g., the one induced by the Lebesgue mea-
sure in the case of a model F defined by a bounded parameter set in some
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Euclidean space). Consequently the Kullback-Leibler divergence K(ρ, π′),
which should be seen as the complexity term, might be excessively large.

To overcome the lack of prior information and the resulting high complex-
ity term, one can alternatively use a more “localized” prior distribution. Here
we will use Gaussian distributions centered at the function of interest (for
instance, the function f∗), and with covariance matrix proportional to the
inverse of the Gram matrix Q. The idea of using PAC-Bayesian inequalities
with Gaussian prior and posterior distributions goes back to Langford and
Shawe-Taylor [7] in the context of linear classification.

4.2. Proofs of Theorems 2.1 and 2.2. To shorten the formulae, we will
write X for ϕ(X), which is equivalent to considering without loss of gener-
ality that the input space is R

d and that the functions ϕ1, . . . ,ϕd are the
coordinate functions. Therefore, the function fθ maps an input x to 〈θ, x〉.
With a slight abuse of notation, R(θ) will denote the risk of this prediction
function.

Let us first assume that the matrix Qλ = Q+λI is positive definite. This
indeed does not restrict the generality of our study, even in the case when
λ = 0, as we will discuss later (Remark 4.1).

Consider the change of coordinates

X = Q
−1/2
λ X.

Let us introduce
R(θ) = E

[
(〈θ,X〉 − Y )2

]
,

so that
R(Q

1/2
λ θ) = R(θ) = E

[
(〈θ,X〉 − Y )2

]
.

Let
Θ =

{
Q

1/2
λ θ; θ ∈ Θ

}
.

Consider

r(θ) =
1

n

n∑

i=1

(
〈θ,Xi〉 − Yi

)2
,(4.6)

r(θ) =
1

n

n∑

i=1

(
〈θ,X i〉 − Yi

)2
,(4.7)

θ0 = argmin
θ∈Θ

R(θ) + λ‖Q−1/2
λ θ‖2,(4.8)

θ̂ ∈ argmin
θ∈Θ

r(θ) + λ‖θ‖2,(4.9)
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θ1 = Q
1/2
λ θ̂ ∈ argmin

θ∈Θ
r(θ) + λ‖Q−1/2

λ θ‖2.(4.10)

For α > 0, let us introduce the notation

Wi(θ) = α
{(

〈θ,Xi〉 − Yi
)2 −

(
〈θ0,X i〉 − Yi

)2}
,

W (θ) = α
{(

〈θ,X〉 − Y
)2 −

(
〈θ0,X〉 − Y

)2}
.

For any θ2 ∈ R
d and β > 0, let us consider the Gaussian distribution

centered at θ2

ρθ2(dθ) =

(
β

2π

)d/2

exp

(
−β
2
‖θ − θ2‖2

)
dθ.

Lemma 4.1. For any η > 0 and α > 0, with probability at least 1 −
exp(−η), for any θ2 ∈ R

d,

− n
∫
ρθ2(dθ) log

{
1− E

[
W (θ)

]
+E

[
W (θ)2

]
/2
}

≤ −
n∑

i=1

(∫
ρθ2(dθ) log

{
1−Wi(θ) +Wi(θ)

2/2
})

+K(ρθ2 , ρθ0) + η,

where K(ρθ2 , ρθ0) is the Kullback-Leibler divergence function :

K(ρθ2 , ρθ0) =

∫
ρθ2(dθ) log

[
dρθ2
dρθ0

(θ)

]
.

Proof.

E

(
∫
ρθ0(dθ)

n∏

i=1

1−Wi(θ) +Wi(θ)
2/2

1− E
[
W (θ)

]
+ E

[
W (θ)2

]
/2

)
≤ 1,

thus with probability at least 1− exp(−η)

log

(
∫
ρθ0(dθ)

n∏

i=1

1−Wi(θ) +Wi(θ)
2/2

1− E
[
W (θ)

]
+ E

[
W (θ)2

]
/2

)
≤ η.

We conclude from the convex inequality (see [4, page 159])

log
(∫
ρθ0(dθ) exp

[
h(θ)

])
≥
∫
ρθ2(dθ)h(θ)−K(ρθ2 , ρθ0).
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Let us compute some useful quantities

K(ρθ2 , ρθ0) =
β

2
‖θ2 − θ0‖2,(4.11)

∫
ρθ2(dθ)

[
W (θ)

]
= α

∫
ρθ2(dθ)〈θ − θ2,X〉2 +W (θ2)

=W (θ2) + α
‖X‖2
β

,(4.12)

∫
ρθ2(dθ)〈θ − θ2,X〉4 = 3‖X‖4

β2
,(4.13)

(4.14)
∫
ρθ2(dθ)

[
W (θ)2

]
= α2

∫
ρθ2(dθ)〈θ − θ0,X〉2

(
〈θ + θ0,X〉 − 2Y

)2

= α2
∫
ρθ2(dθ)

[
〈θ − θ2 + θ2 − θ0,X〉

(
〈θ − θ2 + θ2 + θ0,X〉 − 2Y

)]2

=
∫
ρθ2(dθ)

[
α〈θ − θ2,X〉2 + 2α〈θ − θ2,X〉

(
〈θ2,X〉 − Y

)
+W (θ2)

]2

=
∫
ρθ2(dθ)

[
α2〈θ − θ2,X〉4 + 4α2〈θ − θ2,X〉2

(
〈θ2,X〉 − Y

)2
+W (θ2)

2

+ 2α〈θ − θ2,X〉2W (θ2)
]

=
3α2‖X‖4

β2
+

2α‖X‖2
β

[
2α
(
〈θ2,X〉 − Y

)2
+W (θ2)

]
+W (θ2)

2.

Using the fact that

2α
(
〈θ2,X〉 − Y

)2
+W (θ2) = 2α

(
〈θ0,X〉 − Y

)2
+ 3W (θ2),

and that for any real numbers a and b, 6ab ≤ 9a2 + b2, we get

Lemma 4.2.

∫
ρθ2(dθ)

[
W (θ)

]
=W (θ2) + α

‖X‖2
β

,

(4.15)

∫
ρθ2(dθ)

[
W (θ)2

]
=W (θ2)

2 +
2α‖X‖2

β

[
2α
(
〈θ0,X〉 − Y

)2
+ 3W (θ2)

]

+
3α2‖X‖4

β2
(4.16)

≤ 10W (θ2)
2 +

4α2‖X‖2
β

(
〈θ0,X〉 − Y

)2
+

4α2‖X‖4
β2

,(4.17)

and the same holds true when W is replaced with Wi and (X,Y ) with
(X i, Yi).
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Another important thing to realize is that

E
[
‖X‖2

]
= E

[
Tr
(
X X

T )]
= E

[
Tr
(
Q

−1/2
λ XXTQ

−1/2
λ

)]

= E
[
Tr
(
Q−1

λ XXT
)]

= Tr
[
Q−1

λ E(XXT )
]

= Tr
(
Q−1

λ (Qλ − λI)
)

= d− λTr(Q−1
λ ) = D .(4.18)

We can weaken Lemma 4.1 (page 24) noticing that for any real number
x, x ≤ − log(1− x) and

− log

(
1− x+

x2

2

)
= log

(
1 + x+ x2/2

1 + x4/4

)

≤ log

(
1 + x+

x2

2

)
≤ x+

x2

2
.

We obtain with probability at least 1− exp(−η)

nE
[
W (θ2)

]
+
nα

β
E
[
‖X‖2

]
− 5nE

[
W (θ2)

2
]

− E

{
2nα2‖X‖2

β

(
〈θ0,X〉 − Y

)2
+

2nα2‖X‖4
β2

}

≤
n∑

i=1

{
Wi(θ2) + 5Wi(θ2)

2

+
α‖X i‖2

β
+

2α2‖X i‖2
β

(
〈θ0,X i〉 − Y

)2
+

2α2‖X i‖4
β2

}

+
β

2
‖θ2 − θ0‖2 + η.

Noticing that for any real numbers a and b, 4ab ≤ a2 + 4b2, we can then
bound

α−2W (θ2)
2 = 〈θ2 − θ0,X〉2

(
〈θ2 + θ0,X〉 − 2Y

)2

= 〈θ2 − θ0,X〉2
[
〈θ2 − θ0,X〉+ 2

(
〈θ0,X〉 − Y

)]2

= 〈θ2 − θ0,X〉4 + 4〈θ2 − θ0,X〉3
(
〈θ0,X〉 − Y

)

+ 4〈θ2 − θ0,X〉2
(
〈θ0,X〉 − Y

)2

≤ 2〈θ2 − θ0,X〉4 + 8〈θ2 − θ0,X〉2
(
〈θ0,X〉 − Y

)2
.
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Theorem 4.3. Let us put

D̂ =
1

n

n∑

i=1

‖X i‖2 (let us remind that D = E
[
‖X‖2

]
from (4.18)),

B1 = 2E
[
‖X‖2

(
〈θ0,X〉 − Y

)2]
,

B̂1 =
2

n

n∑

i=1

[
‖Xi‖2

(
〈θ0,Xi〉 − Yi

)2]
,

B2 = 2E
[
‖X‖4

]
,

B̂2 =
2

n

n∑

i=1

‖X i‖4,

B3 = 40 sup
{
E
[
〈u,X〉2

(
〈θ0,X〉 − Y

)2]
: u ∈ R

d, ‖u‖ = 1
}
,

B̂3 = sup

{
40

n

n∑

i=1

〈u,X i〉2
(
〈θ0,X i〉 − Yi

)2
: u ∈ R

d, ‖u‖ = 1
}
,

B4 = 10 sup
{
E

[
〈u,X〉4

]
: u ∈ R

d, ‖u‖ = 1
}
,

B̂4 = sup

{
10

n

n∑

i=1

〈u,X i〉4 : u ∈ R
d, ‖u‖ = 1

}
.

With probability at least 1− exp(−η), for any θ2 ∈ R
d,

nE
[
W (θ2)

]
−
[
nα2(B3 + B̂3) +

β

2

]
‖θ2 − θ0‖2

− nα2(B4 + B̂4)‖θ2 − θ0‖4

≤
n∑

i=1

Wi(θ2) +
nα

β
(D̂ −D) +

nα2

β
(B1 + B̂1) +

nα2

β2
(B2 + B̂2) + η.

Let us now assume that θ2 ∈ Θ and let us use the fact that Θ is a
convex set and that θ0 = argminθ∈ΘR(θ) + λ‖Q−1/2

λ θ‖2. Introduce θ∗ =

argminθ∈Rd R(θ) + λ‖Q−1/2
λ θ‖2. As we have

R(θ) + λ‖Q−1/2
λ θ‖2 = ‖θ − θ∗‖2 +R(θ∗) + λ‖Q−1/2

λ θ∗‖2,

the vector θ0 is uniquely defined as the projection of θ∗ on Θ for the Eu-
clidean distance, and for any θ2 ∈ Θ
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(4.19) α−1
E
[
W (θ2)

]
+ λ‖Q−1/2

λ θ2‖2 − λ‖Q−1/2
λ θ0‖2

= R(θ2)−R(θ0) + λ‖Q−1/2
λ θ2‖2 − λ‖Q−1/2

λ θ0‖2

= ‖θ2 − θ∗‖2 − ‖θ0 − θ∗‖2

= ‖θ2 − θ0‖2 + 2〈θ2 − θ0, θ0 − θ∗〉 ≥ ‖θ2 − θ0‖2.

This and the inequality

α−1
n∑

i=1

Wi(θ1) + nλ‖Q−1/2
λ θ1‖2 − nλ‖Q−1/2

λ θ0‖2 ≤ 0

leads to the following result.

Theorem 4.4. With probability at least 1− exp(−η),

R(θ̂) + λ‖θ̂‖2 − inf
θ∈Θ

[
R(θ) + λ‖θ‖2

]

= α−1
E
[
W (θ1)

]
+ λ‖Q−1/2

λ θ1‖2 − λ‖Q−1/2
λ θ0‖2

is not greater than the smallest positive non degenerate root of the following
polynomial equation as soon as it has one

{
1−

[
α(B3 + B̂3) +

β
2nα

]}
x− α(B4 + B̂4)x

2

=
1

β
max(D̂ −D, 0) +

α

β
(B1 + B̂1) +

α

β2
(B2 + B̂2) +

η

nα
.

Proof. Let us remark first that when the polynomial appearing in the
theorem has two distinct roots, they are of the same sign, due to the sign of
its constant coefficient. Let Ω̂ be the event of probability at least 1−exp(−η)
described in Theorem 4.3 (page 27). For any realization of this event for
which the polynomial described in Theorem 4.4 does not have two distinct
positive roots, the statement of Theorem 4.4 is void, and therefore fulfilled.
Let us consider now the case when the polynomial in question has two
distinct positive roots x1 < x2. Consider in this case the random (trivially
nonempty) closed convex set

Θ̂ =
{
θ ∈ Θ : R(θ) + λ‖θ‖2 ≤ inf

θ′∈Θ

[
R(θ′) + λ‖θ′‖2

]
+ x1+x2

2

}
.

Let θ3 ∈ argmin
θ∈Θ̂ r(θ) + λ‖θ‖2 and θ4 ∈ argminθ∈Θ r(θ) + λ‖θ‖2. We

see from Theorem 4.3 that

(4.20) R(θ3) + λ‖θ3‖2 < R(θ0) + λ‖θ0‖2 +
x1 + x2

2
,
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because it cannot be larger from the construction of Θ̂. On the other hand,
since Θ̂ ⊂ Θ, the line segment [θ3, θ4] is such that [θ3, θ4]∩Θ̂ ⊂ argminθ∈Θ̂ r(θ)+

λ‖θ‖2. We can therefore apply equation (4.20) to any point of [θ3, θ4] ∩ Θ̂,
which proves that [θ3, θ4] ∩ Θ̂ is an open subset of [θ3, θ4]. But it is also
a closed subset by construction, and therefore, as it is non empty and
[θ3, θ4] is connected, it proves that [θ3, θ4] ∩ Θ̂ = [θ3, θ4], and thus that
θ4 ∈ Θ̂. This can be applied to any choice of θ3 ∈ argmin

θ∈Θ̂ r(θ) + λ‖θ‖2
and θ4 ∈ argminθ∈Θ r(θ) + λ‖θ‖2, proving that argminθ∈Θ r(θ) + λ‖θ‖2 ⊂
argminθ∈Θ̂ r(θ)+λ‖θ‖2 and therefore that any θ4 ∈ argminθ∈Θ r(θ)+λ‖θ‖2
is such that

R(θ4) + λ‖θ4‖2 ≤ inf
θ∈Θ

[
R(θ) + λ‖θ‖2

]
+ x1.

because the values between x1 and x2 are excluded by Theorem 4.3.

The actual convergence speed of the least squares estimator θ̂ on Θ will
depend on the speed of convergence of the “empirical bounds” B̂k towards
their expectations. We can rephrase the previous theorem in the following
more practical way:

Theorem 4.5. Let η0, η1, . . . , η5 be positive real numbers. With proba-
bility at least

1− P(D̂ > D + η0)−
4∑

k=1

P(B̂k −Bk > ηk)− exp(−η5),

R(θ̂) + λ‖θ̂‖2 − infθ∈Θ
[
R(θ) + λ‖θ‖2

]
is smaller than the smallest non de-

generate positive root of

(4.21)
{
1−

[
α(2B3 + η3) +

β
2nα

]}
x− α(2B4 + η4)x

2

=
η0
β

+
α

β
(2B1 + η1) +

α

β2
(2B2 + η2) +

η5
nα

,

where we can optimize the values of α > 0 and β > 0, since this equation
has non random coefficients. For example, taking for simplicity

α =
1

8B3 + 4η3
,

β =
nα

2
,

we obtain
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x− 2B4 + η4
4B3 + 2η3

x2 =
16η0(2B3 + η3)

n
+

8B1 + 4η1
n

+
32(2B3 + η3)(2B2 + η2)

n2
+

8η5(2B3 + η3)

n
.

4.2.1. Proof of Theorem 2.1. Let us now deduce Theorem 2.1 (page 7)
from Theorem 4.5. Let us first remark that with probability at least 1− ε/2

D̂ ≤ D +

√
B2

εn
,

because the variance of D̂ is less than B2
2n . For a given ε > 0, let us take

η0 =
√

B2
εn , η1 = B1, η2 = B2, η3 = B3 and η4 = B4. We get that Rλ(θ̂) −

infθ∈ΘRλ(θ) is smaller than the smallest positive non degenerate root of

x− B4

2B3
x2 =

48B3

n

√
B2

nε
+

12B1

n
+

288B2B3

n2
+

24 log(3/ε)B3

n
,

with probability at least

1− 5 ε

6
−

4∑

k=1

P(B̂k > Bk + ηk).

According to the weak law of large numbers, there is nε such that for any
n ≥ nε,

4∑

k=1

P(B̂k > Bk + ηk) ≤ ε/6.

Thus, increasing nε and the constants to absorb the second order terms, we
see that for some nε and any n ≥ nε, with probability at least 1 − ε, the
excess risk is less than the smallest positive root of

x− B4

2B3
x2 =

13B1

n
+

24 log(3/ε)B3

n
.

Now, as soon as ac < 1/4, the smallest positive root of x − ax2 = c is
2c

1+
√
1−4ac

. This means that for n large enough, with probability at least
1− ε,

Rλ(θ̂)− inf
θ
Rλ(θ) ≤

15B1

n
+

25 log(3/ε)B3

n
,

which is precisely the statement of Theorem 2.1 (page 7), up to some change
of notation.
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4.2.2. Proof of Theorem 2.2. Let us now weaken Theorem 4.4 in order
to make a more explicit non asymptotic result and obtain Theorem 2.2.
From now on, we will assume that λ = 0. We start by giving bounds on the
quantity defined in Theorem 4.3 in terms of

B = sup
f∈span{ϕ1,...,ϕd}−{0}

‖f‖2∞/E[f(X)]2.

Since we have
‖X‖2 = ‖Q−1/2

λ X‖2 ≤ dB,

we get

d̂ =
1

n

n∑

i=1

‖X i‖2 ≤ dB,

B1 = 2E
[
‖X‖2

(
〈θ0,X〉 − Y

)2] ≤ 2dB R(f∗),

B̂1 =
2

n

n∑

i=1

[
‖X i‖2

(
〈θ0,X i〉 − Yi

)2] ≤ 2dB r(f∗),

B2 = 2E
[
‖X‖4

]
≤ 2d2B2,

B̂2 =
2

n

n∑

i=1

‖X i‖4 ≤ 2d2B2,

B3 = 40 sup
{
E
[
〈u,X〉2

(
〈θ0,X〉 − Y

)2]
: u ∈ R

d, ‖u‖ = 1
}
≤ 40B R(f∗),

B̂3 = sup

{
40

n

n∑

i=1

〈u,X i〉2
(
〈θ0,X i〉 − Yi

)2
: u ∈ R

d, ‖u‖ = 1
}
≤ 40B r(f∗),

B4 = 10 sup
{
E

[
〈u,X〉4

]
: u ∈ R

d, ‖u‖ = 1
}
≤ 10B2,

B̂4 = sup

{
10

n

n∑

i=1

〈u,X i〉4 : u ∈ R
d, ‖u‖ = 1

}
≤ 10B2.

Let us put

a0 =
2dB + 4dBα[R(f∗) + r(f∗)] + η

αn
+

16B2d2

αn2
,

a1 = 3/4 − 40αB[R(f∗) + r(f∗)],

and
a2 = 20αB2.
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Theorem 4.4 applied with β = nα/2 implies that with probability at least
1 − η the excess risk R(f̂ (erm)) − R(f∗) is upper bounded by the smallest
positive root of a1x−a2x2 = a0 as soon as a21 > 4a0a2. In particular, setting
ε = exp(−η) when (4.22) holds, we have

R(f̂ (erm))−R(f∗) ≤ 2a0

a1 +
√
a21 − 4a0a2

≤ 2a0
a1

.

We conclude that

Theorem 4.6. For any α > 0 and ε > 0, with probability at least 1− ε,
if the inequality

(4.22) 80

(
(2 + 4α[R(f∗) + r(f∗)])Bd+ log(ε−1)

n
+

(
4Bd

n

)2
)

<

(
3

4B
− 40α[R(f∗) + r(f∗)]

)2

holds, then we have
(4.23)

R(f̂ (erm))−R(f∗) ≤ J
(
(2 + 4α[R(f∗) + r(f∗)])Bd+ log(ε−1)

n
+

(
4Bd

n

)2
)
,

where J = 8/(3α − 160α2B[R(f∗) + r(f∗)])

Now, the Bienaymé-Chebyshev inequality implies

P
(
r(f∗)−R(f∗) ≥ t

)
≤ E

(
r(f∗)−R(f∗)

)2

t2
≤ E[Y − f∗(X)]4/nt2.

Under the finite moment assumption of Theorem 2.2, we obtain that for any
ε ≥ 1/n, with probability at least 1− ε,

r(f∗) < R(f∗) +
√

E[Y − f∗(X)]4.

From Theorem 4.6 and a union bound, by taking

α =
(
80B[2R(f∗) +

√
E[Y − f∗(X)]4

)−1
,

we get that with probability 1− 2ε,

R(f̂ (erm))−R(f∗) ≤ J1B

(
3Bd+ log(ε−1)

n
+

(
4Bd

n

)2
)
,

with J1 = 640
(
2R(f∗) +

√
E
{
[Y − f∗(X)]4

})
. This concludes the proof of

Theorem 2.2.
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Remark 4.1. Let us indicate now how to handle the case when Q is
degenerate. Let us consider the linear subspace S of R

d spanned by the
eigenvectors of Q corresponding to positive eigenvalues. Then almost surely
Span{Xi, i = 1, . . . , n} ⊂ S. Indeed for any θ in the kernel of Q, E

(
〈θ,X〉2

)
=

0 implies that 〈θ,X〉 = 0 almost surely, and considering a basis of the ker-
nel, we see that X ∈ S almost surely, S being orthogonal to the kernel of Q.
Thus we can restrict the problem to S, as soon as we choose

θ̂ ∈ span
{
X1, . . . ,Xn

}
∩ argmin

θ

n∑

i=1

(
〈θ,Xi〉 − Yi

)2
,

or equivalently with the notation X = (ϕj(Xi))1≤i≤n,1≤j≤d and Y = [Yj]
n
j=1,

θ̂ ∈ imX
T ∩ argmin

θ
‖X θ − Y ‖2

This proves that the results of this section apply to this special choice of the
empirical least squares estimator. Since we have R

d = ker X⊕im X
T , this

choice is unique. Finally, we also have that (2.3) still holds by replacing d
by rank(Q).

4.3. Proof of Theorem 3.1. We use a similar notation as in Section 4.2:
we write X for ϕ(X). Therefore, the function fθ maps an input x to 〈θ, x〉.
We consider the change of coordinates

X = Q
−1/2
λ X.

Thus, from (4.18), we have E
[
‖X‖2

]
= D. We will use

R(θ) = E
[
(〈θ,X〉 − Y )2

]
,

so that R(Q1/2θ) = E
[
(〈θ,X〉 − Y )2

]
= R(fθ). Let

Θ =
{
Q

1/2
λ θ; θ ∈ Θ

}
.

Consider

θ0 = argmin
θ∈Θ

{
R(θ) + λ‖Q−1/2

λ θ‖2
}
.

We thus have θ̃ = Q
−1/2
λ θ0, and

σ =

√
E
[(
〈θ0,X〉 − Y

)2]
,
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χ = sup
u∈Rd

E
(
〈u,X〉4

)1/2

E
(
〈u,X〉2

) ,

κ =
E
(
‖X‖4

)1/2

E
(
‖X‖2

) =
E
(
‖X‖4

)1/2

D
,

κ′ =
E
[(
〈θ0,X〉 − Y

)4]1/2

σ2
,

T = ‖Θ‖ = max
θ,θ′∈Θ

‖θ − θ′‖.

For α > 0, we introduce

Ji(θ) = 〈θ,Xi〉 − Yi, J(θ) = 〈θ,X〉 − Y

Li(θ) = α
(
〈θ,Xi〉 − Yi

)2
, L(θ) = α

(
〈θ,X〉 − Y

)2

Wi(θ) = Li(θ)− Li(θ0), W (θ) = L(θ)− L(θ0),

and

r′(θ, θ′) = λ(‖Q−1/2
λ θ‖2 − ‖Q−1/2

λ θ′‖2) + 1

nα

n∑

i=1

ψ
(
L(θ)− L(θ′)

)
.

Let θ̄ = Q
1/2
λ θ̂ ∈ Θ. We have

(4.24) −r′(θ0, θ̄) = r′(θ̄, θ0) ≤ max
θ1∈Θ

r′(θ̄, θ1) ≤ γ +max
θ1∈Θ

r′(θ0, θ1),

where γ = max
θ1∈Θ

r′(θ̄, θ1) − inf
θ∈Θ

max
θ1∈Θ

r′(θ, θ1) is a quantity which can be

made arbitrary small by choice of the estimator. By using an upper bound
r′(θ0, θ1) that holds uniformly in θ1, we will control both left and right hand
sides of (4.24).

To achieve this, we will upper bound

(4.25) r′(θ0, θ1) = λ(‖Q−1/2
λ θ0‖2 − ‖Q−1/2

λ θ1‖2) +
1

nα

n∑

i=1

ψ
[
−Wi(θ1)

]

by the expectation of a distribution depending on θ1 of a quantity that
does not depend on θ1, and then use the PAC-Bayesian argument to control
this expectation uniformly in θ1. The distribution depending on θ1 should
therefore be taken such that for any θ1 ∈ Θ, its Kullback-Leibler divergence
with respect to some fixed distribution is small (at least when θ1 is close to
θ0).

Let us start with the following result.
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Lemma 4.7. Let f, g : R → R be two Lebesgue measurable functions
such that f(x) ≤ g(x), x ∈ R. Let us assume that there exists h ∈ R such

that x 7→ g(x) + hx2

2 is convex. Then for any probability distribution µ on
the real line,

f

(∫
xµ(dx)

)
≤
∫
g(x)µ(dx) + min

{
sup f − inf f,

h

2
Var(µ)

}
.

Proof. Let us put x0 =
∫
xµ(dx) The function

x 7→ g(x) +
h

2
(x− x0)

2

is convex. Thus, by Jensen’s inequality

f(x0) ≤ g(x0) ≤
∫
µ(dx)

[
g(x) +

h

2
(x− x0)

2

]
=

∫
g(x)µ(dx) +

h

2
Var(µ).

On the other hand

f(x0) ≤ sup f ≤ sup f +

∫ [
g(x)− inf f

]
µ(dx)

=

∫
g(x)µ(dx) + sup f − inf f.

The lemma is a combination of these two inequalities.

The above lemma will be used with f = g = ψ, where ψ is the increasing
influence function

ψ(x) =





− log(2), x ≤ −1,

log(1 + x+ x2/2), −1 ≤ x ≤ 0,

− log(1− x+ x2/2), 0 ≤ x ≤ 1,

log(2), x ≥ 1.

Since we have for any x ∈ R

− log

(
1− x+

x2

2

)
= log

(
1 + x+ x2

2

1 + x4

4

)
< log

(
1 + x+

x2

2

)
,

the function ψ satisfies for any x ∈ R

− log

(
1− x+

x2

2

)
< ψ(x) < log

(
1 + x+

x2

2

)
.
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Moreover

ψ′(x) =
1− x

1− x+ x2

2

, ψ′′(x) =
x(x− 2)

2
(
1− x+ x2

2

)2 ≥ −2, 0 ≤ x ≤ 1,

showing (by symmetry) that the function x 7→ ψ(x) + 2x2 is convex on the
real line.

For any θ′ ∈ R
d and β > 0, we consider the Gaussian distribution with

mena θ′ and covariance β−1I:

ρθ′(dθ) =

(
β

2π

)d/2

exp

(
−β
2
‖θ − θ′‖2

)
dθ.

From Lemmas 4.2 and 4.7 (with µ the distribution of −Wi(θ) +
α‖Xi‖2

β
when θ is drawn from ρθ1 and for a fixed pair (Xi, Yi)), we can see that

ψ
[
−Wi(θ1)

]
= ψ

{∫
ρθ1(dθ)

[
−Wi(θ) +

α‖X i‖2
β

]}

≤
∫
ρθ1(dθ)ψ

[
−Wi(θ) +

α‖X i‖2
β

]

+min
{
log(4),Varρθ1

[
Li(θ)

]}
.

Let us compute

1

α2
Varρθ1

[
Li(θ)

]
= Varρθ1

[
J2
i (θ)− J2

i (θ1)
]

=

∫
ρθ1(dθ)

[
J2
i (θ)− J2

i (θ1)
]2 − ‖X i‖4

β2

=

∫
ρθ1(dθ)

[
〈θ − θ1,X i〉2 + 2〈θ − θ1,X i〉Ji(θ1)

]2
− ‖X i‖4

β2

=
2‖X i‖4
β2

+
4Li(θ1)‖X i‖2

αβ
.(4.26)

Let ξ ∈ (0, 1). Now we can remark that

Li(θ1) ≤
Li(θ)

ξ
+
α〈θ − θ1,X i〉2

1− ξ
.

We get

min
{
log(4),Varρθ1

[
Li(θ)

]}
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= min
{
log(4),

4α‖X i‖2Li(θ1)

β
+

2α2‖X i‖4
β2

}

≤
∫
ρθ1(dθ)min

{
log(4),

4α‖X i‖2Li(θ)

βξ
+

2α2‖Xi‖4
β2

+
4α2‖X i‖2〈θ − θ1,X i〉2

β(1− ξ)

}

≤
∫
ρθ1(dθ)min

{
log(4),

4α‖X i‖2Li(θ)

βξ
+

2α2‖X i‖4
β2

}

+min
{
log(4),

4α2‖X i‖4
β2(1− ξ)

}
.

Let us now put a = 3
log(4) < 2.17, b = a+ a2 log(4) < 8.7 and let us remark

that

min
{
log(4), x

}
+min

{
log(4), y

}

≤ log
[
1 + amin{log(4), x}

]
+ log(1 + ay)

≤ log
(
1 + ax+ by

)
, x, y ∈ R+.

Thus

min
{
log(4),Varρθ1

[
Li(θ)

]}

≤
∫
ρθ1(dθ) log

[
1 +

4aα‖X i‖2Li(θ)

βξ
+

2α2‖X i‖4
β2

(
a+

2b

1− ξ

)]
.

We can then remark that

ψ(x) + log(1 + y) = log
[
exp[ψ(x)] + y exp[ψ(x)]

]

≤ log
[
exp[ψ(x)] + 2y

]
≤ log

(
1 + x+

x2

2
+ 2y

)
, x ∈ R, y ∈ R+.

Thus, putting c0 = a+
2b

1− ξ
, we get

(4.27) ψ
[
−Wi(θ1)

]
≤
∫
ρθ1(dθ) log[Ai(θ)],

with

Ai(θ) = 1−Wi(θ) +
α‖X i‖2

β
+

1

2

(
−Wi(θ) +

α‖X i‖2
β

)2
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+
8aα‖X i‖2Li(θ)

βξ
+

4c0α
2‖X i‖4
β2

.

Similarly, we define A(θ) by replacing (Xi, Yi) by (X,Y ). Since we have

E exp

( n∑

i=1

log[Ai(θ)]− n log[EA(θ)]

)
= 1,

from the usual PAC-Bayesian argument, we have with probability at least
1− ε, for any θ1 ∈ R

d,

∫
ρθ1(dθ)

( n∑

i=1

log[Ai(θ)]

)
− n

∫
ρθ1(dθ) log[A(θ)] ≤ K(ρθ1 , ρθ0) + log(ε−1)

≤ β‖θ1 − θ0‖2
2

+ log(ε−1)

From (4.25) and (4.27), with probability at least 1− ε, for any θ1 ∈ R
d, we

get

r′(θ0, θ1) ≤
1

α
log

{
1 +E

[∫
ρθ1(dθ)

(
−W (θ) +

α‖X‖2
β

+
1

2

(
−W (θ) +

α‖X‖2
β

)2

+
8aα‖X‖2L(θ)

βξ
+

4c0α
2‖X‖4
β2

)]}

+
β‖θ1 − θ0‖2

2nα
+

log(ε−1)

nα
+ λ(‖Q−1/2

λ θ0‖2 − ‖Q−1/2
λ θ1‖2).

Now from (4.26) and α‖X‖2
β = −L(θ1) +

∫
ρθ1(dθ)L(θ), we have

∫
ρθ1(dθ)

(
−W (θ) +

α‖X‖2
β

)2

= Varρθ1

[
L(θ)

]
+W (θ1)

2

=W (θ1)
2 +

4αL(θ1)‖X‖2
β

+
2α2‖X‖4

β2
.

Proposition 4.8. With probability at least 1− ε, for any θ1 ∈ R
d,

r′(θ0, θ1) ≤
1

α
log

{
1 +E

[
−W (θ1) +

W (θ1)
2

2
+

(
2 + 8a/ξ

)
α‖X‖2L(θ1)
β

+

(
1 + 8a/ξ + 4c0

)
α2‖X‖4

β2

]}
+
β‖θ1 − θ0‖2

2nα
+

log(ε−1)

nα

+ λ(‖Q−1/2
λ θ0‖2 − ‖Q−1/2

λ θ1‖2)
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≤ E

[
J(θ0)

2 − J(θ1)
2 +

1

2α
W (θ1)

2 +
(2 + 8a/ξ)‖X‖2L(θ1)

β

+
(1 + 8a/ξ + 4c0)α‖X‖4

β2

]
+
β‖θ1 − θ0‖2

2nα
+

log(ε−1)

nα

+ λ(‖Q−1/2
λ θ0‖2 − ‖Q−1/2

λ θ1‖2).

By using the triangular inequality and Cauchy-Schwarz’s inequality, we
get

1

α2
E
[
W (θ1)

2
]
= E

{[
〈θ1 − θ0,X〉2 + 2〈θ1 − θ0,X〉J(θ0)

]2}

≤
{
E
[
〈θ1 − θ0,X〉4

]1/2
+ 2E

[
〈θ1 − θ0,X〉4

]1/4
E
[
J(θ0)

4
]1/4}2

(4.28)

≤
{
χ‖θ1 − θ0‖2E

[〈
θ1 − θ0
‖θ1 − θ0‖

,X

〉2]

+ 2‖θ1 − θ0‖σ
√
κ′χ

√

E

[〈
θ1 − θ0

‖θ1 − θ0‖
,X

〉2]}2

≤ χqmax

qmax + λ
‖θ1 − θ0‖2

{
‖θ1 − θ0‖

√
χqmax

qmax + λ
+ 2σ

√
κ′
}2

,

and

1

α
E
[
‖X‖2L(θ1)

]
= E

{[
‖X‖〈θ1 − θ0,X〉+ ‖X‖J(θ0)

]2}

≤ E
[
‖X‖4

]1/2{
E
[
〈θ1 − θ0,X〉4

]1/4
+ E

[
J(θ0)

4
]1/4}2

(4.29)

≤ κD

{
‖θ1 − θ0‖

√
χqmax

qmax + λ
+ 2σ

√
κ′
}2

,

Let us put

R̃(θ) = R(θ) + λ‖Q−1/2
λ θ‖2,

c1 = 4(2 + 8a/ξ),

c2 = 4(1 + 8a/ξ + 4c0),

δ =
c1κκ

′Dσ2

n
+

2χ
( log(ε−1)

n + c2κ2D2

n2

)[
2
√
κ′σ + ‖Θ‖√χ

]2

1− 4c1κχD
n

.

We have proved the following result.
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Proposition 4.9. With probability at least 1− ε, for any θ1 ∈ R
d,

r′(θ0, θ1) ≤ R̃(θ0)− R̃(θ1) +
α

2
χ‖θ1 − θ0‖2

[
2
√
κ′σ + ‖θ1 − θ0‖

√
χ
]2

+
c1α

4β
κD
[√
κ′σ + ‖θ1 − θ0‖

√
χ
]2

+
c2ακ

2D2

4β2

+
β‖θ1 − θ0‖2

2nα
+

log(ε−1)

nα
.

Let us assume from now on that θ1 ∈ Θ, our convex bounded parameter
set. In this case, as seen in (4.19), we have ‖θ0 − θ1‖2 ≤ R̃(θ1)− R̃(θ0). We
can also use the fact that

[√
κ′σ + ‖θ1 − θ0‖

√
χ
]2 ≤ 2κ′σ2 + 2χ‖θ1 − θ0‖2.

We deduce from these remarks that with probability at least 1− ε,

r′(θ0, θ1) ≤
{
−1+

αχ

2

[
2
√
κ′σ+‖Θ‖√χ

]2
+

β

2nα
+
c1ακDχ

2β

}[
R̃(θ1)−R̃(θ0)

]

+
c1ακDκ

′σ2

2β
+
c2ακ

2D2

4β2
+

log(ε−1)

nα
.

Let us assume that n > 4c1κχD and let us choose

β =
nα

2
,

α =
1

2χ
[
2
√
κ′σ + ‖Θ‖√χ

]2
(
1− 4c1κχD

n

)
,

to get

r′(θ0, θ1) ≤ − R̃(θ1)− R̃(θ0)

2
+ δ.

Plugging this into (4.24), we get

R̃(θ̄)− R̃(θ0)

2
− δ ≤ r′(θ̄, θ0) ≤ max

θ1∈Θ

(
R̃(θ0)− R̃(θ1)

2

)
+ γ + δ = γ + δ,

hence

R̃(θ̄)− R̃(θ0) ≤ 2γ + 4δ.

Computing the numerical values of the constants when ξ = 0.8 gives c1 < 95
and c2 < 1511.
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42 A Experimental results for the min-max truncated estimator (Section 3.3)

APPENDIX A: EXPERIMENTAL RESULTS FOR THE MIN-MAX
TRUNCATED ESTIMATOR (SECTION 3.3)

Table 1

Comparison of the min-max truncated estimator f̂ with the ordinary least squares
estimator f̂ (ols) for the mixture noise (see Section 3.4.1) with ρ = 0.1 and p = 0.005. In

parenthesis, the 95%-confidence intervals for the estimated quantities.

n
b
o
f
it
er
a
ti
o
n
s

n
b
o
f
it
er
.
w
it
h
R
(f̂

)
6=

R
(f̂

(o
ls
)
)

n
b
o
f
it
er
.
w
it
h
R
(f̂

)
<

R
(f̂

(o
ls
)
)

E
R
(f̂

(o
ls
)
)
−

R
(f

∗
)

E
R
(f̂

)
−

R
(f

∗
)

E
R
[(
f̂
(o

ls
)
)|
f̂
6=

f̂
(o

ls
)
]
−

R
(f

∗
)

E
[R

(f̂
)|
f̂
6=

f̂
(o

ls
)
]
−

R
(f

∗
)

INC(n=200,d=1) 1000 419 405 0.567(±0.083) 0.178(±0.025) 1.191(±0.178) 0.262(±0.052)
INC(n=200,d=2) 1000 506 498 1.055(±0.112) 0.271(±0.030) 1.884(±0.193) 0.334(±0.050)
HCC(n=200,d=2) 1000 502 494 1.045(±0.103) 0.267(±0.024) 1.866(±0.174) 0.316(±0.032)
TS(n=200,d=2) 1000 561 554 1.069(±0.089) 0.310(±0.027) 1.720(±0.132) 0.367(±0.036)
INC(n=1000,d=2) 1000 402 392 0.204(±0.015) 0.109(±0.008) 0.316(±0.029) 0.081(±0.011)
INC(n=1000,d=10) 1000 950 946 1.030(±0.041) 0.228(±0.016) 1.051(±0.042) 0.207(±0.014)
HCC(n=1000,d=10) 1000 942 942 0.980(±0.038) 0.222(±0.015) 1.008(±0.039) 0.203(±0.015)
TS(n=1000,d=10) 1000 976 973 1.009(±0.037) 0.228(±0.017) 1.018(±0.038) 0.217(±0.016)
INC(n=2000,d=2) 1000 209 207 0.104(±0.007) 0.078(±0.005) 0.206(±0.021) 0.082(±0.012)
HCC(n=2000,d=2) 1000 184 183 0.099(±0.007) 0.076(±0.005) 0.196(±0.023) 0.070(±0.010)
TS(n=2000,d=2) 1000 172 171 0.101(±0.007) 0.080(±0.005) 0.206(±0.020) 0.083(±0.012)
INC(n=2000,d=10) 1000 669 669 0.510(±0.018) 0.206(±0.012) 0.572(±0.023) 0.117(±0.009)
HCC(n=2000,d=10) 1000 669 669 0.499(±0.018) 0.207(±0.013) 0.561(±0.023) 0.125(±0.011)
TS(n=2000,d=10) 1000 754 753 0.516(±0.018) 0.195(±0.013) 0.558(±0.022) 0.131(±0.011)
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Table 2

Comparison of the min-max truncated estimator f̂ with the ordinary least squares
estimator f̂ (ols) for the mixture noise (see Section 3.4.1) with ρ = 0.4 and p = 0.005. In

parenthesis, the 95%-confidence intervals for the estimated quantities.
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R
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)
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]
−

R
(f

∗
)

E
[R

(f̂
)|
f̂
6=

f̂
(o

ls
)
]
−

R
(f

∗
)

INC(n=200,d=1) 1000 234 211 0.551(±0.063) 0.409(±0.042) 1.211(±0.210) 0.606(±0.110)
INC(n=200,d=2) 1000 195 186 1.046(±0.088) 0.788(±0.061) 2.174(±0.293) 0.848(±0.118)
HCC(n=200,d=2) 1000 222 215 1.028(±0.079) 0.748(±0.051) 2.157(±0.243) 0.897(±0.112)
TS(n=200,d=2) 1000 291 268 1.053(±0.079) 0.805(±0.058) 1.701(±0.186) 0.851(±0.093)
INC(n=1000,d=2) 1000 127 117 0.201(±0.013) 0.181(±0.012) 0.366(±0.053) 0.207(±0.035)
INC(n=1000,d=10) 1000 262 249 1.023(±0.035) 0.902(±0.030) 1.238(±0.081) 0.777(±0.054)
HCC(n=1000,d=10) 1000 201 192 0.991(±0.033) 0.902(±0.031) 1.235(±0.088) 0.790(±0.067)
TS(n=1000,d=10) 1000 171 162 1.009(±0.033) 0.951(±0.031) 1.166(±0.098) 0.825(±0.071)
INC(n=2000,d=2) 1000 80 77 0.105(±0.007) 0.099(±0.006) 0.214(±0.042) 0.135(±0.029)
HCC(n=2000,d=2) 1000 44 42 0.102(±0.007) 0.099(±0.007) 0.187(±0.050) 0.120(±0.034)
TS(n=2000,d=2) 1000 47 47 0.101(±0.007) 0.099(±0.007) 0.147(±0.032) 0.103(±0.026)
INC(n=2000,d=10) 1000 116 113 0.511(±0.016) 0.491(±0.016) 0.611(±0.052) 0.437(±0.042)
HCC(n=2000,d=10) 1000 110 105 0.500(±0.016) 0.481(±0.015) 0.602(±0.056) 0.430(±0.044)
TS(n=2000,d=10) 1000 101 98 0.511(±0.016) 0.499(±0.016) 0.601(±0.054) 0.486(±0.051)
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Table 3

Comparison of the min-max truncated estimator f̂ with the ordinary least squares
estimator f̂ (ols) with the heavy-tailed noise (see Section 3.4.1).
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INC(n=200,d=1) 1000 163 145 7.72(±3.46) 3.92(±0.409) 30.52(±20.8) 7.20(±1.61)
INC(n=200,d=2) 1000 104 98 22.69(±23.14) 19.18(±23.09) 45.36(±14.1) 11.63(±2.19)
HCC(n=200,d=2) 1000 120 117 18.16(±12.68) 8.07(±0.718) 99.39(±105) 15.34(±4.41)
TS(n=200,d=2) 1000 110 105 43.89(±63.79) 39.71(±63.76) 48.55(±18.4) 10.59(±2.01)
INC(n=1000,d=2) 1000 104 100 3.98(±2.25) 1.78(±0.128) 23.18(±21.3) 2.03(±0.56)
INC(n=1000,d=10) 1000 253 242 16.36(±5.10) 7.90(±0.278) 41.25(±19.8) 7.81(±0.69)
HCC(n=1000,d=10) 1000 220 211 13.57(±1.93) 7.88(±0.255) 33.13(±8.2) 7.28(±0.59)
TS(n=1000,d=10) 1000 214 211 18.67(±11.62) 13.79(±11.52) 30.34(±7.2) 7.53(±0.58)
INC(n=2000,d=2) 1000 113 103 1.56(±0.41) 0.89(±0.059) 6.74(±3.4) 0.86(±0.18)
HCC(n=2000,d=2) 1000 105 97 1.66(±0.43) 0.95(±0.062) 7.87(±3.8) 1.13(±0.23)
TS(n=2000,d=2) 1000 101 95 1.59(±0.64) 0.88(±0.058) 8.03(±6.2) 1.04(±0.22)
INC(n=2000,d=10) 1000 259 255 8.77(±4.02) 4.23(±0.154) 21.54(±15.4) 4.03(±0.39)
HCC(n=2000,d=10) 1000 250 242 6.98(±1.17) 4.13(±0.127) 15.35(±4.5) 3.94(±0.25)
TS(n=2000,d=10) 1000 238 233 8.49(±3.61) 5.95(±3.486) 14.82(±3.8) 4.17(±0.30)
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Table 4

Comparison of the min-max truncated estimator f̂ with the ordinary least squares
estimator f̂ (ols) with the asymmetric heavy-tailed noise (see Section 3.4.1).
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INC(n=200,d=1) 1000 87 77 5.49(±3.07) 3.00(±0.330) 35.44(±34.7) 6.85(±2.48)
INC(n=200,d=2) 1000 70 66 19.25(±23.23) 17.4(±23.2) 37.95(±13.1) 11.05(±2.87)
HCC(n=200,d=2) 1000 67 66 7.19(±0.88) 5.81(±0.397) 31.52(±10.5) 10.87(±2.64)
TS(n=200,d=2) 1000 76 68 39.80(±64.09) 37.9(±64.1) 34.28(±14.8) 9.21(±2.05)
INC(n=1000,d=2) 1000 101 92 2.81(±2.21) 1.31(±0.106) 16.76(±21.8) 1.88(±0.69)
INC(n=1000,d=10) 1000 211 195 10.71(±4.53) 5.86(±0.222) 29.00(±21.3) 6.03(±0.71)
HCC(n=1000,d=10) 1000 197 185 8.67(±1.16) 5.81(±0.177) 20.31(±5.59) 5.79(±0.43)
TS(n=1000,d=10) 1000 258 233 13.62(±11.27) 11.3(±11.2) 14.68(±2.45) 5.60(±0.36)
INC(n=2000,d=2) 1000 106 92 1.04(±0.37) 0.64(±0.042) 4.54(±3.45) 0.79(±0.16)
HCC(n=2000,d=2) 1000 99 90 0.90(±0.11) 0.66(±0.042) 3.23(±0.93) 0.82(±0.16)
TS(n=2000,d=2) 1000 84 81 1.11(±0.66) 0.60(±0.042) 6.80(±7.79) 0.69(±0.17)
INC(n=2000,d=10) 1000 238 222 6.32(±4.18) 3.07(±0.147) 16.84(±17.5) 3.18(±0.51)
HCC(n=2000,d=10) 1000 221 203 4.49(±0.98) 2.98(±0.091) 9.76(±4.39) 2.93(±0.22)
TS(n=2000,d=10) 1000 412 350 5.93(±3.51) 4.59(±3.44) 6.07(±1.76) 2.84(±0.16)
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Table 5

Comparison of the min-max truncated estimator f̂ with the ordinary least squares
estimator f̂ (ols) for standard Gaussian noise.
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INC(n=200,d=1) 1000 20 8 0.541(±0.048) 0.541(±0.048) 0.401(±0.168) 0.397(±0.167)
INC(n=200,d=2) 1000 1 0 1.051(±0.067) 1.051(±0.067) 2.566 2.757
HCC(n=200,d=2) 1000 1 0 1.051(±0.067) 1.051(±0.067) 2.566 2.757
TS(n=200,d=2) 1000 0 0 1.068(±0.067) 1.068(±0.067) – –
INC(n=1000,d=2) 1000 0 0 0.203(±0.013) 0.203(±0.013) – –
INC(n=1000,d=10) 1000 0 0 1.023(±0.029) 1.023(±0.029) – –
HCC(n=1000,d=10) 1000 0 0 1.023(±0.029) 1.023(±0.029) – –
TS(n=1000,d=10) 1000 0 0 0.997(±0.028) 0.997(±0.028) – –
INC(n=2000,d=2) 1000 0 0 0.112(±0.007) 0.112(±0.007) – –
HCC(n=2000,d=2) 1000 0 0 0.112(±0.007) 0.112(±0.007) – –
TS(n=2000,d=2) 1000 0 0 0.098(±0.006) 0.098(±0.006) – –
INC(n=2000,d=10) 1000 0 0 0.517(±0.015) 0.517(±0.015) – –
HCC(n=2000,d=10) 1000 0 0 0.517(±0.015) 0.517(±0.015) – –
TS(n=2000,d=10) 1000 0 0 0.501(±0.015) 0.501(±0.015) – –



47

Fig 1. Surrounding points are the points of the training set generated several times from
TS(1000, 10) (with the mixture noise with p = 0.005 and ρ = 0.4) that are not taken into
account in the min-max truncated estimator (to the extent that the estimator would not
change by removing simultaneously all these points). The min-max truncated estimator
x 7→ f̂(x) appears in dash-dot line, while x 7→ E(Y |X = x) is in solid line. In these six
simulations, it outperforms the ordinary least squares estimator.
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Fig 2. Surrounding points are the points of the training set generated several times from
TS(200, 2) (with the heavy-tailed noise) that are not taken into account in the min-max
truncated estimator (to the extent that the estimator would not change by removing these
points). The min-max truncated estimator x 7→ f̂(x) appears in dash-dot line, while x 7→
E(Y |X = x) is in solid line. In these six simulations, it outperforms the ordinary least
squares estimator. Note that in the last figure, it does not consider 64 points among the
200 training points.

0 0.2 0.4 0.6 0.8 1
−600

−500

−400

−300

−200

−100

0

100

0 0.2 0.4 0.6 0.8 1
−500

−400

−300

−200

−100

0

100

200

0 0.2 0.4 0.6 0.8 1
−500

−400

−300

−200

−100

0

100

0 0.2 0.4 0.6 0.8 1
−350

−300

−250

−200

−150

−100

−50

0

50

100

150

0 0.2 0.4 0.6 0.8 1
−200

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1
−400

−350

−300

−250

−200

−150

−100

−50

0

50

100


	1 Introduction
	Our statistical task
	Why should we be interested in this task
	Outline and contributions

	2 Ridge regression and empirical risk minimization
	3 A min-max estimator for robust estimation
	3.1 The min-max estimator and its theoretical guarantee
	3.2 The value of the uncentered kurtosis coefficient 
	3.3 Computation of the estimator
	3.4 Synthetic experiments
	3.4.1 Noise distributions
	3.4.2 Independent normalized covariates (INC(n,d))
	3.4.3 Highly correlated covariates (HCC(n,d))
	3.4.4 Trigonometric series (TS(n,d))
	3.4.5 Experiments


	4 Proofs
	4.1 Main ideas of the proofs
	4.1.1 Sub-exponential tails under a non-exponential moment assumption via truncation
	4.1.2 Localized PAC-Bayesian inequalities to eliminate a logarithm factor

	4.2 Proofs of Theorems 2.1 and 2.2
	4.2.1 Proof of Theorem 2.1
	4.2.2 Proof of Theorem 2.2

	4.3 Proof of Theorem 3.1

	References
	A Experimental results for the min-max truncated estimator (Section 3.3)

