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Neveu-Schwarz and operators algebras III Subfactors and Connes fusion

This paper is the third of a series giving a self-contained way from the Neveu-Schwarz algebra to a new series of irreducible subfactors. Here we introduce the local von Neumann algebra of the Neveu-Schwarz algebra, to obtain Jones-Wassermann subfactors for each representation of the discrete series. Then using primary fields we prove the irreducibility of these subfactors; to next compute the Connes fusion ring and obtain the explicit formula of the subfactors indices.

1 Introduction

Background of the series

In the 90's, V. Jones and A. Wassermann started a program whose goal is to understand the unitary conformal field theory from the point of view of operator algebras (see [START_REF] Jones | Fusion en algèbres de von Neumann et groupes de lacets (d'après A. Wassermann)[END_REF], [START_REF] Wassermann | Operator algebras and conformal field theory[END_REF]). In [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF], Wassermann defines and computes the Connes fusion of the irreducible positive energy representations of the loop group LSU(n) at fixed level ℓ, using primary fields, and with consequences in the theory of subfactors. In [START_REF] Laredo | Fusion of Positive Energy Representations of LSpin(2n)[END_REF] V. Toledano Laredo proves the Connes fusion rules for LSpin(2n) using similar methods. Now, let Diff(S 1 ) be the diffeomorphism group on the circle, its Lie algebra is the Witt algebra W generated by d n (n ∈ Z), with [d m , d n ] = (mn)d m+n . It admits a unique central extension called the Virasoro algebra Vir. Its unitary positive energy representation theory and the character formulas can be deduced by a so-called Goddard-Kent-Olive (GKO) coset construction from the theory of LSU( 2) and the Kac-Weyl formulas (see [START_REF] Wassermann | Kac-Moody and Virasoro algebras[END_REF], [START_REF] Goddard | Unitary representations of the Virasoro and super-Virasoro algebras[END_REF], [START_REF] Wassermann | Kac-Moody and Virasoro algebras[END_REF]). In [START_REF] Loke | Operator algebras and conformal field theory for the discrete series representations of Diff(S 1 )[END_REF], T. Loke uses the coset construction to compute the Connes fusion for Vir. Now, the Witt algebra admits two supersymmetric extensions W 0 and W 1/2 with central extensions called the Ramond and the Neveu-Schwarz algebras, noted Vir 0 and Vir 1/2 . In this series ( [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF], [START_REF] Palcoux | Neveu-Schwarz and operators algebras II : Unitary series and characters[END_REF] and this paper), we naturally introduce Vir 1/2 in the vertex superalgebra context of Lsl 2 , we give a complete proof of the classification of its unitary positive energy representations, we obtain directly their character; then we give the Connes fusion rules, and an irreducible finite depth type II 1 subfactors for each representation of the discrete series. Note that we could do the same for the Ramond algebra Vir 0 , using twisted vertex module over the vertex operator algebra of the Neveu-Schwarz algebra Vir 1/2 , as R. W. Verrill [START_REF] Verrill | Positive energy representations of L σ SU(2r) and orbifold fusion[END_REF] and Wassermann [START_REF] Wassermann | Subfactors and Connes fusion for twisted loop groups[END_REF] do for twisted loop groups.

Overview of the paper

Now, g and Vir 1/2 give local superalgebras g(I) and Vir 1/2 (I) by smearing with the smooth functions vanishing outside of I a proper interval of S 1 . By Sobolev estimates, the action on the positive energy representations is continuous. We generate their von Neumann algebra, included in an algebra of fermions. By Takesaki devissage and coset construction, we obtain that these algebras are the hyperfinite III 1 factor, whose the supercommutants are generated by chains of compressed fermions. Also, there is Haag-Araki duality on the vacuum, and outside, a Jones-Wassermann subfactor as a failure of duality.

The compressed fermions are examples of primary fields. We construct them in general from maps intertwining two irreducible representations, dealing with spaces of densities. We see that these maps are completely characterized, bounded and classified by coset for two particular charges α, β. We obtain also their braiding relations, which allow to give the leading term of a kind of OPE for smeared primary fields, which permit, to have the von Neumann density and the irreducibility of the subfactors.

Then, we obtain irreducible bimodules of local von Neumann algebras, giving the framework to define the Connes fusion. Its rules are a direct consequence of the transport formula (explaining the intertwining for chains), which is proved by the braiding relations and the von Neumann density. The rules give the dimension of the space of primary fields, they show also that the subfactors are finite index, explicitly given by the square of the quantum dimension, a fusion ring character given as unique positive eigenvalue of a fusion matrix, and a product of two quantum dimensions of LSU(2) by Perron-Frobenius theorem.

Main results

Let p = 2i + 1, q = 2j + 1 and m = ℓ + 2, we note H ℓ ij the L 2 -completion of L(c m , h m pq ). We define the Connes fusion ⊠ on the discrete series representations of charge c m , as bimodules of the hyperfinite III 1 -factor generated by the local Neveu-Schwarz algebra Vir 1/2 (I), with I a proper interval of S 1 . with X ♮ be the supercommutant of X.

Theorem 1.1. (Connes fusion)

H ℓ ij ⊠ H ℓ i ′ j ′ = (i ′′ , j ′′ )∈ i,i ′ ℓ × j,j ′ ℓ+2 H ℓ i ′′ j ′′
As a failure of Haag-Araki duality out of the vacuum, we have:

Theorem 1.3. (Jones-Wassermann subfactor) M ℓ ij (I) ⊂ M ℓ ij (I c ) ♮
It's a finite depth, irreducible, hyperfinite III 1 -subfactor, isomorphic to the hyperfinite III 1 -factor R ∞ tensor the II 1 -subfactor :

( C ⊗ End Vir 1/2 (H ℓ ij ) ⊠n ) ′′ ⊂ ( End Vir 1/2 (H ℓ ij ) ⊠n+1 ) ′′
of index sin 2 (pπ/m) sin 2 (π/m) . sin 2 (qπ/(m+2)) sin 2 (π/(m+2)) , with p = 2i + 1, q = 2j + 1, m = ℓ + 2.

Local von Neumann algebras

For the loop algebra Lg and the Virasoro algebra Vir, we can work with the cooresponding groups:

LG and Diff(S 1 ). For the Neveu-Schwarz algebra, there is no group corresponding to the supergenerators G r , and so we need to work with unbounded operators. From the g-supersymmetric algebra g, we build a local Lie superalgebra g(I), with I a proper interval of S 1 , by smearing with the smooth functions vanishing outside of I. In the same way, we define the local Neveu-Schwarz Lie superalgebra Vir 1/2 (I). Thanks to Sobolev estimates, these local algebras (containing unbounded operators) are represented continuously on the L 0 -smooth completion of their positive energy representation. Now, we define the von Neumann algebras generated by these local algebras as the von Neumann algebra generated by the bounded functions of our self-adjoint operators; they are Z 2 -graded von Neumann algebras. Now, g acts on a complex and real fermionic Fock space which decomposes into all its irreducible positive energy representations (with multiplicity spaces), and by coset construction we can do the same with Vir 1/2 . Then, we see that the previous von Neumann algebras are included with conditional expectation in a big von Neumann algebra M(I) generated by smeared real and complex fermions, which is known (by [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] and a doubling construction) to be the hyperfinite III 1 factor; now, the modular action is ergodic, so by Takesaki devissage, N (I) = π(Vir 1/2 (I)) ′′ is also the hyperfinite III 1 factor, and by the definition of type III, so is for every subrepresentations, so in particular for π i (Vir 1/2 (I)) ′′ , with π i a generic irreducible positive energy representation. We deduce local equivalence, ie, the discrete series representations are unitary equivalent when they are restricted to Vir 1/2 (I); we deduce also Haag-Araki duality:

π 0 (Vir 1/2 (I c )) ♮ = π 0 (Vir 1/2 (I)) ′′
with X ♮ the supercommutant of X, from the known Haag-Araki duality of M(I), because the vacuum vector of H 0 is invariant by the modular operator △ of M(I). Outside of the vacuum, we have a Jones-Wassermann subfactor:

π i (Vir 1/2 (I)) ′′ ⊂ π i (Vir 1/2 (I c )) ♮
as a failure of Haag-Araki duality.

Primary fields

Let p 0 be the projection on the vacuum representation H 0 . The Jones relation p 0 M(I)p 0 = N (I)p 0 , implies that π 0 (Vir 1/2 (I)) ′′ is generated by products of compressed real and complex fermions:

p 0 ψ 1 (f 1 )p i 1 ψ 2 (f 2 )p i 2 .
..ψ n (f n )p 0 , with p i the projection on H i ⊂ H and f s localized in I. The p i ψ(f )p j are bounded operators intertwining the action of Vir 1/2 (I c ) between the representations H i and H j . We want to interpret these compressions as smeared primary fields. We define a primary field as a linear operator:

φ k ij : H j ⊗ F σ λ,µ → H i
that superintertwines the action of Vir 1/2 ; with H i , H j on the discrete series of Vir 1/2 (k is called the charge of φ k ij ), and

F σ λ,µ an ordinary representation of Vir 1/2 with base (v i ) i∈Z+ σ 2 , (w j ) j∈Z+ 1-σ 2
, and:

(a) L n .v i = -(i + µ + λn)v i+n (b) G s .v i = w i+s (c) L n .w j = -(j + µ + (λ -1 2 )n)w j+n (d) G s .w j = -(j + µ + (2λ -1)s)v j+s with λ = 1 -h k , µ = h j -h i , σ = 0, 1.
Let the space of densities {f (θ)e iµθ (dθ) λ |f ∈ C ∞ (S 1 )} where a finite covering of Diff(S 1 ) acts by reparametrisation θ → ρ -1 (θ) (if µ ∈ Q). Then its Lie algebra acts on too, so that it's a Vir-module vanishing the center. Finally, an equivalent construction with superdensities gives a model for F σ λ,µ as Vir 1/2 -module. This primary field is equivalent to general vertex operators φ k ij (z) (called the ordinary part) and

θ k ij (z) = [G -1/2 , φ k ij (z)
] (called the super part), and we prove that for i, j, k and σ fixed, such operators are completeley characterized by some compatibility conditions, so the space of primary fields associated is at most one dimensional. Note that σ = 0 gives φ k ij integer moded and σ = 1, half-integer moded. For charge α = (1/2, 1/2), we build these operators in the following way (an adaptation of an idea of Loke for Vir [START_REF] Loke | Operator algebras and conformal field theory for the discrete series representations of Diff(S 1 )[END_REF], simplify by A. Wassermann): we start from the GKO coset construction

F g N S ⊗ H ℓ i = H ℓ ii ′ ⊗ H ℓ+2 i ′ ,
we take the vertex primary field of LSU(2) of level ℓ and spin 1/2:

I ⊗ φ 1/2,ℓ ij (z, v) : F g N S ⊗ H ℓ j → F g N S ⊗ H ℓ i , with v ∈ V 1/2 (the vector representation of SU(2)). Let p i ′ be the pro- jection on the block H ℓ ii ′ ⊗ H ℓ+2 i ′ .
By compatibility relations and unicity,

p i ′ (I ⊗ φ 1/2,ℓ ij (z, v))p j ′ = C.z r φ α ii ′ jj ′ (z) ⊗ φ 1 2 ,ℓ+2 i ′ j ′ (z, v), with C a constant possi- bly zero and r ∈ Q. Now, I ⊗ φ 1/2,ℓ ij (z, v) = i ′ j ′ p i ′ (I ⊗ φ 1/2ℓ ij (z, v))p j ′ ,
so at least one is non-zero. More precisely, we prove by an irreducibility argument that ∀j ′ , ∃i ′ with a non-zero term, and so φ α ii ′ jj ′ (z) non-zero. Note that the simple locality relations between non-compressed smeared fermions concentrated on disjoint intervals ( ie ψ(f )ψ(g) = -ψ(g)ψ(f )), admit a bit more complicated equivalent after compression: the braiding relations. Now using the same idea as Tsuchiya-Nakanishi [START_REF] Tsuchiya | Level-rank duality of WZW models in conformal field theory[END_REF], we deduce the braiding relations for Vir 1/2 : its braiding matrix is the braiding matrix for LSU(2) at level ℓ, times the transposed of the inverse of the braiding matrix for LSU(2) at level ℓ+2 (it's proved by the contribution of the inverse of a gauge transformation of the Knizhnik-Zamolodchikov equation for the braiding of LSU( 2)). Then, we obtain non-zero coefficients:

φ αℓ ii ′ jj ′ (z)φ αℓ jj ′ kk ′ (w) = µ rr ′ φ αℓ ii ′ rr ′ (w)φ αℓ rr ′ kk ′ (z) with µ rr ′ = 0. Now if φ α ii ′ jj ′ = 0 and φ 1/2,ℓ ij and φ 1 2 ,ℓ+2 i ′ j ′
non-zero, then, the braiding relation of φ α ii ′ jj ′ with its adjoint is zero, but produced some non-zero terms φ α ii ′ kk ′ by the previous irreducibility argument, contradiction. Then, we see that

φ α ii ′ jj ′ is non-zero iff φ 1/2ℓ ij and φ 1/2,ℓ+2 i ′ j ′
are non-zero, ie, i ′ = i±1/2 and j ′ = j ±1/2 (up to some boundary restrictions). Now, for charge β = (0, 1) and the braiding with α, we do the same, from the Neveu-Schwarz fermion field ψ(u, z) ⊗ I

commuting with I ⊗ φ 1 2 ,ℓ ij (v, w).
Next, by a convolution argument, the braiding runs also with two smeared primary fields concentrate on disjoint intervals. We deduce also that the von Neumann algebras π 0 (Vir 1/2 (I)) ′′ are generated by chains of primary fields. This new characterization is essential to prove the so-called von Neumann density: if I is a proper interval of S 1 and I 1 , I 2 are the intervals obtained by removing a point of I then, π i (Vir 

I 1 1/2 ) ′′ ∨ π i (Vir I 2 1/2 ) ′′ = π i (Vir
π i (Vir 1/2 (I)) ♮ ∩π i (Vir 1/2 (I c )) ♮ = C, which significate that the representations H i are irreducibles Vir 1/2 (I) ⊕ Vir 1/2 (I c )-modules.

Connes fusion and subfactors

Then, the discrete series representations are irreducibles bimodules over the local von Neumann algebra M = π 0 (Vir 1/2 (I)) ′′ . We define a relative tensor product called Connes fusion ⊠ using a 4-points functions: Consider the Z 2 -graded M-M bimodule Hom -M (H 0 , H i )⊗Hom M-(H 0 , H j ), we define a pre-inner product on by:

(x 1 ⊗ y 1 , x 2 ⊗ y 2 ) = (-1) (∂x 1 +∂x 2 )∂y 2 (x ⋆ 2 x 1 y ⋆ 2 y 1 Ω, Ω)
The L 2 -completion is also a Z 2 -graded M-M bimodule, called the Connes fusion between H i and H j and noted H i ⊠ H j . The fusion is associative. We obtain a fusion ring for ⊕ and ⊠. The key tool to compute this fusion is the transport formula which gives explicitly how the chains on the vacuum representation, transform into chains on any representations through the intertwining relations. Thanks to the braiding relations known at charge α, we are able to prove the transport formula:

π j (ā 0α .a α0 ) = λ k ājk .a kj with λ k > 0.
with a kj a charge α (ordinary part, so even) smeared primary field of Vir 1/2 between H j and H k concentrated on I, ājk = a ⋆ kj , and π j : H 0 → H j the local equivalence. Now, a α0 ∈ Hom -M (H 0 , H α ), so:

a α0 ⊗ y 2 = (a ⋆ α0 a α0 y ⋆ yΩ, Ω) = (y ⋆ π j (a ⋆ α0 a α0 )yΩ, Ω) = λ k a kj yΩ 2 .
Then using the fact that a α0 M is dense in Hom -M (H 0 , H α ) (by von Neumann density), a polarization and the irreduibility of the bimodules, we obtain a unitary map between H α ⊠ H j and k∈ α,j H k , with k ∈ α, j iff φ α jk is a non-zero primary field. We obtain the fusion rule with α:

H α ⊠ H j = k∈ α,j H k .
Now, idem, with the braiding relations between charge α and β primary fields, we obtain a partial transport formula and partial fusion rules with β:

H β ⊠ H j ≤ k∈ β,j H k .
But, the fusion rules with α permit to compute a character of the fusion ring called the quantum dimension (by Perron-Frobenius theorem). An easy way to comptute the quantum dimensions is to see that the fusion ring for the Neveu-Schwarz algebra at charge c m is the tensor product of the fusion rings for the loop algebra at level ℓ and ℓ + 2 (with m = ℓ + 2), modulo a period two automorphism. Then the quantum dimensions for the Neveu-Schwarz algebra is a product of the two (coset corresponding) quantum dimensions for the loop algebra:

d(H ℓ ij ) = d(H ℓ i ).d(H ℓ+2 j ) = sin((2i+1)π/(ℓ+2))
sin(π/(ℓ+2))

. sin((2j+1)π/(ℓ+4)) sin(π/(ℓ+4))

Then the quantum dimensions show that these partial rules with β are the exact ones. Next, we see that the rules for α and β permit to compute all fusion rules. Finally, the Jones-Wassermann III 1 -subfactors are isomorphic to II 1 -subfactors tensor the hyperfinite III 1 -factor, by H. Wenzl [START_REF] Wenzl | Hecke algebras of type A n and subfactors[END_REF] and S. Popa [START_REF] Popa | Classification of subfactors and their endomorphisms[END_REF]. These last subfactors are irreducibles, finite depth and finite index given by the square of the quantum dimensions. Reminder 2.12. (see [START_REF] Connes | Noncommutative geometry[END_REF]) Let M be a type III factor, then 

S(M) = {1}, λ Z or R ⋆ + ,
= I. Now ∀x ∈ M, x = x 0 +x 1 with x 0 = 1 2 (x+τ (x)
) and x 1 = 1 2 (x-τ (x)) called the even and the odd part of x. Then τ (x 0 ) = x 0 and τ (x

1 ) = -x 1 . Hence M = M 0 ⊕ M 1 ; if a ∈ M ε 1 and b ∈ M ε 2 then a.b ∈ M ε 1 +ε 2 .
Definition 2.15. A Z 2 -graded Hilbert space is an Hilbert space given with a period two unitary operator: u ∈ U(H) and u 2 = I, so that H = H 0 ⊕ H 1 , with H 0 and H 1 the eigenspaces of u for the eigenvalues 1 and -1. Let p 0 and p 1 the corresponding projection, then u = p 0p 1 = 2p 0 -1.

Remark 2.16. Let M be a von Neumann algebra on H with Ω its cyclic, separating vector. Then a period two automorphism τ of M gives a period two unitary operator u of H by u : xΩ → τ (x)Ω. Conversely, a period two unitary operator u of H with u.Ω = Ω gives τ ∈ Aut(M) by τ (x) = uxu. Definition 2.17. Let x ∈ B(H), then, τ (x) = uxu defined a period two automorphism on B(H). Then as for definition 2.14, x = x 0 + x 1 . We see that x 0 = p 0 xp 0 + p 1 xp 1 and

x 1 = p 1 xp 0 + p 0 xp 1 . Definition 2.18. (Supercommutator) Let [x, y] τ = [x 0 , y 0 ] + [x 0 , y 1 ] + [x 1 , y 0 ] + [x 1 , y 1 ] + Remark 2.19. A projection p is even, then, ∀x ∈ B(H), [x, p] τ = [x, p]. In particular [x, I] τ = [x, I] = 0. Definition 2.20. The supercommutant A ♮ of A is the set of b ∈ B(H) such that, ∀a ∈ A, then [a, b] τ = 0. Definition 2.21. Let κ = p 0 + ip 1 the Klein transformation. Remark 2.22. κ is unitary, κ -1 = κ ⋆ = p 0 -ip 1 and κ 2 = u. Remark 2.23. ux 0 u = x 0 , ux 1 u = -x 1 , κx 0 κ ⋆ = x 0 , κx 1 κ ⋆ = -iux 1 Lemma 2.24.
Let A be a von Neumann algebra Z 2 -graded for τ , then:

A ♮ = κA ′ κ ⋆ .
Proof. Let a ∈ A and x ∈ B(H) such that [x, a] = 0. By the relations of the remarks 2.23:

If x is even, then [κxκ ⋆ , a] τ = [x, a] = 0. If a is even, then [κxκ ⋆ , a] τ = κ[x, κ ⋆ aκ]κ ⋆ = κ[x, a]κ ⋆ = 0. Else, [κxκ ⋆ , a] τ = [-iτ x, a] + = -i(uxa + aux) = -iu[x, a] = 0 Then, κA ′ κ ⋆ ⊂ A ♮ ; idem, κ ⋆ A ♮ κ ⊂ A ′ ; the result follows. Corollary 2.25. A ♮ is unitary equivalent to A ′ . Proof. κ is a unitary operator. Lemma 2.26. Let (A, τ ) be a Z 2 -

graded von Neumann algebra then:

A ♮♮ = A. Proof. A ♮♮ = κ(κA ′ κ ⋆ ) ′ κ ⋆ = κκ(A ′′ )κ ⋆ κ ⋆ ,
because a von Neumann algebra is generated by its projections, and a projection is even, so commute with κ.

Then A ♮♮ = uAu = τ (A) = A.

Global analysis

The generic discrete series representation L(c m , h m pq ) is a prehilbert space of finite level vectors, we note H m pq its L 2 -completion.

Definition 2.27. Let s ∈ R, we define the Sobolev norms . (s) as follows:

ξ (s) := (I + L 0 ) s ξ ∀ξ ∈ L(c m , h m pq ) Remark 2.28. ((1 + L 0 ) 2s ξ, ξ) = ξ 2 (s) Proposition 2.29. (Sobolev estimate) ∃k n , k r > 0 such that ∀ξ ∈ L(c m , h m pq ): (a) L n ξ (s) ≤ k n (1 + |n|) |s|+3/2 ξ (s+1) (b) G r ξ (s) ≤ k r (1 + |r|) |s|+1/2 ξ (s+1/2) Proof. (a) See Goodman-Wallach [4] (proposition 2.1 p 307). (b)2L 0 = G r G -r + G -r G r . Then, 2(L 0 ξ, ξ) = (G r ξ, G r ξ) + (G -r ξ, G -r ξ). So, G r ξ 2 ≤ k 1 L 1/2
0 ξ 2 for any r. Now, it suffices to show the result for an eigenvector of L 0 :

L 0 ξ = µξ. We can take r ≤ µ (otherwise G r ξ = 0). G r ξ 2 s = (1 + L 0 ) s G r ξ 2 ≤ (1 + µ -r) 2s G r ξ 2 ≤ (1 + µ -r) 2s k 1 L 1/2 0 ξ 2 ≤ (1 + µ -r) 2s k 1 µ ξ 2 ≤ (1+µ-r) 2s (1+µ) 2s k 1 ξ 2 s+1/2 ≤ (1 + |r|) 2|s|+1 k 1 ξ 2 s+1/2 .
Remark 2.30. Thanks to 

L n = [G n-1/2 , G 1/2 ] + ,
f = a n L n and G h = b r G r such that f (θ) = a n e inθ , h(z) = b r e irθ and f ∈ F and h ∈ e iθ/2 F . Notation 2.35. Let (f, h) R := 1 2πi 2π 0 f (θ)h(θ)dθ, with f.h ∈ F Lemma 2.36. (Lie bracket relation)    [L f , L h ] = L d(f )h-f d(h) + C 12 ((d 3 -d)(f ), h) R [G f , L h ] = G d(f )h-1 2 f d(h)) [G f , G h ] + = 2L f h + C 3 ((d 2 -1)(f ), h) R The ⋆-structure: L ⋆ f = L f , G ⋆ h = Gh.
Proof. Direct by computation from proposition 2.9 of [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF].

Proposition 2.37.

(Sobolev estimate) ∃k > 0 such that ∀ξ ∈ H m pq and f ∈ F , h ∈ e iθ/2 F : (a) L f ξ (s) ≤ k f (|s|+3/2) ξ (s+1) (b) G h ξ (s) ≤ k h (|s|+1/2) ξ (s+1/2)
Proof. It's immediate from proposition 2.29.

Reminder 2.38. s>0 F s = C ∞ (S 1 ).

Corollary 2.39. The operators L f and G h act continuously on H m pq , with f ∈ C ∞ (S 1 ) and h ∈ e iθ/2 C ∞ (S 1 ).

Reminder 2.40. Let T be an operator on a Hilbert space

H. A subspace D(T ) of H is called a domain of T if T.D(T ) ⊂ H. Then let Γ(T ) = {(x, T.x), x ∈ D(T )} be the graph of T . The operator T is closed if its graph Γ(T ) is closed in H ×H. An operator T is an extension of T if Γ(T ) ⊂ Γ( T ), we write T ⊂ T .

The operator T is closable if it admits a closed extension; let T be the smallest one. Then, T is closable iff Γ(T ) is the graph of a linear operator (not always true). If T is densely defined, then its adjoint T ⋆ is closed because its graph is an orthogonal. From now, every domain is dense in H. The operator T is symmetric or formally

self-adjoint if T ⊂ T ⋆ , essentially self-adjoint if T = T ⋆ , and self-adjoint if T = T ⋆ .
Reminder 2.41. (Glimm-Jaffe-Nelson commutator theorem [START_REF] Reed | Methods of modern mathematical physics. II. Fourier analysis, self-adjointness[END_REF] X.5) Let D be a diagonalizable, positve, compact resolving operator and X formally self-adjoint, with common dense domain. If (D + I) -1 X, X(D + I) -1 and

(D + I) -1/2 [D, X](D + I) -1/2 are bounded, then X is essentially self-adjoint. Lemma 2.42. Let f , h ∈ C ∞ (S 1
) and real, then, L f and G h act on H m pq as essentially self-adjoint operators.

Proof. The function f is real, so f = f , then, by the ⋆-structure and the unitarity of the action, L f is formally self-adjoint. Now, L 0 is positive and by Sobolev estimate:

(L 0 + I) -1 L f ξ = L f ξ (-1) ≤ k ξ (0) = k ξ , so (L 0 + I) -1 L f is bounded. Now, L f η ≤ k η 1 = k (L 0 + I)η , so taking ξ = (L 0 + I)η, we find L f (L 0 + I) -1 ξ ≤ k ξ . Finally, [L 0 , L f ] = L h with h(z) = -zf ′ (z), so combining the two previous tips with ξ = (L 0 + I) 1/2 η, we find (L 0 + I) -1/2 [L 0 , L f ](L 0 + I) -1/2 bounded
too. We can do the same with G h because ξ (s+1/2) ≤ ξ (s+1) . Then, the result follows by reminder 2.41.

Remark 2.43. This result was already known for Diff(S 1 ) and hence the L f . On the other hand G 2 f = L f 2 + kId, so the essential self-adjointness follows by Nelson's theorem: Reminder 2.44. (Nelson's theorem [START_REF] Nelson | Analytic vectors[END_REF]) Let H be an Hilbert space, A and B be formally self-adjoint operator acting on a dense subspace D ⊂ H, such that ABξ = BAξ ∀ξ ∈ D, and A 2 + B 2 essentially self-adjoint, then A, B are essentially self-adjoint, and their bounded function commute on H. Remark that we have the same result for supercommutation introducing κ.

Reminder 2.45. Let T be a self-adjoint operator with D(T ) dense in H.

There exist a finite measure space (Y, µ), a unitary operator U : H → L 2 (Y, µ) and a real function f , finite up to a null set on Y , such that, if M f is the operator of multiplication by f , with domain 

D(M f ), then ν ∈ D(T ) ⇐⇒ Uν ∈ D(M f ), and ∀g ∈ D(M f ), UT U ⋆ g = f g. Let h be a borelian function bounded on R. The bounded operator h(T ) on H is defined by h(T ) = U ⋆ M h(f ) U.

Definition of local von Neumann algebras

(i.e L f , G f with f ∈ C ∞ I (S

Real and complex fermions

Reminder 2.55. (The complex Clifford algebra, see [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF]) Let H be a complex Hilbert space, the complex Clifford algebra Cliff(H) is the unital ⋆-algebra generated by a complex linear map f → a(f ) f ∈ H satisfying:

[a(f ), a(g)] + = 0 and [a(f ), a(g) ⋆ ] + = (f, g)
The complex Clifford algebra as a natural irreducible representation π on the fermionic Fock space F (H) = ΛH = ∞ n=0 Λ n H (with Λ 0 H = CΩ and Ω the vacuum vector), given by π(a(f 

))ω = f ∧ ω bounded. Let c(f ) = a(f ) + a(f ) ⋆ satisfying [c(f ), c(g)] + = 2Re(f,
(a(f )) = 1 2 (c(f ) - ic(If ))
, where I is the multiplication by i on P H and by -i on (I -P )H, ie, I = iPi(I -P ) = i(2P -I). We know that π P and π Q are unitary equivalent if

P -Q is an Hilbert-Schmidt operator. Now, a unitary u ∈ U(H) is implemented in π P if π P (a(u.f )) = Uπ P (a(f ))U ⋆ with U unitary, unique up to a phase. But π P (a(u.f )) = π Q (a(f )) with Q = u ⋆ P u. Then, u is implemented in π P if [P, u] is Hilbert-Schmidt.
Reminder 2.56. More generally, taking a real Hilbert space H, we have the real Clifford algebra: [c(f ), c(g)] + = 2(f, g), f, g ∈ H. Then, we define a complex structure I with I 2 = -Id. We obtain the complex Hilbert space H I and then we can define the complex Clifford algebra by: A(f ) = 1 2 (c(f )ic(If )), acting irreducibly on the fermionic Fock space F I = ΛH I . Now, the quantisation condition is:

u ∈ O(H) is implemented in F I if [u, I] is Hilbert- Schmidt.
This quantisation due to Segal can be deduce form the condition on the complex case, using the doubling construction described below.

Example 2.57. (The Neveu-Schwarz real fermions) Let the real Hilbert space of anti-periodic functions H N S = {f : R → R|f (θ + 2π) = -f (θ)} with basis, {cos(rθ), sin(rθ)|r ∈ Z + 1/2}, let the complex structure I defined by Icos(rθ) = sin(rθ) and Isin(rθ) = -cos(rθ). Then we obtain the operators c(f ) acting irreducibly on the fermionic Fock space we call F N S . Then, we define ψ n = c(cos(nθ)) + ic(sin(nθ)). Now, ψ ⋆ n = ψ -n and [ψ m , ψ n ] + = δ m+n Id. The fermionic Fock space can be identified with the irreducible positive energy representation already studied.

Reminder 2.58. (The doubling construction) This is a precise mathematical version of the following physicists slogan: "a complex fermion is equivalent to two real fermions ". We start with a real Hilbert space H and we take H ⊕ iH (as a real Hilbert space, iH is the same as H). Let v = ξ ⊕ iη, we define a real Clifford algebra by c(v) = c(ξ) + c(iη), acting irreducibly on F (H) ⊗ F (iH). Then we define a(v) = 1 2 (c(v)ic(iv)) satisfying the complex Clifford relation on the complex Hilbert space H ⊕ iH. The operator I on H extends naturally into a unitary operator on H ⊕ iH. Now, because I 2 = -Id, it has the form I = i(2P -I), with P an orthogonal projection. Then the action of the operator a(v) on F (H) ⊗ F (iH) can be identified with the representation π P above, by the unique unitary sending Ω ⊗ Ω to Ω.

Example 2.59. We apply to the previous example: in this case, H N S ⊕ iH N S = {f : R → C|f (θ + 2π) = -f (θ)}. But then the multiplication with e iθ/2 gives an identification with L 2 (S 1 , C). This construction was already use on [START_REF] Laredo | Fusion of Positive Energy Representations of LSpin(2n)[END_REF].

Reminder 2.60. (The local algebra for complex fermions) Let V be a complex finite dimensional complex vector space and H = L 2 (S 1 , V ), let P be the projection on the Hardy space H 2 (S 1 , V ) (the space of function without negative Fourier coefficient). Let I be a proper interval of S 1 and M(I) be the von Neumann algebra generated by π P (Cliff(L 2 (I, V ))), then: 

(a) (Haag-Araki duality) M(I) ♮ = M(I c ) (b) (Covariance) u ϕ -1 : f → √ ϕ ′ .f •ϕ
π(ϕ) -1 .f = |ϕ ′ | 1/2 f • ϕ
and the action is quantised. We verify directly that H C := H N S ⊕iH N S admits the orthogonal basis e r = e irθ with r ∈ Z + 1/2, that I = (2P -I)i, with P the Hardy projection (on the positive modes r ≥ 0). Now, the Lie algebra of Diff(S 

π(g) -1 f (z) = 1 | βz+ ᾱ| f (g(z)
)

Using | βz + ᾱ| = ( βz + ᾱ) 1/2 (β z + α) 1/2 , for k ≥ 0: π(g) -1 z k+1/2 = (αz+β) k z 1/2 (βz+α) k+1 ∈ P H C
Now, the quantised action of SU(1, 1) fixes the vacuum vector of the fermionic Fock space, because L -1 , L 0 , L 1 vanish on the vacuum vector. Note that the Lie algebra of the modular action is generated by L 1 -L -1 .

Reminder 2.62. (Takesaki devissage [START_REF] Takesaki | Conditional expectations in von Neumann algebras[END_REF]) Let M ⊂ B(H) be a von Neumann algebra, Ω ∈ H cyclic for M and M ′ , △ it , J the corresponding modular operators (△ it M△ -it = M and JMJ = M ′ ). If N ⊂ M is a von Neumann subalgebra such that △ it N△ -it = N (conditional expectation), then:

(a) △ it and J restrict to the modular automorphism group △ it 1 and conjugation operator J 1 of N for Ω on the closure H 1 of NΩ. Proof. It's a general principle of local algebra, see [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF].

(b) △ it 1 N△ -it 1 = N and J 1 NJ 1 = N ′ on H 1 . (c) If p is the projection onto H 1 , then pMp = Np and N = {x ∈ M | xp = px} (the Jones relations [6]) (d) H 1 = H ⇐⇒ M = N ( 
Reminder 2.65. A von Neumann algebra M is hyperfinite iff it is injective, ie M ⊂ B(H) with conditional expectation (see [START_REF] Connes | Noncommutative geometry[END_REF]). 

Properties of local algebras deducable by devissage from loop superalgebras

In this section we will deduce a few partial results on the local von Neumann algebra of Neveu-Schwarz, using devissage from the loop superalgebras, but it's not enough. In the next section, we will prove more general definitive result by devissage from real and complex fermions (in particular this will imply all the result proved here).

Remark 2.67.

F g N S = F ⊗3 N S .
Lemma 2.68. Let N 1 , N 2 be von Neumann algebra, with modular action σ Ω 1 t and σ Ω 2 t , then, the modular action on

N 1 ⊗N 2 is σ Ω 1 ⊗Ω 2 t = σ Ω 1 t ⊗ σ Ω 2 t
Proof. By KMS uniqueness (see [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] p 493).

Definition 2.69. Let L(j, ℓ) ⊗ F g N S be the irreducible representation of the g-supersymmetric algebra g. Let the local von Neumann algebra N ℓ j (I) generated by π ℓ j (g) ⊗ π g N S (g) and 1 ⊗ x, with g ∈ L I G and x ∈ M g N S (I).

Proposition 2.70.

N ℓ j (I) = π ℓ j (L I G) ⊗ M g N S (I).
Proof. π g N S (g) supercommutes with M g N S (I c ), so by the Haag-Araki duality π g N S (g) ∈ M g N S (I). We deduce that N ℓ j (I) is generated by π ℓ j (g) ⊗ 1 and 1 ⊗ x. The result follows.

Theorem 2.71. Combining the work of A. Wassermann [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] on local loop group and the previous work on Neveu-Schwarz fermions, we obtain (a) (Local equivalence) For every representations H ℓ j , there is a unique ⋆isomorphism π ℓ j :

N ℓ 0 (I) → N ℓ j (I) coming from π ℓ 0 (B a f ) → π ℓ j (B a f ) = U.π ℓ 0 (B a f ).U ⋆ and π ℓ 0 (ψ a g ) → π ℓ j (ψ a g ) = U.π ℓ 0 (ψ a g ).U ⋆ , with U : H ℓ 0 → H ℓ j unitary. (b) (Covariance) ϕ ∈Diff(S 1 ) acts unitarily on H ℓ j with π ℓ j (ϕ)B a f π ℓ j (ϕ) ⋆ = B a f •ϕ -1 and π ℓ j (ϕ)ψ b g π ℓ j (ϕ) ⋆ = ψ b α.g•ϕ -1 , with α = (ϕ -1
) ′ , a kind of Radon-Nikodym correction (which preserves the group action) to be compatible with the Lie structure, ie be unitary on L 2 (S 1 ) R .

(c) The modular action on N ℓ 0 (I) is σ t (x) = π ℓ 0 (ϕ t )xπ ℓ 0 (ϕ t ) ⋆ , with ϕ t ∈ Diff(S 1 ) the Möbius flow fixing the end point of I. For example, if I is the upper half-circle, then ∂I = {-1, +1} and ϕ t (z) = ch(t)z+sh(t) sh(t)z+ch(t) .

(d) N ℓ j (I) is the hyperfinite III 1 factor. (e) N ℓ 0 (I) = N ℓ 0 (I c ) ♮ (Haag-Araki duality) (f ) N ℓ j (I) ⊂ N ℓ j (I c ) ♮ (Jones-Wassermann subfactor) (g) N ℓ j (I) ♮ ∩ N ℓ j (I c ) ♮ = C (irreducibility of the subfactor)
Lemma 2.72. The operators G f and L h act continuously on H ℓ j , the L 0smooth completion of L(j, ℓ) ⊗ F g N S .

Proof. H ℓ j decompose into some irreducible smooth representations of the discrete series (H m pq ), the result follows by corollary 2.39

Notation 2.73. Let p = 2j + 1, q = 2k + 1 and m = ℓ + 2, then, from now, we can note H m pq as H ℓ jk . It will be a more conveniant notation for the fusion rules computations Reminder 2.74. (Kac-Todorov coset construction) ( [START_REF] Palcoux | Neveu-Schwarz and operators algebras II : Unitary series and characters[END_REF] section 2.2 or [START_REF] Kac | Superconformal current algebras and their unitary representations[END_REF]).

H 0 0 ⊗ H ℓ j = 1≤q≤m+1 p≡q[2]
H ℓ jk ⊗ H ℓ+2 k , and

π 0 0 (G f ) ⊗ I + I ⊗ π ℓ j (G f ) = [π ℓ jk (G f ) ⊗ I + I ⊗ π ℓ+2 k (G f )]
Lemma 2.75. We write some usefull relations on H ℓ j :

(a) [ψ a f , ψ b h ] + = δ a,b (f, h) R (b) [B a f , B b h ] = [B a , B b ] f.h + (ℓ + 2)δ a,b (d(f ), h) R (c) [G f , B a h ] = -(ℓ + 2) 1/2 ψ a f.d(h) (d) [G f , ψ a h ] + = (ℓ + 2) -1/2 B a f.h
Proof. Direct by computation from section 4 of [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF].

Let π be a positive energy representation of the loop superalgebra g. We know, it is always of the form H ⊗ F g N S , where H is a positive energy representation σ of LG (non necessarily irreducible). The Clifford algebra acts on the second factor and the loop group acts by tensor product. We have already seen that the von Neumann algebra π( g I ) ′′ is naturally a tensor product of von Neumann algebras (proposition 2.70). On the other hand, we have the operators π(L f ), π(G f ), given by the Sugawara construction (first sections) and π(ϕ) with ϕ ∈Diff(S 1 ). The L f gives a projective representation of the Witt algebra, so exponentiate them give the element of Diff(S 1 ). The action of Diff(S 1 ) is also given by a tensor product of representation. The following property will be fundamental.

Theorem 2.76. π(ϕ) ∈ π( g I ) ′′ and π(L f ), π(G f ) are affilated to π( g I ) ′′ , if ϕ and f are concentrate on I c . Remark 2.77. We will prove it for Diff(S 1 ), and so for the L f , in general, but for G f , only for the vacuum representation (general proof on the next section).

Proof. For the vacuum representation, it's an immediate consequence of the Haag-Araki duality. Now, we can restrict to π irreducible. For Diff(S 1 ), because we have Haag-Araki duality on F g N S , it's sufficient to prove that σ(Diff I (S 1 )) ′′ ⊂ σ(L I G) ′′ . By local equivalence, there exists a unitary U intertwining σ and the vacuum representation σ 0 . By Haag duality and covariance σ 0 (Diff

I (S 1 )) ′′ ⊂ σ 0 (L I G) ′′ . Then, Uσ 0 (ϕ)U ⋆ ⊂ σ(L I G) ′′ ⊂ σ(L I c G) ′ . On the other hand, σ(ϕ) ∈ σ(L I c G) ′ . So, T = σ(ϕ -1 )Uσ 0 (ϕ)U ⋆ ∈ σ(L I c G) ′ . But, T ∈ σ(L I G) ′ by covariance relation. Now, by irreducibility σ(L I G) ′ ∩ σ(L I c G) ′ = C, so T is a constant. The result follows.
Theorem 2.78. Haag-Araki duality holds for the Neveu-Schwarz algebra.

Proof. Let K 0 be the vacuum representation Π 0 of g ⊕ g. The operators L f and G f of the coset construction act on K 0 . We will prove that if f is concentrate on the interval I, G f is affiliated with Π 0 ( g

I ⊕ g I ) ′′ . Then, because [G f 1 , G f 2 ] + = L f 1 f 2 + constant, L f
is also affiliated. By Haag-Araki duality, it suffices to prove that the operators G f supercommutes with the bosons (elememt of the loop algebra) and the fermions, concentrate on I c . Let A = G f and let B be either the bosonic operator or the fermionic operator conjugate by the Klein transformation. They are formally self-adjoint for f real. By relation 2.75, they commute formally. By the Sobolev estimates and the Glimm-Jaffe-Nelson theorem, A 2 + B 2 is essentially self-adjoint. So Nelson's theorem imply the commutation in term of bounded function. Now, by the coset construction, and the Reeh-Schlieder theorem, the bounded functions of the G f and L f applied on the vacuum vector of K 0 generate the vacuum positive energy representation of the Neveu-Schwarz algebra. The Haag-Araki duality follows by Takesaki devissage.

Lemma 2.79. (Covariance) Let ϕ ∈ Diff(S 1 ), then π ℓ j (ϕ)π ℓ j (G f )π ℓ j (ϕ) ⋆ = π ℓ j (G β.f •ϕ -1
), with β = 1/α, and α = (ϕ -1 ) ′ and f ∈ C ∞ (S 1 ).

Proof. π ℓ j (ϕ)[G f , B a h ]π ℓ j (ϕ) ⋆ = -(ℓ + 2) -1/2 ψ a α.(f •ϕ -1 ).(d(h)•ϕ -1 ) = -(ℓ + 2) -1/2 ψ a β.(f •ϕ -1 ).d(h•ϕ -1 ) = [G β.f •ϕ -1 , π ℓ j (ϕ)B a h π ℓ j (ϕ) ⋆ ] Idem, π ℓ j (ϕ)[G f , ψ a h ] + π ℓ j (ϕ) ⋆ = [G β.f •ϕ -1 , π ℓ j (ϕ)ψ a h π ℓ j (ϕ) ⋆ ] + . Then, by irreducibility, π ℓ j (ϕ)G f π ℓ j (ϕ) ⋆ -G β.f •ϕ -1
is a constant operator; it's also an odd operator, so it's zero.

Corollary 2.80. By the coset construction, the covariance relation runs also on the discrete series representations of the Neveu-Schwarz algebra.

Local algebras and fermions

In [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF], the representation of LSU(2) at level 1 are constructed using two complex fermions. This corresponds to the complex Clifford algebra construction on Λ(L 2 (S 1 , C 2 )) = F C 2 . The level ℓ representations are obtained taking F ⊗ℓ C 2 . Then, the level ℓ representations of the corresponding loop superalgebra are realized on the tensor product of this Fock space and the space F g N S , of three fermions. As vertex superalgebra, the vertex superalgebra of the loop superalgebra defines a vertex sub-superalgebra of the vertex superalgebra of

F ⊗ℓ C 2 ⊗ F g N S . Let H = {f : R → R |f (x + 2π) = -f (x)}. Let F V N S = Λ(H ⊗ V ), then, F V 1 ⊕V 2 N S = F V 1 N S ⊗ F V 2 N S . Now, considering the diagonal inclusion g ⊂ g ⊕ g, H ⊗ (g ⊕ g) ⊖ H ⊗ g = H ⊗ [(g ⊕ g) ⊖ g] = H ⊗ [(g ⊕ g)/g].
Then, we easily seen that in the Kac-Todorov construction described before:

F g N S ⊗ (F g N S ⊗ L(i, ℓ)) = L(c m , h m pq ) ⊗ (F g N S ⊗ L(j, ℓ + 2)
), we can simplify by a factor F g N S to obtain the following GKO construction:

F g N S ⊗ L(i, ℓ) = L(c m , h m pq ) ⊗ L(j, ℓ + 2)
), preserving the coset action of the Neveu-Schwarz algebra. It's also true replacing L(i, ℓ) by a (non necessarily irreducible) positive energy representation H of level ℓ. Then the coset action of the Neveu-Schwarz algebra on F g N S ⊗ H is described by (see also [START_REF] Goddard | Unitary representations of the Virasoro and super-Virasoro algebras[END_REF] 

p114): (a) L gko n = L g⊕g n -L g n (b) G gko (z) = G gko r z -r-3/2 = Φ(τ gko , z
) with Φ the module-vertex operator on F g N S ⊗ H (see [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF] section 4.3 ), and τ gko = (2(ℓ+2)(ℓ+4)) -1/2 (ℓτ 1 -2τ 2 ), with τ 1 , τ 2 as in [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF] definition 4.38 .

Note that: Φ(ℓτ

1 -2τ 2 , z) = [ k (ℓψ k (z) ⊗ X k (z) -I ⊗ ψ k (z)S k (z))] = [ k (ℓψ k (z) ⊗ X k (z) -i 3 ij Γ k ij I ⊗ ψ i (z)ψ j (z)ψ k (z))] = [ℓ k (ψ k (z) ⊗ X k (z) -2i √ 2I ⊗ ψ 1 (z)ψ 2 (z)ψ 3 (z)].
Now, F ⊗ℓ C 2 is a level ℓ representation of the loop algebra (containing all the irreducibles). We apply the previous GKO construction on

F ⊗ℓ C 2 ⊗ F g N S . Let N (I) = M(I) ⊗ℓ ⊗ M g
N S (I) be the local von Neumann algebra generated by the corresponding real and complex fermions. Let π gko be the coset representation of Vir 1/2 on. Now, as previously, π gko (Vir 1/2 (I)) supercommutes with N (I c ), then by Haag-Araki duality π gko (Vir 1/2 (I)) ′′ ⊂ N (I). Now, π gko is a direct sum of all the irreducible positive energy representation π i (with multiplicities) of the Neveu-Schwarz algebra. As previously (see lemma 2.79), π gko (Vir 1/2 (I)) ′′ is stable under the modular action of N (I). So we can apply the Takesaki devissage. We deduce that π gko (Vir 1/2 (I)) ′′ is the hyperfinite III 1 factor. By the property of the type III, every subrepresentations of π gko are equivalents; in particular all the π i (Vir 1/2 (I)) ′′ are the hyperfinite III 1factor, and are equivalents to π 0 (Vir 1/2 (I)) ′′ : it's the local equivalence for the Neveu-Schwarz algebra. Finally, let Ω be the vacuum vector of F ⊗ℓ C 2 ⊗ F g N S , then clearly π gko (Vir 1/2 (I)) ′′ Ω is dense (Reeh-Schlieder theorem) on the vacuum representation of Vir 1/2 tensor its corresponding multiplicity M 0 . Let P be the projection on, then P commutes with the modular operators (because the vacuum vector is invariant) and with the Klein operator κ. such that S ij is a chain of compressed fermions p i φ(f )p j concentrate on I c } By definition A ♮ = B. Now, let q i the projection on π i , then q i ∈ A ♮ , so,

(q i A) ♮ = p i Bp i . Then (q i A) ♮ = π i (Vir 1/2 (I)) ♮ = {S ii |...}.
Corollary 2.84. π i (Vir 1/2 (I c )) ♮ is generated by chains of compressed fermions concentrated in I.

Remark 2.85. In the next section, we will see by unicity that the compression of complex fermions give a primary fields of charge α = (1/2, 1/2), and the compression of a real fermions give primary fields of charge β = (0, 1).

Remark 2.86. We will see that the supercommutation relation on the vacuum (Haag-Araki duality) is replaced by braiding relations of primary fields.

As consequence, we directly see that π i (Vir 1/2 (I)) ♮ and π i (Vir 1/2 (I c )) ♮ do not necessarily supercommute if i = 0. Then, the formulation of the local von Neumann algebra, generated by chains of primary fields (with braiding), shows explicitly the failure of Haag-Araki duality outside of the vacuum.

3 Primary fields 3.1 Primary fields for LSU [START_REF] Frenkel | Quantum affine algebras and holonomic difference equations[END_REF] This section is an overview of the primary field theory of LSU( 2), for a more detailed exposition see [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] and [START_REF] Tsuchiya | Vertex operators in conformal field theory on P 1 and monodromy representations of braid group[END_REF]. It would be convenient to also cite [START_REF] Pasquier | Common structures between finite systems and conformal field theories through quantum groups[END_REF] and [START_REF] Frenkel | Quantum affine algebras and holonomic difference equations[END_REF]. Let V be a representation of G = SU(2) or g = sl 2 . Definition 3.1. Let λ, µ ∈ C, we define the ordinary representations of Lg ⋊ Vir as V λ,µ , generated by (v i ), v ∈ V and i ∈ Z, and:

(a) L n .v i = -(i + µ + nλ)v i+n (b) X m .v i = (X.v) m+i (X ∈ g) Definition 3.2. Let L ℓ
i and L ℓ j be irreducible representation of Lg, of level ℓ and spin i and j. We define a primary field as a linear operator:

φ : L ℓ j ⊗ V λ,µ → L ℓ i
that intertwines the action of Lg ⋊ Vir. We call V the charge of φ.

Reminder 3.3. Let h ℓ i = i 2 +i ℓ+2 the lowest eigenvalue of L 0 on L ℓ i (see theorem ??). The eigenspace is the sl 2 -module V i .

Definition 3.4. For w ∈ V λ,µ , let φ(w) : L ℓ j → L ℓ i Lemma 3.5. Let X ∈ Lg ⋊ Vir, then [X, φ(w)] = φ(X.v)
Proof. As for the proof of lemma 3.31.

Lemma 3.6. φ non-null implies that µ = h ℓ j -h ℓ i . Lemma 3.7. (Gradation) φ(v n ).(L ℓ j ) s+h ℓ j ⊂ (L ℓ i ) s-n+h ℓ i Definition 3.8. Let h = 1 -λ be the conformal dimension of φ, and 
△ = 1 -λ + µ = h + h ℓ j -h ℓ i ; we define: φ(v, z) = n∈Z φ(v n )z -n-△ (v ∈ V ). Lemma 3.9. (Compatibility condition) (a) [L n , φ(v, z)] = z n [z d dz + (n + 1)h]φ(v, z) (b) [X m , φ(v, z)] = z m φ(X.v, z)
Proof. Direct from the definition. Lemma 3.10. If φ(z, v) satisfy the compatibility condition, then, it gives a primary fields for LSU [START_REF] Frenkel | Quantum affine algebras and holonomic difference equations[END_REF].

Proof. It's an easy verification. Proposition 3.11. (Initial term) A primary field φ : L ℓ j ⊗ V λ,µ → L ℓ i with every parameters fixed, is completly determined by its initial term:

φ 0 : V j ⊗ V → V i
Proof. Idem, by intertwining relation; see [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] p 513 for details. Proposition 3.12. (Unicity) If V = V k is irreducible, the space of such primary field is at most one-dimensional.

Proof. φ 0 is an intertwining operator, ie,

φ 0 ∈ Hom g (V j ⊗ V k , V i ) the multi- plicity space at V i of V j ⊗ V k = V |j-k| ⊕ V |j-k|+1 ⊕ ... ⊕ V j+k (Clebsch-Gordan)
, so at most one-dimensional. Remark 3.13. As for Vir 1/2 (see remark 3.39), with (A n B)(z) formula, we define inductively the Lg-module L ℓ k from φ.

Corollary 3.14. µ = h ℓ jh ℓ i and 1λ = h = h ℓ k .

Definition 3.15. We note φ as φ kℓ ij , △ as

△ kℓ ij = h ℓ j -h ℓ i + h ℓ k .
We call φ a primary field of spin k; in our work, we just need to consider primary fields of spin 1/2 and 1: Proposition 3.16. Up to a multiplication by a rational power of z: (a) The compression of complex fermions gives primary fields of spin 1/2.

(b) The compression of real fermions gives primary fields of spin 1.

Proof. We just check the compatibility condition. The calculation can also be made on the vertex algebra of the fermions. See also [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] p 515. Definition 3.17. We note φ kℓ ij be the primary field from L ℓ j to L ℓ i , of spin k. It's defined up to a multiplicative constant and is possibly null. Reminder 3.18. (Constructible primary fields of spin 1/2 or 1, see [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF]).

(a) φ 1 2 ℓ ij is non-null iff j = i ± 1/2 and i + j + 1/2 ≤ ℓ (b) φ 1ℓ ij is non-null iff j = i -1, i, or i + 1 and i + j + 1 ≤ ℓ with the restriction that: 0 ≤ i, j ≤ ℓ/2
Proposition 3.19. Every primary fields φ kℓ ij (w) : L ℓ j → L ℓ i of spin k = 1/2 or 1, are constructibles as compressions of complex and real fermions. respectively.

Proof. For spin 1/2 primary fields see [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] p 515. Now, for spin 1: note that at level ℓ = 2, there are only 0, 1/2 and 1 as possible spins. But, the real Neveu-Schwarz fermions F g N S equals to L 2 0 ⊕ L 2 1 , and the real Ramond fermions F g R equals to L 2 1/2 , as LSU( 2) module (see [START_REF] Palcoux | Neveu-Schwarz and operators algebras II : Unitary series and characters[END_REF] corollary 5.7 and [3] p116). Then, compressions of the fermion field ψ(z, v),

with v ∈ V 1 = g on F g
N S or F g R give the spin 1 primary fields at level 2, by unicity and compatibility condition. Now,

L ℓ j ⊗ L ℓ ′ k = L ℓ+ℓ ′ |j-k| ⊕ L ℓ+ℓ ′ |j-k|+1 ⊕ ... ⊕ L ℓ+ℓ ′ j+k , so: (a) φ 1ℓ+2 i,i-1 (v) is the compression of φ 1,2 01 (v) ⊗ I : L 2 1 ⊗ L ℓ i-1 → L 2 0 ⊗ L ℓ i-1 . (b) φ 1ℓ+2 i,i+1 (v) is the compression of φ 1,2 10 (v) ⊗ I : L 2 0 ⊗ L ℓ i → L 2 1 ⊗ L ℓ i . (c) φ 1ℓ+2 i,i (v) is the compression of φ 1,2 01 (v) ⊗ I : L 2 0 ⊗ L ℓ i → L 2 1 ⊗ L ℓ i . The result follows.
Corollary 3.20. The primary fields of spin k = 1/2 or 1 are bounded and identifying the

L 2 -completion of V λ,µ with L 2 (S 1 , V k ), we obtain φ(f ) for f ∈ L 2 (S 1 , V k ), with: φ(f ) ≤ K f 2 .

Reminder 3.21. (Braiding relations)

In [START_REF] Tsuchiya | Vertex operators in conformal field theory on P 1 and monodromy representations of braid group[END_REF] and [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF], the braiding relations of spin 1/2 primary fields are given by reduced 4-point functions f : C → W , with W finite dimensional. We give an overview of this theory: Let F j (z, w) = (φ

1 2 ℓ kj (u, z).φ 1 2 ℓ ji (v, w)Ω i , Ω k )
, then by gradation it equals:

m≥0 (φ 1 2 ℓ kj (u, m).φ 1 2 ℓ ji (v, -m)Ω i , Ω k )z -m-△ w m-△ ′ = f j (ζ)z -△ w -△ ′ with f j (ζ) = m≥0 (φ 1 2 ℓ kj (u, m).φ 1 2 ℓ ji (v, -m)Ω i , Ω k )ζ m and ζ = w/z. The func- tion f j are holomorphic for |ζ| < 1. Now, φ 1 2 ℓ kj and φ 1 2 ℓ ji are non-zero field, ie Hom g (V j ⊗ V 1/2 , V k ) and Hom g (V i ⊗ V 1/2 , V j ) are 1-dimensional space. Then, the set of possible such j generate the space W = Hom g (V 1/2 ⊗ V 1/2 ⊗ V i , V j ).
Then, we consider the vector f j (ζ) as a vector in W . Let fj = ζ λ j f j , (with

λ j = (j 2 + j -i 2 -i -3/4)/(ℓ + 2)), called the reduced four points func- tions. fj (z) is defined on {z : |z| < 1, z ∈ [0, 1[}.
It satisfy the Knizhnik-Zamolodchikov ordinary differential equation, equivalent to the hypergeometric equation of Gauss:

f ′ (z) = A(z) f (z), with A(z) = P z + Q 1-z with P , Q ∈ End(W ).
It's proved in [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] section 19, the existence of a holomorphic gauge transformation g : C\[1, ∞[→ GL(W ) with g(0) = I such that: g -1 Ag-g -1 g ′ = P/z. The solution of the ODE is then f (z) = g(z)z P T , with T an eigenvector of P . So, up to a power of z, the solutions fj (z) are just the columns of g(z) (in the spectral base of P ). Now, let r j (z) = fj (z -1 ) on {z : |z| > 1, z ∈ [1, ∞[}, then r j satisfy clearly the equation:

r ′ (z) = B(z)r(z), with B(z) = Q-P z + Q 1-z
The function r j and fj extend to holomorphic functions on C\[0, ∞[. It's proved in [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF], that the solutions of these two equations are related by a transport matrix c = (c ij ) with c ij = 0, so that:

fj (z) = c jm fm (z -1 )
We then obtain, up to an analytic continuation, the following equality:

(φ 1 2 ℓ kj (u, z).φ 1 2 ℓ ji (v, w)Ω i , Ω k ) = c jm (φ 1 2 ℓ km (v, w).φ 1 2 ℓ mi (u, z)Ω i , Ω k )
This relation extends to any finite energy vectors:

(φ 1 2 ℓ kj (u, z).φ 1 2 ℓ ji (v, w)η, ξ) = c jm (φ 1 2 ℓ km (v, w).φ 1 2 ℓ mi (u, z)η, ξ)
This analysis runs idem for braiding relations between spin 1/2 and spin 1 primary fields, then:

Theorem 3.22. (Braiding relations) Let (k 1 , k 2 ) = (1/2, 1/2), (1, 1/2) or (1/2, 1); v 1 ∈ V k 1 and v 2 ∈ V k 2 . φ k 1 ℓ ij (v 1 , z)φ k 2 ℓ jk (v 2 , w) = µ r φ k 2 ℓ ir (v 2 , w)φ k 1 ℓ rk (v 1 , z) with µ r = 0
To simplify, we don't write the dependence of µ r on the other coefficients.

Remark 3.23. The way to write the braiding relations is a simplification. In fact, the left side is defined for |z| < |w|, and the right side for |z| > |w|, but each sides admit the same rational extension out of z = w. The braiding relations generalise the locality of vertex operator (see [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF] definition 3.19).

Remark 3.24. To prove that all the coefficients are non-null for (k 1 , k 2 ) = (1, 1), we should solve Dotsenko-Fateev equations (see [START_REF] Laredo | Fusion of Positive Energy Representations of LSpin(2n)[END_REF]).

Reminder 3.25. (Localised braiding relation) Let f ∈ L 2 (I, V k 1 ) and g ∈ L 2 (J, V k 2 )
, with I, J be two disjoint proper intervals of S 1 . Using an argument of convolution (as [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] p 516), we can write the following localised braiding relations:

φ k 1 ℓ ij (f )φ k 2 ℓ jk (g) = µ r φ k 2 ℓ ir (e α g)φ k 1 ℓ rk (e -α f ) with µ r = 0 with e α = e iαθ , α = h ℓ i + h ℓ k -h ℓ j -h ℓ r and (k 1 , k 2 ) as previously.
Reminder 3.26. (Contragrediant braiding) Let the previous ODE:

f ′ (z) = A(z) f (z), with A(z) = P z + Q 1-z
and the previous gauge relation: g -1 Agg -1 g ′ = P/z. In the same way, we can choose h(z) with h(0) = I and hAh -1h ′ h -1 = -P/z. This corresponds to take -A(z) t instead of A(z). But then (hg) ′ = [P, hg]/z, which admits only the constant solutions, but h(0)g(0) = I, so h(z) = g(z) -1 . Then, the columns of (g(z) -1 ) t are the fundamental solutions of k ′ (z) = -A(z) t k(z). The transport matrix of this equation is just the transposed of the inverse of the original one, ie (c -1 ) t . 

Primary fields for

(v i ) i∈Z+ σ 2 , (w j ) j∈Z+ 1-σ 2
, and:

(a) L n .v i = -(i + µ + λn)v i+n (b) G s .v i = w i+s (c) L n .w j = -(j + µ + (λ -1 2 )n)w j+n (d) G s .w j = -(j + µ + (2λ -1)s)v j+s Remark 3.28. Let the space of densities {f (θ)e iµθ (dθ) λ |f ∈ C ∞ (S 1 )} where a finite covering of Diff(S 1 ) acts by reparametrisation θ → ρ -1 (θ) (if µ ∈ Q).
Then its Lie algebra acts on too, so that it's a Vir-module vanishing the center (see [START_REF] Kac | Bombay lectures on highest weight representations of infinite-dimensional Lie algebras[END_REF]). Finally, an equivalent construction with superdensities gives a model for F σ λ,µ as Vir 1/2 -module (see [START_REF] Iohara | Fusion algebras for N = 1 superconformal field theories through coinvariants. II. N = 1 super-Virasoro-symmetry[END_REF] ).

Definition 3.29. Let L m pq and L m p ′ q ′ on the unitary discrete series of Vir 1/2 . We define a primary field as a linear operator:

φ : L m p ′ q ′ ⊗ F σ λ,µ → L m pq that superintertwines the action of Vir 1/2 . Definition 3.30. For v ∈ F σ λ,µ , let φ(v) : L m p ′ q ′ → L m pq Lemma 3.31. Let X ∈ Vir 1/2 , then [X, φ(v)] τ = φ(X.v)
Proof. We can suppose X to be homogeneous for the Z 2 -gradation τ . Now, φ superintertwines the action of

Vir 1/2 : φ.[X ⊗ I + I ⊗ X] = (-1) ∂X X.φ Let ξ ⊗ v ∈ L m p ′ q ′ ⊗ F σ λ,µ , then φ.[X ⊗ I + I ⊗ X](ξ ⊗ v) = [φ(v)X + φ(Xv)]ξ and X.φ(ξ ⊗ v) = Xφ(v)ξ, then [X, φ(v)] τ = φ(X.v). Lemma 3.32. φ non-null implies that µ = h m p ′ q ′ -h m pq . Lemma 3.33. (Gradation) (a) φ(v n ).(L m p ′ q ′ ) s+h m p ′ q ′ ⊂ (L m pq ) s-n+h m pq (b) φ(w r ).(L m p ′ q ′ ) s+h m p ′ q ′ ⊂ (L m pq ) s-r+h m pq
Definition 3.34. Let h = 1λ be the conformal dimension of φ, and △ = 1λ + µ = h + h m p ′ q ′h m pq ; we define:

φ(z) = n∈Z+ σ 2 φ(v n )z -n-△ and θ(z) = n∈Z+ 1-σ 2 φ(w n )z -n-1/2-△ φ(z) is called the ordinary part and θ(z) = [G -1/2 , φ(z)]
, the super part of the primary field.

Lemma 3.35. (Covariance relations).

(a) [L n , φ(z)] = [z n+1 d dz + h(n + 1)z n ]φ(z) (b) [G n-1/2 , φ(z)] = z n θ(z) (c) [L n , θ(z)] = [z n+1 d dz + (h + 1/2)(n + 1)z n ]θ(z) (d) [G n-1/2 , θ(z)] + = [z n d dz + 2hn.z n-1 ]φ ( z)
Proof. Direct from the definition.

Lemma 3.36. (Compatibility condition)

(a) [L n , φ(z)] = [z n+1 d dz + (n + 1)z n (1 -λ)]φ(z) (b) [G r , φ(z)] = z r+1/2 [G -1/2 , φ(z)]
Proof. Immediate. Lemma 3.37. If φ(z) satisfy the compatibility condition, then, it gives a primary fields for the Neveu-Schwarz algebra, with θ(z) = [G -1/2 , φ(z)] as super part.

Proof. It's an easy verification. Proposition 3.38. (Initial term) The space of primary fields φ : L m p ′ q ′ ⊗ F σ λ,µ → L m pq with every parameter fixed, is at most one-dimensional.

Proof. Let Ω and Ω ′ be the cyclic vectors of the positive energy representations and v ∈ F σ λ,µ . Then, by the intertwining relations, (φ(v)η, ξ) is completly determined by the initial term (φ(v)Ω, Ω ′ ). Next (φ(v)Ω, Ω ′ ) is nonzero for v in a subspace of F σ λ,µ of at most dimension one (lemma 3.33).

Remark 3.39. Using a slightly modified (A n B)(z) formula (see proposition ??), we can inductively generate many fields from a given field ψ.

For example we find:

(L n ψ)(z) = [ C r n+1 (-z) r L n-r ]ψ(z) -ψ(z)[ C r n+1 (-z) n+1-r L r-1 ]
We can also write a formula for G r . Now, we see that:

(L 0 φ)(z) = [L 0 , φ(z)] -z[L -1 , φ(z)] = hφ(z)
It's easy to see that using this machinery from φ(z) we generate the unitary Vir 1/2 -module L(h, c m ). Then, by FQS criterion, h = h m p ′′ q ′′ . We note the elements Φ(a, z) with a ∈ L m p ′′ q ′′ , φ(z) = Φ(Ω m p ′′ q ′′ , z) and if ψ(z) = Φ(a, z) then (L n ψ)(z) = Φ(L n .a, z). We do the same with G r . We call Φ a general vertex operator, it generalizes the vertex operator of the section ?? , it admits many properties, but we don't need to enter into details.

Corollary 3.40. µ = h m p ′ q ′ -h m pq and 1 -λ = h = h m p ′′ q ′′ .
Definition 3.41. We note φ as φ p ′′ q ′′ m pqp ′ q ′ , △ as

△ p ′′ q ′′ m pqp ′ q ′ = h m p ′′ q ′′ -h m p ′ q ′ + h m pq .
Definition 3.42. With p ′′ = 2k + 1 and q ′′ = 2k ′ + 1, we call φ a primary field of charge (k, k ′ ).

Note that the charge and the spaces between which the field acts fixes λ and µ, but σ can be 0 or 1. Now, σ = 0 or 1 corresponds to φ(z) with integers or half-integers modes respectively. On our work, we only need to consider primary fields of charge α = (1/2, 1/2) and β = (0, 1): Proposition 3.43. Up to a multiplication by a rational power of z: (a) The compression of complex fermions gives primary fields of charge α. (b) The compression of real fermions gives primary fields of charge β.

Proof. We just check the compatibility condition using the explicit formula of GKO for G r . The calculation can also be made on the vertex algebra of the fermions. 

Constructible primary fields and braiding for

p = 2i + 1 p ′ = 2j + 1 p ′′ = 2k + 1 q = 2i ′ + 1 q ′ = 2j ′ + 1 q ′′ = 2k ′ + 1 (a) h ℓ i = h m pq + h ℓ+2 i ′ -1 2 (i -i ′ ) 2 (b) △ kℓ ij = △ p ′′ q ′′ m pqp ′ q ′ + △ k ′ ℓ+2 i ′ j ′ -C kk ′ ii ′ jj ′ with C kk ′ ii ′ jj ′ = 1 2 [(i -i ′ ) 2 -(j -j ′ ) 2 + (k -k ′ ) 2 ] Proof. h m pq = [(m+2)p-mq] 2 -4 8m(m+2) = 2p 2 (m+2)-2q 2 m-4 8m(m+2) + (p-q) 2 8 = h ℓ i -h ℓ+2 i ′ + 1 2 (i -i ′ ) 2 Next, (b) is immediate by (a). Notation 3.45. We note h ℓ ii ′ , L ℓ ii ′ , φ kk ′ ℓ ii ′ jj ′ and △ kk ′ ℓ ii ′ jj ′ instead of h m pq , L m pq , φ p ′′ q ′′ m pqp ′ q ′ and △ p ′′ q ′′ m pqp ′ q ′ .
Definition 3.46. A non-zero primary field of charge α = (1/2, 1/2) or β = (0, 1) is called constructible if it's a compression fermions.

Theorem 3.47. (Constructible primary fields) (1)φ αℓ ii ′ jj ′ is constructible iff:

i + i ′ + 1/2 ≤ ℓ and j + j ′ + 1/2 ≤ ℓ + 2 (a) If σ = 0: i ′ = i ± 1/2 and j ′ = j ± 1/2, (b) If σ = 1: i ′ = i ± 1/2 and j ′ = j ∓ 1/2. (2) φ βℓ ii ′ jj ′ is constructible iff: i + i ′ ≤ ℓ and j + j ′ + 1 ≤ ℓ + 2 (a) If σ = 0: i ′ = i and j ′ = j ± 1. (b) If σ = 1: i ′ = i and j ′ = j
with the restriction that 0 ≤ i, i ′ ≤ ℓ/2 and 0 ≤ j, j ′ ≤ (ℓ + 2)/2. This section is devoted to prove the theorem. Remark 3.48. If we ignore σ, we see that the dimension of the spaces of constructible primary fields are 0, 1 or 2-dimensional, and it's correspond to the fusion rules obtained below.

Remark 3.49. The dimension of the space of all the primary fields (non necessarily construcible as above) have been calculated by Iohara and Koga [START_REF] Iohara | Fusion algebras for N = 1 superconformal field theories through coinvariants. II. N = 1 super-Virasoro-symmetry[END_REF], using the action on the singular vectors of F σ λ,µ . Their result shows that in the previous cases, every primary fields are constructibles. Corollary 3.50. Let φ of charge α or β, then φ = 0 iff φ constructible.

Reminder 3.51. (GKO construction, see [START_REF] Palcoux | Neveu-Schwarz and operators algebras II : Unitary series and characters[END_REF] section 5)

F g N S ⊗ L ℓ i = L ℓ ij ⊗ L ℓ+2 j and F g N S = L 2 0 ⊕ L 2 1 as Lg-module.
Corollary 3.52. (Braiding relations) Let (γ 1 , γ 2 ) = (α, α), (β, α) or (α, β):

φ γ 1 ℓ ii ′ jj ′ (z)φ γ 2 ℓ jj ′ kk ′ (w) = µ rr ′ φ γ 2 ℓ ii ′ rr ′ (w)φ γ 1 ℓ rr ′ kk ′ (z) with µ rr ′ = 0.
To simplify, we don't write the dependence of µ rr ′ on the other coefficients.

proof of theorem 3.47 and corollary 3.52 This proof is an adaptation of the proof of Loke [START_REF] Loke | Operator algebras and conformal field theory for the discrete series representations of Diff(S 1 )[END_REF] for Vir. I thank A. Wassermann to have simplified it. Let H ℓ j , H ℓ jj ′ be the L 2 -completion of L ℓ j and L ℓ jj ′ . Let Φ(v, z) = I⊗φ 

F g N S ⊗ H ℓ j = H ℓ jj ′ ⊗ H ℓ+2 j ′ and F g N S ⊗ H ℓ i = H ℓ ii ′ ⊗ H ℓ+2 i ′ Let p i ′ , p j ′ be the projection on H ℓ ii ′ ⊗ H ℓ+2 i ′ and H ℓ jj ′ ⊗ H ℓ+2 j ′ . Let η ∈ H ℓ ii ′ , ξ ∈ H ℓ jj ′ be non-zero fixed L 0 -eigenvectors. Let φ(v, z) : H ℓ+2 j ′ → H ℓ+2 i ′ , defined by: ∀η ′ ∈ H ℓ+2 i ′ and ∀ξ ′ ∈ H ℓ+2 j ′ , (p i ′ Φ(v, z)p j ′ .(ξ ⊗ ξ ′ ), η ⊗ η ′ ) = (φ(v, z).ξ ′ , η ′ ).
Now, by compatibility condition for LSU(2):

[X(n), Φ(v, z)] = z n Φ(X.v, z) and [L n , Φ(v, z)] = z n [z d dz + (n + 1)h ℓ 1/2 ]Φ(v, z)
Now, X(n) and L n commute with p i ′ , p j ′ and z r with s ∈ Q, then, by easy manipulation we see that, up to multiply by a rational power of z:

[X(n), φ(v, z)] = z n (φ(X.v, z)) and [L n , φ(v, z)] = z n [z d dz + (n + 1)h ℓ+2 1/2 ](φ(v, z)
) By compatibility and uniqueness theorem, ∃s ∈ Q such that z s φ(v, z) is the spin 1/2 and level ℓ + 2 primary field φ ℓ+2 i ′ j ′ (v, z) (up to a multiplicative constant) of LSU(2). The power s can be compute using lemma 3.44. It follows that

p i ′ Φ(v, z)p j ′ = φ ℓ+2 i ′ j ′ (v, z) ⊗ ρ(z). Now, h ℓ 1 2 , 1 2 = h ℓ 1 2 -h ℓ+2 1 2
, it follows that up to multiply by a rational power of z:

[L n , ρ(z)] = z n [z d dz + (n + 1)h ℓ 1 2 , 1 2 ]ρ(z)
We verify also, using the explicit formula for G r that:

[G -1/2 , ρ(z)] = z -r-1/2 [G r , ρ(z)]
Finally, by compatibility condition and uniqueness, ∃s

′ ∈ Q such that z s ′ ρ(z),
is the charge (1/2, 1/2) primary field φ

1 2 1 2 ,ℓ ii ′ jj ′ (z) of Vir 1/2 between H ℓ jj ′ and H ℓ ii ′
(up to a multiplicative constant). Finally by lemma 3.44:

p i ′ [I ⊗ φ 1 2 ℓ ij (v, z)]p j ′ = C.z -C kk ′ ii ′ jj ′ φ ℓ+2 i ′ j ′ (v, z) ⊗ φ 1 2 1 2 ,ℓ
ii ′ jj ′ (z) the value of σ follows using characterization: integer and half-integer moded. Now, the constant C is possibly zero. So, we will prove it's non-zero for the annonced constructible fields:

If it exists j ′ such that, Φ(v, z)p j ′ = 0 ∀v, then, ∀u ∈ L ℓ jj ′ ⊗ L ℓ+2 j ′ , Φ(v, z)u = 0, but, by commutation relation with I ⊗ ψ(x, r) and X(n) ⊗ I, it follows by irreducibility that u = 0 is cyclic and Φ(v, z)u ′ = 0 ∀u ′ ∈ F g N S ⊗L ℓ j . Then, Φ(v, z) = 0 contradiction. So, ∀j ′ , Φ(v, z)p j ′ = 0, so it exists i ′ such that p i ′ Φ(v, z)p j ′ = 0. By the beginning of the proof, a necessary condition for i ′ is that φ 1 2 ℓ+2 i ′ j ′ is a non-zero primary field of LSU(2). We will prove that this condition is also sufficient. For now, we know that for this i ′ , φ

1 2 1 2 ,ℓ ii ′ jj ′ is a non-zero primary field of Vir 1/2 . Now, ∀i ′ let ρ 1 2 1 2 ,ℓ ii ′ jj ′ a multiple (possibly zero) of φ 1 2 1 2 ,ℓ ii ′ jj ′ , such that: Φ(v, z) = Φ ij (v, z) = ρ 1 2 1 2 ,ℓ ii ′ jj ′ (z) ⊗ φ 1 2 ,ℓ+2 i ′ j ′ (v, z) Now, (Φ ij (u, z)Φ jk (v, w)Ω jj ′ kk ′ ⊗ Ω j ′ k ′ , Ω jj ′ ii ′ ⊗ Ω j ′ i ′ ) = (ρ 1 2 1 2 ,ℓ ii ′ jj ′ (z)ρ 1 2 1 2 ,ℓ jj ′ kk ′ (w)Ω jj ′ kk ′ , Ω jj ′ ii ′ ).(φ 1 2 ,ℓ+2 i ′ j ′ (u, z)φ 1 2 ,ℓ+2 j ′ k ′ (v, w)Ω j ′ k ′ , Ω j ′ i ′ )
We can write it as a relation between reduced 4-point function:

F j (ζ) = f j ′ (ζ)h jj ′ (ζ)
We return in the context of reminder 3.21 and 3.26:

F j and f j ′ are holomor- phic function from C\[0, ∞[ to W . Let v j ′ ∈ W such that g(ζ)v j ′ = ζ µ j ′ f j ′ (ζ).
We apply the gauge transformation g(ζ) -1 on the previous equality:

g(ζ) -1 F j (ζ) = ζ -µ j ′ v j ′ h jj ′ (ζ)
It follows that h jj ′ is holomorphic on C\[0, ∞[, we get a formula for it:

h jj ′ (ζ) = C.ζ µ j ′ (g(ζ) -1 F j (ζ), v j ′ )
with C a non-zero constant. This formula gives exactly the duality for braiding discovered by Tsuchiya-Nakanishi [START_REF] Tsuchiya | Level-rank duality of WZW models in conformal field theory[END_REF]. Then by reminder 3.26, the braiding matrix for the ρ

1 2 1 2 ,ℓ ii ′ jj ′ (z)
is the product of the braiding matrix for LSU(2) at spin 1/2 and level ℓ, times the transposed of the inverse of the braiding matrix for LSU(2) at spin 1/2 and level ℓ + 2. All the coefficients are non-zero. Now, suppose that ρ

1 2 1 2 ,ℓ ii ′ jj ′ (z) = 0, with φ 1 2 ,ℓ ij and φ 1 2 ,ℓ+2 i ′ j ′ constructible then: 0 = ρ 1 2 1 2 ,ℓ ii ′ jj ′ (z)ρ 1 2 1 2 ,ℓ jj ′ ii ′ (w) = λ kk ′ ρ 1 2 1 2 ,ℓ ii ′ kk ′ (w)ρ 1 2 1 2 ,ℓ kk ′ ii ′ (z)
with all braiding coefficients non-zero. But as we see previously by irreducibility, the right side admits at least a non-zero term, contradiction.

For the braiding between charge (0, 1) and charge (1/2, 1/2) primary fields, we do the same starting with the Neveu-Schwarz fermion field ψ(u, z)⊗ I commuting with I ⊗ φ 1 2 ℓ ij (v, w). We find also that every possible braiding coefficients are non-zero. The result follows. End of the proof. Remark 3.53. As a consequence of remark 3.24, we know that such a braiding exists for (γ 1 , γ 2 ) = (β, β), but we don't know if every coefficients µ rr ′ are non-null. Proposition 3.54. The primary fields of charge α or β are bounded and identifying the L 2 -completion of F σ λ,µ with L 2 (S 1 )e σiθ/2 ⊕ L 2 (S 1 )e (1-σ)iθ/2 , we obtain φ(f ) for f ∈ L 2 (S 1 )e σiθ/2 , θ(g) for g ∈ L 2 (S 1 )e (1-σ)iθ/2 with:

φ(f ) ≤ K f 2 and θ(g) ≤ K ′ g 2
Proof. The primary fields of charge α or β are constructibles, and the compressions of fermions are bounded operators. J (S 1 )e σiθ/2 , with I, J be two disjoint proper intervals of S 1 . Using an argument of convolution (as [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] p 516), we can write the following localised braiding relations: Notation 3.57. We simply note φ k ij (f ) for primary field of charge k for Vir 1/2 ; the charge c m is fixed and i = 0 significate i = (0, 0). Proposition 3.58. The chains of constructible primary fields of the form: 

φ γ 1 ℓ ii ′ jj ′ (f )φ γ 2 ℓ jj ′ kk ′ (g) = µ rr ′ φ γ 2 ℓ ii ′ rr ′ (e λ g)φ γ 1 ℓ rr ′ kk ′ (ē λ f ) with µ rr ′ = 0. with e λ = e iλθ , λ = h ℓ ii ′ + h ℓ kk ′ -h ℓ jj ′ -h ℓ rr ′ and (γ 1 , γ 2 ) as previously.
φ α 0i 1 (f 1 )φ α i 1 i 2 (f 2 )...φ α i r-1 ir (f r )φ α ir0 (f r+1 ) with α = (
(f )) := π i (ϕ t )ψ α ij (f )π j (ϕ t ) ⋆ = ψ α ij (u t .f ) by the covariance relations. Then, σ t (ψ α ij (f )) is a primary field concentrated on ϕ t (J) → {1} (when t → ∞ ).
Reminder 3.60. (Cancellation theorem) If a unitary representation of a connected semisimple non-compact group with finite center has no fixed vectors, then its matrix coefficients vanish at ∞. We can find a proof on Zimmer's book [START_REF] Zimmer | Ergodic theory and semisimple groups[END_REF]. For example, G = SU(1, 1) ≃ SL(2, R) (non-compact) is implemented on the irreducible positive energy representations H of Vir 1/2 , which give a unitary representation of a central cyclic extension G of G, whose Lie algebra is generated by L -1 , L 0 and L 1 . But if ξ ∈ H, L 0 ξ = 0 implies immediatly that H = H 0 and ξ = Ω (up to a multiplicative constant). So G admits no fixed vectors outside of the vacuum. But the modular operators U t go to ∞ when t → ∞. Then, their matrix coefficients vanish at ∞. In our case, we can prove the cancellation theorem directly, because H decomposes into a direct sum of irreducible positive energy representation of G and each summands is a discrete series representation of G, so can be realized as a subrepresentation of L 2 (G), and then has matrix coefficient tending to zero at ∞ (see Pukanszky [START_REF] Pukanszky | The Plancherel formula for the universal covering group of SL(R, 2)[END_REF]). Proof. Let a = φ α α0 (f ) = 0 and R θ be the quantized rotation action: R θ = e iL 0 θ (see remark 2.61). Let b θ = R ⋆ θ a ⋆ R θ . We suppose that (b θ aΩ, Ω) = 0 for |θθ 1 | ≤ ε with θ 1 fixed and ε > 0. Then (R ⋆ θ a ⋆ R θ aΩ, Ω) = 0. But L 0 Ω = 0 on the vacuum representation. Then, R θ Ω = Ω and (R θ aΩ, aΩ) = 0. Now, by positive energy of the representation aΩ = n∈ 1 2 N ξ n (coming from the orthogonal decomposition for L 0 ) and aΩ 2 = ξ n 2 . Now, with z = e iθ/2 , (R θ aΩ, aΩ) = n∈N z n ξ n/2 2 = f (z), let g(z) = f (e -iθ 1 /2 z). Then, g extends to a continuous function on the closed unit disc, holomorphic in the interior and vanishing on the unit circle near {1}. By the Schwarz reflection principle and the Cayley transfrom, g must vanishes identically in z. So, (R 0 aΩ, aΩ) = aΩ 2 = 0. Then aΩ = 0, so a ⋆ aΩ = 0. But Ω is a separating vector on the von Neumann algebra, so a ⋆ a = 0, and a = 0, contradiction. Proposition 3.62. (Leading term in OPE of primary fields) Let I be a proper interval of S 1 , and I 1 , I 2 be subintervals be subintervals obtained by removing a point. Let a νµ and b µν be non-zero primary fields of charge α, localised in I 1 and I 2 respectively, then σ t (a νµ b µν ) → w Id H i (up to a multiplicative constant).

Proof. We adapt to Vir 1/2 , a proof of A. Wassermann [START_REF] Wassermann | [END_REF] for LSU [START_REF] Frenkel | Quantum affine algebras and holonomic difference equations[END_REF].

Without a loose of generality, we can take {1} ∈ Ī1 ∩ Ī2 . Let a and b be generic primary fields of charge α concentrate on I 2 and I 1 respectively.

(1)We first prove that σ t (a 0α b α0 ) → w C non-zero constant: σ t (a 0α b α0 ) is clearly bounded, then by the weak compacity of the unit b ij a jk = ν l a il b lk with ν l = 0 iff l ∈ α, i ∩ α, k Proof. We prove by induction on |i|. We suppose that: Proof. Let X 0 ⊂ Hom M(I c ) (H 0 , H α ), be the linear span of intertwiners x = π α (h)a α0 , with h ∈ M(I) and a α0 a primary field localised in I. Since xΩ = (π α (h)a α0 π 0 (h) ⋆ )π 0 (h)Ω with h unitary, and π α (h)a α0 π 0 (h) ⋆ also a primary field, it follows by the Reeh-Schlieder theorem (and by the fact that the unitary operators generate the von Neumann algebra) that X 0 Ω is dense in X 0 H 0 . Now, using the von Neumann density in the same way that for the lemma 4.13, X 0 Ω is also dense in H α . Let x = π α (h (r) )a α0 ∈ X 0 , x ji = π j (h (r) )a (r)

ji and y ∈ Y := Hom M(I) (H 0 , H i ). By the transport formula: (x ⋆ xy ⋆ yΩ, Ω) = (y ⋆ π i (x ⋆ x)yΩ, Ω) = λ j x ji yΩ 2 . Now, polarising this identity, we get an isometry U of the closure of X 0 ⊗ Y in H α ⊠ H i into H j , sending x⊗y to λ 1/2 j x ji yΩ. By the Hilbert space continuity lemma, X 0 ⊗ Y is dense in H α ⊠ H i . Now, each a ji can be non-zero, so by the unicity of the decomposition into irreducible, U is surjective and then a unitary operator. Proof. We prove in the same way that H i ⊠ H α = j∈ α,i H j .

Connes fusion with H β

Recall that β = (0, 1) and φ α α,β is non-zero.

φ α ij (z)φ β jk (w) = λ l φ β il (w)φ α lk (z) with λ l = 0 iff l ∈ β, i ∩ α, k Remark 4.26. We proceed as previously: this braiding pass to the local primary field, we make principal and non-principal part incorporating the phase correction. Now, β is not a weak generator, so, to prove a transport formula, we prove by induction on |i| that a i0 c ⋆ β0 c β0 = [ λ l c ⋆ li c li ]a i0 , with a i0 a chain of even primary field of charge α localised on I, (c ij ) even primary fields of charge β localised on I c , and λ l ≥ 0 iff l ∈ β, i . The proof uses the same arguments with positive operators... then by intertwining we obtain the following partial transport formula, and next, a partial fusion rules: 

  with a, b n = {c = |a -b|, |a -b| + 1, ..., a + b | a + b + c ≤ n}. Let M ℓ ij (I) be the von Neumann algebra generated on H ℓ ij , by the bounded function of the self-adjoint operators of Vir 1/2 (I). Theorem 1.2. (Haag-Araki duality on the vacuum) M ℓ 00 (I) = M ℓ 00 (I c ) ♮

Definition 2 . 11 .

 211 We can then define two invariants of M, T (M) = ker(δ) and S(M) = Sp(δ) = Sp(△ Ω ) \ {0} called the Connes spectrum of M.

Definition 2 .

 2 46. (Dixmier) Let H be an Hilbert space. An unbounded selfadjoint operator T is affiliated to a von Neumann algebra M if it satisfy one of the followings equivalent properties: (a) M contains all the spectral projection of T . (b) M contains every bounded functions of T . (c) ∀u ∈ M ′ unitary, uD(T ) = D(T ) and uT ξ = T uξ, ∀ξ ∈ D(T ). We note T η M. Remark 2.47. By lemma 2.26, if (M, τ ) is a Z 2 -graded von Neumann algebra, we can add: (c') ∀u ∈ M ♮ unitary, uD(T ) = D(T ), uT ξ = (-1) ∂T ∂u T uξ, ∀ξ ∈ D(T ). Definition 2.48. Let I be a proper interval of S 1 . We define C ∞ I (S 1 ) as the algebra of smooth functions vanishing out of I. Definition 2.49. Let Vir 1/2 (I) be the local Neveu-Schwarz Lie superalgebra, generated by L f , G f with f ∈ C ∞ I (S 1 ), and C central. Lemma 2.50. (Locality) Vir 1/2 (I) and Vir 1/2 (I c ) supercommute. Proof. By lemma 2.36, the computation of the brackets involve product of functions in C ∞ I (S 1 ) and C ∞ I c (S 1 ), but C ∞ I (S 1 ).C ∞ I c (S 1 ) = {0}. Definition 2.51. Let p 0 be the projection on the space generated by the vectors of integer level, p 1 = 1p 0 , u = p 0p 1 and τ (x) = uxu. Definition 2.52. Let the von Neumann algebra N m pq (I) be the minimal von Neumann subalgebra of B(H m pq ) such that the self-adjoint operators of Vir 1/2 (I)

  e) The modular group fixes the center. In fact △ it x△ -it = x and JxJ = x ⋆ for x ∈ Z(M) = M ∩ M ′ . Definition 2.63. Let M N S (I) be the von Neumann algebra generated by the real Neveu-Schwarz ψ f with f localised on I.Lemma 2.64. (Reeh-Schlieder theorem) Let v ∈ F N S be a non-null vector of finite level, then, M N S (I).v is dense in F N S (i.e. v is a cyclic vector).

Proposition 2 .

 2 66. The local algebra M N S (I) satisfy Haag-Araki duality, covariance for Diff(S 1 ), and the modular action is geometric and ergodic. In particular, M N S (I) is the hyperfinite III 1 factor Proof. The covariance is shown in remark 2.61. Then, M N S (I) is stable by the modular action of M(I). Now, π P (M N S (I)) ⊂ M(I) ⊂ B(H C ) with conditional expectation, so π P (M N S (I)) is hyperfinite. Next by Takesaki devissage the modular action of π P (M N S (I)) is ergodic, so it's the hyperfinite III 1 factor. Now, by definition of the type III, every subrepresentations are equivalents, but one copy of F N S is a subrepresentation. So M N S (I) is the hyperfinite III 1 factor. Finally, the Haag-Araki duality for M N S (I) comes from the Haag-Araki duality for M(I), the Reeh-Schlieder theorem and the Takesaki devissage.

0 (((

 0 But by Takeaki devissage P N(I)P = π gko (Vir 1/2 (I)) ′′ P = [π ⊗M 0 Vir 1/2 (I)) ′′ ]. So κJP N(I)P Jκ ⋆ = P κJN(I)Jκ ⋆ P = P N(I) ♮ P = P N(I c )P = [π ⊗M 0 0 Vir 1/2 (I c )) ′′ ] = [π ⊗M 0 0 Vir 1/2 (I)) ♮ ]. The Haag-Araki duality for the Neveu-Schwarz algebra follows. Corollary 2.81. (Generalized Haag-Araki duality) π gko (Vir 1/2 (I)) ′′ = π gko (Vir 1/2 ) ′′ ∩ N (I) Corollary 2.82. π 0 (Vir 1/2 (I)) ′′ is generated by chains of compressed fermions concentrate in I. Proof. Immediate from Jones relation: p 0 N (I)p 0 = π gko (Vir 1/2 (I)) ′′ p 0 . Now because π gko contains all the irreducible positive energy representations π i of charge c m , we deduce that: Corollary 2.83. Let π be the direct sum of all the π i . To simplify we note π = π 0 ⊕ ... ⊕ π n . Then A := π(Vir 1/2 (I)) ′′

Vir 1/ 2 Definition 3 . 27 .

 2327 Let λ, µ ∈ C, σ = 0, 1, we define the ordinary representations of Vir 1/2 as F σ λ,µ , with base

Vir 1/ 2 Lemma 3 .

 23 44. Let m = ℓ + 2. and

  (v, z) : F g N S ⊗H ℓ j → F g N S ⊗H ℓ i .By the coset construction:

Corollary 3 .

 3 55. (Localised braiding relation) Let f ∈ L 2 I (S 1 )e σiθ/2 and g ∈ L 2

3. 4

 4 Application to irreducibility Definition 3.56. Let M, N ⊂ B(H) be von Neumann algebra, then, M ∨ N is the von Neumann algebra generated by M and N .

Proposition 3 .

 3 61. (Generically non-zero) Let a = φ α α0 (f ) and b = φ α 0α (g) with f , g on proper intervals. Then, (baΩ, Ω) is non-zero in general.

Corollary 4 .Lemma 4 . 20 .Definition 4 . 22 .

 4420422 19. (Abelian braiding) If #( α, i ∩ α, k ) = 1 then: b ij a jk = νa ij b jk with ν = 0 The set of vectors of the form η = (η i ) with,η i = π i (x)b ij ξ, i ∈ α, j , x ∈ M(I c ) and ξ ∈ H j , spans a dense subspace of H i .Proof. By Reeh-Schlieder, choosing a non-null vectorv j ∈ F j , π j (M(I c ))v j is dense in H j . Now, by intertwining, b ij π j (M(I)) = π i (M(I))b ij . Then, if b ij v j = 0,then, b ij vanishes on a dense subspace, and so by continuity, b ij = 0, contradiction. So, b ij v j = 0. Now, clearly, the set of vector ρ = (ρ i ), with ρ i = π i (x)b ij π j (y)v j , x ∈ M(I c ) and y ∈ M(I), is a subset of the set of the lemma. Now, by intertwining ρ i = π i (x)π i (y)b ij v j . Let π = π i and w = (w i ), with w i = b ij v j = 0. Then, the set of ρ is exactly π(M(I c ).M(I)).w. Next, because M(I c ) and M(I) commute, the linear span of π(M(I c ).M(I)) is weakly dense in π(M(I c ).M(I)) ′′ = B(H i ) by von Neumann density. So, the set spans a dense subspace of ( B(H i ))w = H i because w i = 0. Remark 4.21. āij .a ji ∈ Hom M(I c ) (H i , H i ) = π i (M(I c )) ′ . In particular, ā0α .a α0 ∈ π 0 (M(I)) by Haag-Araki duality. Let |i| be the less number of edges from i to 0 in the connected graph G α . Theorem 4.23. (Transport formula) π i (ā 0α .a α0 ) = j∈ α,i λ j āij .a ji with λ j > 0.

π

  i (ā 0α .a α0 ) = j∈ α,i λ j āij .a ji and π i ( b0α .b α0 ) = j∈ α,i λ ′ j bij .b ji (1) Polarizing the second identity, we get:π i ( b0α .b ′ α0 ) = j∈ α,i λ ′ j bij .b ′ ji Now, with x ∈ M(I c ) and b ′ ij = π i (x)b ij π j (x) ⋆ , we get: π i ( b0α .π α (x)b α0 π 0 (x) ⋆ ) = j∈ α,i λ ′ j bij .π j (x).b ji π i (x) ⋆Corollary 4.24. (Connes fusion for charge α) H α ⊠ H i = j∈ α,i H j

Corollary 4 .

 4 25. (Commutativity for charge α)H α ⊠ H i = H i ⊠ H α

Corollary 4 .

 4 27. (Transport formula)π i (c 0β .a α0 ) = j∈ β,i λ j cij .c ji with λ j ≥ 0.

Corollary 4 . 4 . 5

 445 28. (partial Connes fusion for β) H β ⊠ H i ≤ j∈ β,i H j The fusion ring We define the fusion ring (T m , ⊕, ⊠) generated as the Z-module, by the discrete series of Vir 1/2 at fixed charge c m , with m = ℓ + 2 Lemma 4.29. (closure under fusion) (a) Each H i is contains in some H ⊠n α . (b) The H i 's are closed under Connes fusion.(c)H i ⊠ H j = m k ij H k with m k ij ∈ N Proof. (a)Direct because α is a weak generator. (b) Since H i ⊂ H ⊠m α and H j ⊂ H ⊠n α for some m, n, we have H i ⊠H j ⊂ H ⊠m+n α , which is, by induction, a direct sum of some H i . Now, by Schur's lemma any subrepresentations of a direct sum of irreducibles, is a direct sum of irreducibles; then, so is for H i ⊠ H j . (c) By induction, H ⊠m+n α admits only finite multiplicities. Definition 4.30. (Quantum dimension) A quantum dimension is an application d : T m → R ∪ {∞}, which is additive and multiplicative for ⊕ and ⊠, and positive (possibly infinite) on the base (H i ).

Reminder 4 .

 4 31. On a fusion ring, finite asZ-module, the quantum dimension d is finite if ∀A ∈ T m , ∃B ∈ T m such that H 0 ≤ A ⊠ B. If so, B is unique and called the dual of A, noted A ⋆ . Remark 4.32. H 0 ≤ H α ⊠ H α . Then, H ℓ α is self-dual and d(H α ) finite.Corollary 4.33. The quantum dimension is finite on the fusion ring.

  1/2 (I))′′ . By local equivalence, we only need to prove it on the vacuum, on which the local algebra on I as generated by chains concentred on I. By linearity, the L 2 -context, and a kind of OPE, we can separate into products of chains on I 1 and I 2 . Next the von Neumann density implies the irreducibility of the Jones-Wassermann subfactor:

iff there is a partial isometry u ∈ M between pH and qH; thus u * u = p and uu * = q. We can immediately distinguish three mutually exclusive cases

  Definition 2.2. The weak operator topology closure Ā of A is the set of a ∈ B(H) such that ∃a n ∈ A with (a n η, ξ) → (aη, ξ), ∀η, ξ ∈ H. Definition 2.5. A factor is a von Neumann algebra M with M ∩ M ′ = C.

	Reminder 2.9. (Tomita-Takesaki theory) We suppose the existence of a 2 Local von Neumann algebras 2.1 Recall on von Neumann algebras Let H be an Hilbert space and A a unital ⋆-algebra of bounded operators. Definition 2.1. The commutant A ′ of A is the set of b ∈ B(H) such that, vector Ω (called vacuum vector) such that MΩ and M ′ Ω are dense in H (ie Ω is cyclic and separating). Let S : H → H the closure of the antilinear map: ⋆ : xΩ → x ⋆ Ω. Then, S admits the polar decomposition S = J△ 1 2 with J antilinear unitary, and △ 1 2 positve; so that JMJ = M ′ , △ it M△ -it = M and σ Ω t (x) = △ it x△ -it gives the one parameter modular group action. ∀a ∈ A, then [a, b] := ab -ba = 0 Reminder 2.10. (Radon-Nikodym theorem) Let Ω ′ be another vacuum vec-
	tor, then there exists a Radon-Nikodym map u t ∈ U(M), define such that u t+s = u t σ Ω ′ t (u s ) and σ Ω ′ t (x) = u t σ Ω t (x)u ⋆ t . Then, modulo Int(M), σ Ω t is in-
	Reminder 2.3. (Bicommutant theorem) Let M be a unital ⋆-algebra, then: dependant of the choice of Ω, ie, there exist an intrinsic δ : R → Out(M) = Aut(M)/Int(M). On type I or II the modular action is internal, and so δ M ′′ = M ⇐⇒ M = M trivial. It's non-trivial for type III.
	Definition 2.4. Such a M verifying one of these equivalents properties is called a von Neumann algebra.
	Reminder 2.6. (Murray and von Neumann theorem) The set of all the
	factors on H is a standard borelian space X and every von Neumann algebra M decompose into a direct integral of factors: M = ⊕ X M x dµ x
	Reminder 2.7. (Murray and von Neumann's classification of factors)
	Let M ⊂ B(H) be a factor. We shall consider H as a representation of M ′ . Thus subrepresentations of H correspond to projections in M. If p, q ∈ M are projections, then pH and qH are unitarily equivalent as representations
	of M ′ .
	I. H has an irreducible subrepresentation.
	II. H has no irreducible subrepresentation, but has a subrepresentation not
	equivalent to any proper subrepresentation of itself.
	III. H has no irreducible subrepresentation and every subrepresentation is
	equivalent to some proper subrepresentation of itself.
	We shall call M a factor of type I , II or III acording to the above cases.
	Reminder 2.8. The type I and II corresponds to factors admitting non-
	trivial trace, with only integer values on the projectors for the type I (M n (C)
	or B(H)), and non-integer values for the type II (factors generated by ICC
	groups for example). On the type III, the values are only 0 or ∞.

  and then, M is called a III 0 , III λ or III 1 factor (with 0 < λ < 1 ).

	Reminder 2.13. Let M = C be a von Neumann algebra on (H, Ω) then it's a III 1 factor if and only if the modular action (i.e. the action of R on M via σ Ω t ) is ergodic (i.e. it fixes only the scalar operators).
	2.2 Z 2 -graded von Neumann algebras
	Definition 2.14. A Z 2 -graded von Neumann algebra (M, τ ) is a von Neu-
	mann algebra M given with a period two automorphism: τ ∈ Aut(M) and τ 2

  Vir 1/2 (I) and Vir 1/2 (I c ) supercommute, then, by lemma 2.42 and Nelson's theorem, G f and G g supercommute for f and g concentrated on I and I c . So is for the von Neumann algebra they generate.

	Theorem 2.54. (Reeh-Schlieder theorem) Let v ∈ H m pq be a non-null vector of finite level, then, N m pq (I).v is dense in H m pq (i.e. v is a cyclic vector).
	Proof. It's a general principle of local algebra, see [25] p 502.

1 ) real), are affiliated to it. See definition 2.46 for equivalent definitions. (N m pq (I), τ ) is a Z 2 -graded von Neumann algebra. Corollary 2.53. (Jones-Wassermann subfactor) N m pq (I) ⊂ N m pq (I c ) ♮ Proof.

  g) and generating the real Clifford algebra. Warning, c is only R-linear. We have the correspondence a(f ) = 1 2 (c(f )ic(if )). Now if P is a projector on H, we can define a new irreducible representation π P of the complex Clifford algebra by π P

  1 ) is the Witt algebra. The infinitesimal version of the previous action is d n e r = -(r + n/2)e r+n : the action of the Witt algebra on the 1/2-density (see below or[START_REF] Kac | Bombay lectures on highest weight representations of infinite-dimensional Lie algebras[END_REF] p 4). This infinitesimal action of the Witt algebra is implemented on the Fock spaceF C = F N S ⊗ F N S intothe Virasoro derivation on the real fermions: [L n , ψ r ] = -(r + n/2)ψ r+n (consistent with section ??). Let SU(1, 1) be the group of g = α β β ᾱ with |α| 2 -|β| 2 = 1. and its Lie algebra is generated by d -1 , d 0 , d 1 . Now, we can see directly that SU(1, 1) is quantised, because it acts unitarily and commutes with P :

By the Mobius transformation:

g(z) = αz+β βz+ ᾱ , SU(1, 1) is injected in Diff(S 1 ),

ball, it exists a sequence t n such that σ tn (a 0α b α0 ) → w T . By the remark 3.59, σ tn (b 0α a α0 ) is concentrated on J n with J n = {1}. We obtain that T supercommutes with N ℓ 00 (J c n ). By Araki-Haag duality, ( N ℓ 00 (J c n )) ♮ = N ℓ 00 (J n )) = N ℓ 00 ({1}) = C. Then T ∈ CId. Now, (σ tn (a 0α b α0 )Ω, Ω) = (a 0α b α0 Ω, Ω) because π 0 (U t )Ω = Ω (see remark 2.61). Now (a 0α b α0 Ω, Ω) = k generically non-zero (proposition 3.61) and T = kId. Now, k is independant on the sequence (t n ), so σ t (a 0α b α0 ) → w k.Id = 0.

(2) We now prove that σ t (a γα b α0 ) → w 0 if γ = 0. Idem, it exists a sequence t n such that X n = σ tn (a γα b α0 ) → w T . Let ξ be a finite energy vector in H γ , then (X n Ω, ξ) = (π γ (U tn )a γα b α0 Ω, ξ) = ((π γ (U tn )η, ξ) → 0 when t n → ∞ by the cancellation theorem (reminder 3.60)Then, T Ω = 0, so T ⋆ T Ω = 0. But Ω is a separating vector on the von Neumann algebra, so T ⋆ T = 0 and T = 0. Now, the 0 is independent of the choice of the sequence, then: σ t (a γα b α0 ) → w 0.

(3) We prove that if a νµ = 0, then σ t (a νµ b µν ) → w C ′ non-zero constant: Idem, it exists a sequence such that σ tn (a νµ b µν ) → w R. Now, let y ν0 = x νλ 1 x λ 1 λ 2 ...x λr 0 be a chain between ν and 0 with the minimal number of primary fields of charge α, concentrate on a proper closed K interval out of {1}. Then for t sufficiently large, we can apply the braiding formulas on σ t (a νµ b µν )y ν0 . We obtain necessarily σ t (a νµ b µν )y ν0 = γ =0 A γ σ t (a γα b α0 ) + λy ν0 σ t (a 0α b α0 ), with λ = 0, A γ a linear sum of non-minimal chains between ν and γ (note that in general, there are many ways to go between 0 and ν minimally, but by the structure of the braiding rules, only the way chosen for y ν0 can appear at the end). Now, by (1) and (2), the previous equality (with t = t n ) weakly converge to Ry ν0 = λy ν0 C = λCy ν0 with λC a nonzero constant. Now, R ∈ N ℓ ν (K c ), then Ry ν0 = y ν0 π 0 (R) = λCy ν0 . Now σ t (y ν0 ) is also a minimal chain of charge α between ν and 0, concentrate on a proper closed interval out of {1}, so σ t (y ν0 )π 0

Proposition 3.63. (von Neumann density) Let I be a proper interval of S 1 , and I 1 , I 2 be subintervals such that

Proof. By the local equivalence for Vir 1/2 (see section 2.7), we only need to prove the result on the vacuum. By proposition 3.58 we only need to work with chains. Consider the chain

k concentrated on I i . Now, a primary field φ k ij (f ) is linear in f , so, we can develop the chain into a sum of chains of primary filed localized exclusively on I 1 or I 2 . Next, applying the braiding relations, we can obtain a linear combination of chains, on which the primary field localized on I 1 and I 2 are separated; generically of the form:

..φ α j s-1 js (g s-1 )φ α jsj s+1 (h s+1 )...φ α j r-1 jr (h r )φ α jr0 (h r+1 ) with g k and h k concentrate on I 1 and I 2 respectively. Now, if j s = 0, then, the previous chain is a product a.b with a ∈ N m 11 (I 1 ) and b ∈ N m 11 (I 2 ). Else, if j s = 0, using the previous proposition step by step, we see that the chain is the weak limit of chains with 0 on the middle, the result follows. Proof. With a partition of the unity.

Theorem 3.65. Let I be a proper interval of S 1 , then, the Jones-Wassermann subfactor

Proof. Let I 1 , I 2 be two proper subintervals of I obtained by removing a point. Let

Connes fusion and subfactors 4.1 Recall on subfactors

See the book [START_REF] Jones | Introduction to subfactors[END_REF] for a complete introduction to subfactors. Then we can define its index

The index admits another definition as the von Neumann dimension (see [START_REF] Jones | Introduction to subfactors[END_REF])

Reminder 4.5. (Jones' theorem, see [START_REF] Jones | Index for subfactors[END_REF]) Every possible index of II 1 -subfactors:

In the continuation of the basic construction, we can build a graph from a subfactor, called its principal graph. If the subfactor admits a finite index then the square of the norm of the matrix of its principal graph is exactly the index. Now, this matrix admits only integers values, and a theorem of Kronecker said that the norm of an integer valued matrix is in {2cos

Finally, it's proved that every possible such norms are realized from subfactors. Definition 4.6. A subfactor of finite index M ⊂ N is said to be irreducible if either of the following equivalent conditions are satisfied: Lemma 4.10. Consider the algebraic tensor product X ⊗ Y, we define a pre-inner product by:

Bimodules and Connes fusion

Proof. As for [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] p 525-526.

Definition 4.11. The L 2 -completion is called the Connes fusion between X and Y , and noted X ⊠ Y , naturally a Z 2 -graded M-M bimodule.

Lemma 4.12. There are canonical unitary isomorphism

Proof. If Y = H 0 , the unitary X ⊠ H 0 → X is given by x ⊗ y → xyΩ, and the unitary H 0 ⊠ X → X is given by y ⊗ x → (-1) ∂x∂y xyΩ.

Lemma 4.13. X can be seen as a dense subspace of X via x ↔ xΩ.

Proof. X = X .π 0 (M(I c )), so by Reeh-Schlieder X Ω is dense in

).M(I) lin )X H 0 . But, because M(I c ) and M(I) supercommute, the ⋆-algebra generated by M(I c ).M(I) is exactly its linear span, then, π X ( M(I c ).M(I) lin ) is weakly dense in π X (M(I c ).M(I)) ′′ . So, by von Neumann density

Proof. As for [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] p 526.

Lemma 4.15. ⊠ is associative.

Proof. As for [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF] p 527.

Connes fusion with H α on Vir 1/2

Remark 4.16. Note that the primary fields φ we consider are always the ordinary part and so even operators. In fact, we only need to consider even intertwiner operators because each odd intertwiner operator is the product of an even one and an odd operator on the vacuum local von Neumann algebra.

Definition 4.17. Let i, j := {k | φ k ij = 0 }. Recall that the primary field of charge α = (1/2, 1/2) are bounded. Let the graph G α with vertices {i} and an edge between i and j if j ∈ α, i ; then, α is a weak generator in the sense that the graph G α is connected. Let I be a non-trivial interval of S 1 , and let f and g be L 2 -functions localized in I and I c respectively. Recall that every possible braiding at charge α admits non-null coefficients, ie;

il (e l g)φ α lk ( ēl f ) with e l the phase correction. We note a 0α = φ α 0α (f ), b α0 = φ α α0 (g) called the principal part. We define the non-principal parts a ij and b ij such that they incorporate the phase correction in the braiding relations. Next, if a ij = φ α ij (h) then a ⋆ ij = φ α ji ( h), so we note āji = a ⋆ ij : Corollary 4.18. (Braiding relations) Now, π i (π 0 (x) ⋆ ) = π i (x) ⋆ , so you can simplify by π i (x) ⋆ : [START_REF] Connes | Noncommutative geometry[END_REF] and the braiding relations, āik π k ( b0α

)a ki clearly a positive operator, then, ∀ξ ∈ H i , (yξ, ξ) ≥ 0. Then, with η s = π s (x)b si ξ, we obtain:

)a ik , is a positive operatorvalued matrix, so that r,t (y rt ξ t , ξ r ) ≥ 0, which is exactly the inequality λ ′ j ν l µ s (a ls ηs , a lj ηj ) ≥ 0, and the linearity follows. (4) Next, by lemma 4.20, the set of such η span a dense subspace of H s , then, by linearity and continuity, the inequality runs ∀η ∈ H s . In particular, taking all but one η j equal to zero, we obtain ∀η j ∈ H j :

, we obtain:

Choosing all but one ρ l equal to zero, we have λ ′ j ν l µ j > 0, and so ν l µ j > 0. (6) Let Z = (z rt ), with z rt = b ⋆ ji π j (a ⋆ α0 a α0 )π j (x ⋆ r x t )b ji , and x r ∈ M(I c ). Z is a positive operator-valued matrix, so by the same process, induction and intertwining, we get: λ k ν l µ s (a ls η s , a lj η j ) = (π j (a ⋆ α0 a α0 )η j , η j ) Since it's true for all η s ∈ H s , all the term with s = j are null:

(π j (a ⋆ α0 a α0 )η j , η j ) = λ k ν l µ j (a lj η j , a lj η j ) But, we know that ν l µ j > 0, then, by induction hypothesis;

The result follows because α is a weak generator and j ∈ α, i . Proof.

αk is immediate from Frobenius reciprocity and H α selfdual. Next, α is a weak generator, so the fusion matrix M α , is irreducible. The result follows with the Perron-Frobenius theorem, with v i = d(H i ).

4.6

The fusion ring and index of subfactor. 

. So, by positivity, the previous inequality is an equality and:

So, the fusion rules for Hℓ β is also the same that for (H ℓ 0 , H ℓ 1 ). Now, by associativity, the fusion rules for Hℓ α and Hℓ β give all the fusion rules. The result follows.

Corollary 4.45. T m is isomorphic to the subring of (R ℓ ⊗ Z R ℓ+2 ) ⊗ Q generated by 1 with m = ℓ + 2, p = 2i + 1 and q = 2j + 1.

Proof. Immediate. It's a finite depth, irreducible, hyperfinite III 1 -subfactor, isomorphic to the hyperfinite III 1 -factor R ∞ tensor the II 1 -subfactor :

Proof. It's finite depth because there is only finitely many irreducible positive energy representations of charge c m . Next, the hyperfinite III 1 -subfactor and the irreducibility has already been proven before. The higher relative commutants can be calculated using the method of H. Wenzl [START_REF] Wenzl | Hecke algebras of type A n and subfactors[END_REF]. The rest follows from the work of S. Popa [START_REF] Popa | Classification of subfactors and their endomorphisms[END_REF].