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Neveu-Schwarz and operators algebras II Unitary series and characters

This paper is the second of a series giving a self-contained way from the Neveu-Schwarz algebra to a new series of irreducible subfactors. Here we give a unitary complete proof of the classification of the unitary series of the Neveu-Schwarz algebra, by the way of GKO construction, Kac determinant and FQS criterion. We then obtain the characters directly, without Feigin-Fuchs resolutions.

1 Introduction

Background of the series

In the 90's, V. Jones and A. Wassermann started a program whose goal is to understand the unitary conformal field theory from the point of view of operator algebras (see [START_REF] Jones | Fusion en algèbres de von Neumann et groupes de lacets (d'après A. Wassermann)[END_REF], [START_REF] Wassermann | Operator algebras and conformal field theory[END_REF]). In [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF], Wassermann defines and computes the Connes fusion of the irreducible positive energy representations of the loop group LSU(n) at fixed level ℓ, using primary fields, and with consequences in the theory of subfactors. In [START_REF] Laredo | Fusion of Positive Energy Representations of LSpin(2n)[END_REF] V. Toledano Laredo proves the Connes fusion rules for LSpin(2n) using similar methods. Now, let Diff(S 1 ) be the diffeomorphism group on the circle, its Lie algebra is the Witt algebra W generated by d n (n ∈ Z), with [d m , d n ] = (m -n)d m+n . It admits a unique central extension called the Virasoro algebra Vir. Its unitary positive energy representation theory and the character formulas can be deduced by a so-called Goddard-Kent-Olive (GKO) coset construction from the theory of LSU(2) and the Kac-Weyl formulas (see [START_REF] Wassermann | Kac-Moody and Virasoro algebras[END_REF], [START_REF] Goddard | Unitary representations of the Virasoro and super-Virasoro algebras[END_REF]). In [START_REF] Loke | Operator algebras and conformal field theory for the discrete series representations of Diff(S 1 )[END_REF], T. Loke uses the coset construction to compute the Connes fusion for Vir. Now, the Witt algebra admits two supersymmetric extensions W 0 and W 1/2 with central extensions called the Ramond and the Neveu-Schwarz algebras, noted Vir 0 and Vir 1/2 . In this series ( [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF], this paper and [START_REF] Palcoux | Neveu-Schwarz and operators algebras III : Subfactors and Connes fusion[END_REF]), we naturally introduce Vir 1/2 in the vertex superalgebra context of Lsl 2 , we give a complete proof of the classification of its unitary positive energy representations, we obtain directly their character; then we give the Connes fusion rules, and an irreducible finite depth type II 1 subfactors for each representation of the discrete series. Note that we could do the same for the Ramond algebra Vir 0 , using twisted vertex module over the vertex operator algebra of the Neveu-Schwarz algebra Vir 1/2 , as R. W. Verrill [START_REF] Verrill | Positive energy representations of L σ SU(2r) and orbifold fusion[END_REF] and Wassermann [START_REF] Wassermann | Subfactors and Connes fusion for twisted loop groups[END_REF] do for twisted loop groups.

Overview of the paper

Let g = sl 2 , using theta functions framework, we obtain the decomposition of H = F g N S ⊗(L(j, ℓ)⊗F g N S ) as g-module. The multiplicity spaces of irreducible components H k are superintertwiners space Hom g (H k , H); we deduce their character as module of W 1/2 , which acts on with L(c m , h m pq ) as submodule by GKO construction. The unitarity of the discrete series follows.

We define irreducible polynomial ϕ pq (c, h) from (c m , h m pq ). The Kac determinant det n (c, h) of the sesquilinear form on V (c, h) at level n is easily interpolate, as a product of ϕ pq , computing the first examples. To prove it, we enlight links between previous characters results and singular vectors s (i.e. G 1/2 .s = G 3/2 .s = 0), whose the existence vanishes det n .

A negative Kac determinant shows easily a ghost on the region between the curves h = h c pq . Now, we go from the no-ghost region h > 0, c > 3/2 to an order 1 vanishing curve C; then, on the other side, there is a ghost. By transversality, it pass on the curve intersecting C next. And so on each curves, excepting 'first intersections': discrete series. Theorem 1.2 follows.

Finally, a coherence argument between the characters of the multiplicity spaces M m pq and its irreducibles (on discrete series by FQS), shows M m pq without others irreducibles that L(c m , h m rs ). So, M m pq = L(c m , h m p,q ) and we obtain the character of L(c m , h m p,q ) as the character of M m pq , ever known by GKO construction. Theorem 1.3 follows.

Main results

The irreducible positive energy representations of the Neveu-Schwarz algebra Vir 1/2 are denoted L(c, h) with Ω its cyclic vector. Our purpose is to give a complete proof of the classification of unitary representations, in such a way that we obtain directly the characters of the discrete series, without Feigin-Fuchs resolution [START_REF] Feigin | Verma modules over the Virasoro algebra[END_REF]. The Neveu-Schwarz algebra is defined by: 

   [L m , L n ] = (m -n)L m+n + C 12 (m 3 -m)δ m+n [G r , L n ] = (m -n 2 )G r+n [G r , G s ] + = 2L r+s + C 3 (r 2 -1 4 )δ r+s with m, n ∈ Z, r, s ∈ Z + 1 2 , L ⋆ n = L -n , G ⋆ r = G -r . Positive energy means that L(c, h) = H = H n , with n ∈ 1 2 N, such that L 0 ξ = (n + h)ξ on H n and H 0 = CΩ (with CΩ = cΩ). Lemma 1.1. If L(c, h) is unitary, then c, h ≥ 0 Theorem 1.
c m = 3 2 (1 - 8 m(m + 2)
) and

h m pq = ((m + 2)p -mq) 2 -4 8m(m + 2) with integers m ≥ 2, 1 ≤ p ≤ m -1, 1 ≤ q ≤ m + 1 and p ≡ q[2].
Theorem 1.3. The characters of the discrete series are:

ch(L(c m , h m pq ))(t) = tr(t L 0 -cm/24 ) = χ N S (t).Γ m pq (t).t -cm/24 with χ N S (t) = n∈N ⋆ 1 + t n-1/2 1 -t n , Γ m pq (t) = n∈Z (t γ m pq (n) -t γ m -pq (n) ) and γ m pq (n) = [2m(m + 2)n -(m + 2)p + mq] 2 -4 8m(m + 2)

Goddard-Kent-Olive framework

We take g = sl 2 . Let H an irreducible unitary, projective, positive energy representation of the loop algebra Lg. We define the character of H as: ch(H)(t, z) = tr(t L 0 -C 24 z X 3 ). Lg acts on F g N S , and by Jacobi's triple product identity k∈Z t

1 2 k 2 z k = n∈N ⋆ (1 + t n-1 2 z)(1 + t n-1 2 z -1 )(1 -t n ), we prove that ch(F g N S )(t, z) = t -1/16 χ N S (t)θ(t, z) with χ N S (t) = k∈N ⋆ ( 1+t n-1 2 1-t n ) and θ(t, z) = k∈Z t 1 2 k 2 z k .
Hence, let H = L(j, ℓ), and the theta functions θ n,m (t, z) = k∈ n 2m +Z t mk 2 z mk , then applying the Weyl-Kac formula to Lg: ch(L(j, ℓ))

= θ 2j+1,ℓ+2 -θ -2j-1,ℓ+2 θ 1,2 -θ -1,2
(see [START_REF] Kac | Infinite-dimensional Lie algebras, and the Dedekind ηfunction[END_REF], [START_REF] Kac | Infinite-dimensional Lie algebras[END_REF] or [START_REF] Wassermann | Kac-Moody and Virasoro algebras[END_REF] p 62). Now, adapting the proof in [START_REF] Kac | Bombay lectures on highest weight representations of infinite-dimensional Lie algebras[END_REF] p 122, we obtain the product formula: θ(t, z).θ p,m (t, z) = 0≤q<2(m+2) p≡q [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF] 

( n∈Z t α m pq (n) )θ q,m+2 (t, z) with α m p,q (n) = [2m(m+2)n-(m+2)p+mq] 2 8m(m+2)
. Now, Lg acts on L(j, ℓ) ⊗ F g N S at level ℓ + 2; we deduce:

ch(L(j, ℓ) ⊗ F g N S ) = 1≤q≤m+1 p≡q[2] F m pq .ch(L(k, ℓ + 2)), F m pq (t) = t -1/16 χ N S (t) n∈Z (t α m p,q (n) -t α m -p,q (n) ), p = 2j + 1, q = 2k
+ 1 and m = ℓ + 2; and the tensor product decomposition:

L(j, ℓ) ⊗ F g N S = 1≤q≤m+1 p≡q[2]
M m pq ⊗ L(k, ℓ + 2) with M m pq the multiplicity space. General GKO framework: Let h be Lie ⋆-superalgebra acting unitarily on a finite direct sum H = M i ⊗ H i with H i irreducible and M i the multiplicity space. We see that M i is the inner product space of superintertwiners Hom h (H i , H). Now, if d is a Lie ⋆-superalgebra acting on H and H i as unitary, projective, positive energy representations, whose difference (π(D) -π i (D)) supercommutes with h, then, so is on M i , with cocycle, the difference of the others. Then, taking h = ĝ and d = W 1/2 , we find c M m pq = dim(g) 2 (1 -

2g 2 (ℓ+g)(ℓ+2g) ) = 3 2 (1 - 8 m(m+2) ) =: c m , because m = ℓ + 2, g = 2 and dim(g) = 3. Now, the character of a Vir 1/2 -module H is : ch(H)(t) = tr(t L 0 -C 24 ), then: ch(M m pq )(t) = t -c(m) 24 .χ N S (t).Γ m pq (t) with Γ m pq (t) = n∈Z (t γ m pq (n) -t γ m -pq (n) ), χ N S (t) = n∈N ⋆ 1+t n-1/2 1-t n and γ m pq (n) = [2m(m+2)n-(m+2)p+mq] 2 -4 8m (m+2) 
.

Hence, h = h m pq = [(m+2)p-mq] 2 -4 8m(m+2)
is the lowest eigenvalue of L 0 on M m pq ; let (p ′ , q ′ ) = (m -p, m + 2 -q), then: 

ch(M m pq ) ∼ t -cm 24 .χ N S (t).t h m pq .(1 -t pq 2 -t p ′ q ′ 2 )

Kac determinant formula

From (c m , h m pq ), we define

h c pq , ∀c ∈ C. Let ϕ pp (c, h) = (h -h c pp ), ϕ pq (c, h) = (h -h c pq )(h -h c qp ) if p = q, then ϕ pq ∈ C[c, h] is irreducible. Let V n (c, h) the n-eigenspace of D = L 0 -hI and d(n) its dimension.
Let M n (c, h) the matrix of (., .) on V n (c, h) and det n (c, h) = det(M n (c, h)). For example, M 0 (c, h) = (Ω, Ω) = (1), M1

2 (c, h) = (G -1 2 Ω, G -1 2 Ω) = (2h), M 1 (c, h) = (L -1 Ω, L -1 Ω) = (2h), and M3 2 (c, h) = (G -1 2 L -1 Ω, G -1 2 L -1 Ω) (G -1 2 L -1 Ω, G -3 2 Ω) (G -3 2 Ω, G -1 2 L -1 Ω) (G -3 2 Ω, G -3 2 Ω) = 2h + 4h 2 4h 4h 2h + 2 3 c Now, det3 2 (c m , h) = 8h[h 2 -( 3 2 -cm 3 )h + c/6] = 8h(h -h m 13 )(h -h m 31 ), then, det3 2 (c, h) = 8h(h -h c 13 )(h -h c 31 ) = 8ϕ 11 (c, h).ϕ 13 (c, h) ∀c ∈ C.
Hence, others examples permits to interpolate the Kac determinant formula:

det n (c, h) = A n 0<pq/2≤n p≡q[2] (h -h c pq ) d(n-pq/2) = A n 0<pq/2≤n p≤q, p≡q[2] ϕ d(n-pq/2) pq (c, h)
with A n > 0 independent of c and h.

To prove it, we will use singular vectors s ∈ V (c, h), i.e. L 0 .s = (h + n)s with n > 0 its level, and Vir + 1/2 .s = 0. This is equivalent to G 1/2 .s = G 3/2 .s = 0, and so we easily find (mG

-3/2 -(m + 2)L -1 G -1/2 )Ω ∈ V 3/2 (c m , h m 13 ), G -1/2 Ω ∈ V 1/2 (c, h c 11 ), or (L 2 -1 -4 3 h c 22 L -2 -G -3/2 G -1/2 )Ω ∈ V 2 (c, h c 22 ). Now, ch(V (c, h)) = t h-c
24 χ N S (t) and the singular vectors generate K(c, h). So, V (c, h) admits a singular vector of minimal level n ∈ 1 2 N if and only if

ch(L(c, h)) ∼ t h-c 24 χ N S (t)(1 -t n ).
Now, thanks to GKO coset construction:

ch(L(c m , h m pq )) ≤ ch(M m pq ) ∼ t -cm 24 .χ N S (t).t h m pq .(1 -t pq 2 -t p ′ q ′ 2 )
So V (c m , h m pq ) admits a singular vector s at level n ′ ≤ min(pq/2, p ′ q ′ /2) and for n > n ′ , det n vanishes at (c m , h m pq ) for m sufficiently large integer. Then it vanishes at infinite many zeros of the irreducible ϕ pq , which so ϕ pq divides det n . But s generates a subspace of dimension d(n

-n ′ ) at level n, so d n (c, h) = 0<pq/2≤n p≡q[2] (h -h c pq ) d(n-pq/2) divides det n .
Finally, a cardinality argument shows d n and det n , with the same degree in h. The result follows.

Friedan-Qiu-Shenker unitarity criterion

The FQS criterion was discovered for Vir by Friedan, Qiu and Shenker [START_REF] Friedan | Conformal invariance, unitarity, and critical exponents in two dimensions[END_REF], but mathematicians estimated their proof too light, and then, in the same time, FQS [START_REF] Friedan | Details of the nonunitarity proof for highest weight representations of the Virasoro algebra[END_REF] and Langlands [START_REF] Langlands | On unitary representations of the Virasoro algebra[END_REF] published a complete proof. At the beginning of our research on Vir 1/2 , we decided to adapt the way of Langlands, but we find a mistake in this paper ( [START_REF] Langlands | On unitary representations of the Virasoro algebra[END_REF] lemma 7b p 148:

p = 2, q = 1, m = 2, h m pq = 5 8 , M = 4 or p = 4, q = 1, m = 3, h m pq = 7 
2 , M = 13 yield case (B), but (p, q) = (1, 1) and m ≯ q + p -1. In fact, we need to distinguish between q = 1 and q = 1, but not between (p, q) = (1, 1) and q = (1, 1)). Next, we discovered that Sauvageot has ever published such an adaptation, without correction ([17] lemma 2 (ii) p 648). Then, we chose the way of FQS:

We are looking for a necessary condition on (c, h) for V (c, h) has no ghost. First of all, if V (c, h) admits no ghost then c, h ≥ 0 (easy). Now, Kac determinant doesn't vanish on the region h > 0, c > 3/2, and for (c, h) large, we prove that the form (., .) is positive. So by continuity, if h ≥ 0 and c ≥ 3/2, V (c, h) admits no ghost. Now, on the region 0

≤ c < 3/2, h ≥ 0 , the FQS criterion says that V (c, h) admits ghosts if (c, h) does not belong to (c m , h m pq ), with integers m ≥ 2, 1 ≤ p ≤ m -1, 1 ≤ q ≤ m + 1 and p ≡ q[2],
ie, exactly the discrete series given by GKO construction ! To prove this result, we exploit the zero set of Kac determinants, constitutes by curves C pq of equation h = h c pq with 0 = p ≡ q [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF]. First of all, we restrict to C ′ pq , the open subset of C pq , between c = 3/2 and its first intersection at level pq/2.

Let p ′ q ′ > pq, C p ′ q ′ is a first intersector of C ′ pq if at level p ′ q ′ /2, it is the first to intersect C ′ pq starting from c = 3/2.
We see that all these first intersections constitutes exactly the discrete series. Now, for each open region between the curves C ′ pq , we can find n with det n negative on. This significate that V (c, h) admits ghost on, and so we can eliminate these regions. Hence now, we have to eliminate the intervals on C ′ pq between the points of the discrete series. We start from the no-ghost region h > 0, c > 3/2 and we go towards such an interval. On the way, we encounter a (well choosen) curve vanishing to order 1; so on the other side, there is a ghost. We continue along the area of this curve with our ghost, up to an intersection point. Now, because the intersections are transversals, we can distinguish null vectors from the first curve to the second, and so our ghost continues to be a ghost on the other curve. Repeating this principle, we can go to the interval, without losing the ghost. Then, FQS criterion and theorem 1.2 follow.

Wassermann's argument

We show that the multiplicity space of the coset construction, is an irreducible representation of the Neveu-Schwarz algebra, which (as in [START_REF] Wassermann | Kac-Moody and Virasoro algebras[END_REF] p 72 for Vir) gives directly the characters on the discrete series without the Feigin-Fuchs resolution [START_REF] Feigin | Verma modules over the Virasoro algebra[END_REF]:

As a corollary of FQS criterion's proof, at levels ≤ M = max(pq/2, p ′ q ′ /2), there exists only two singular vectors s and s ′ , at levels pq/2 and p ′ q ′ /2. Hence, ch(L(c m , h m pq )) ∼ t h m pq -cm/24 χ N S (t)(1 -t pq/2 -t p ′ q ′ /2 ), as for the multiplicity space M m pq , and so ch(M m pq )-ch(L(c m , h m pq )) = χ N S (t).t -cm/24 o(t h m pq +M ). Now, we know that L(c m , h m pq ) is a submodule of M m pq ; if M m pq admits an other irreducible submodule, by FQS criterion, it is of the form L(c m , h m rs ); but through the lemma:

h m pq + M > m 2 /8 and h m rs ≤ m(m-2)

8

, we obtain, by coherence on the characters, the contradiction:

m 2 8 < M + h m pq < h m rs ≤ m(m-2) 8 . Then, M m pq = L(c(m), h m p,q ) and ch(L(c m , h m pq )) = ch(M m pq )
, but the characters of the multiplicity spaces are ever known by GKO. The theorem 1.3 follows.

2 Goddard-Kent-Olive framework

Characters of Lg-modules

In this section, we take g = sl 2 . Let H a unitary, projective and positive energy representation of the loop algebra Lg (see section ??). Remark 2.1. Thanks to g ֒→ Lg : X a → X a 0 , g acts on H, and by the previous work, the Virasoro algebra Vir acts on too:

[L m , L n ] = (m -n)L m+n + C 12 m(m 2 -1)δ m+n (n ∈ Z, C central).
Definition 2.2. A character of H as Lg-module is definied by:

ch(H)(t, z) = tr(t L 0 -C 24 z X 3 ) Lemma 2.3. (Jacobi's triple product identity) k∈Z t 1 2 k 2 z k = n∈N ⋆ (1 + t n-1 2 z)(1 + t n-1 2 z -1 )(1 -t n )
Proof. See [START_REF] Wassermann | Kac-Moody and Virasoro algebras[END_REF] p 62.

Remark 2.4. On section 4.2.1 of [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF], Lg acts on

F g N S , with π F g NS (X 3 ) = S 3 0 . Proposition 2.5. ch(F g N S )(t, z) = t -1/16 χ N S (t)θ(t, z) with χ N S (t) = n∈N ⋆ ( 1 + t n-1 2 1 -t n ) and θ(t, z) = k∈Z t 1 2 k 2 z k Proof. C acts as multiplicative constant c F g NS = dim(g) 2 = 3 2 , so, -c 24 = -1/16 [S a m , ψ b n ] = i c Γ c ab ψ c m+n , so, [S 3 0 , ψ 3 n ] = 0, [S 3 0 , ψ 1 n ] = iψ 2 n , [S 3 0 , ψ 2 n ] = -iψ 1 n . Let ϕ 3 n = ψ 3 n , ϕ 1 n = iψ 1 n -ψ 2 n , ϕ 2 n = ψ 1 n -iψ 2 n , then, [S 3 0 , ϕ 3 n ] = 0, [S 3 0 , ϕ 1 n ] = ϕ 1 n and [S 3 0 , ϕ 2 n ] = -ϕ 2 n . Now, if M = P DP -1
, then, tr(M) = tr(D) and tr(z M ) = tr(z D ), but, ad S 3 0 acts diagonally on g -with basis (ϕ i n ), [L 0 , ϕ i m ] = -mϕ i m , and S 3 0 Ω = 0, so, it suffices to associate:

t n-1 2 to ϕ 3 -n+ 1 2 , t n-1 2 z to ϕ 1 -n+ 1 2
, and

t n-1 2 z -1 to ϕ 2 -n+ 1 2
to find:

ch(F g N S )(t, z) = t -1/16 n∈N ⋆ (1 + t n-1 2 )(1 + t n-1 2 z)(1 + t n-1 2 z -1 )
The result follows by the Jacobi's triple product identity.

Definition 2.6. Let m ∈ N ⋆ , n ∈ Z, t, z ∈ C with t < 1.
Let the theta functions:

θ n,m (t, z) = k∈ n 2m +Z t mk 2 z mk Theorem 2.7. Let H = L(j, ℓ), irreducible representation of Lsl 2 , then ch(L(j, ℓ)) = θ 2j+1,ℓ+2 -θ -2j-1,ℓ+2 θ 1,2 -θ -1,2
Proof. An application of the Weyl-Kac character formula to Lsl 2 (see [START_REF] Kac | Infinite-dimensional Lie algebras, and the Dedekind ηfunction[END_REF], [START_REF] Kac | Infinite-dimensional Lie algebras[END_REF] or [START_REF] Wassermann | Kac-Moody and Virasoro algebras[END_REF] p 62).

Proposition 2.8. (Product formula)

θ(t, z).θ p,m (t, z) = 0≤q<2(m+2) p≡q[2] ( n∈Z t α m pq (n) )θ q,m+2 (t, z) with α m p,q (n) = [2m(m + 2)n -(m + 2)p + mq] 2 8m(m + 2)
Proof. We adapt the proof in [START_REF] Kac | Infinite-dimensional Lie algebras, theta functions and modular forms[END_REF] or [START_REF] Kac | Bombay lectures on highest weight representations of infinite-dimensional Lie algebras[END_REF] p 122, to the super case:

θ(t, z).θ p,m (t, z) = k,k ′ t 1 2 k 2 +mk ′2 z k+mk ′ Let k = i, k ′ = p 2m + i ′ where i, i ′ ∈ Z;
we define s, s ′ by:

• (m + 2)s = k -2k ′ = i -2i ′ -p m • (m + 2)s ′ = k + mk ′ = (m + 2)(k ′ + s) Now, p + 2(i -2i ′ ) = 2(m + 2)n + q with 0 ≤ q < 2(m + 2), p ≡ q[2] , then: s = n- (m + 2)p -mq 2m(m + 2) and s ′ = n ′ + q 2(m + 2) n, n ′ ∈ Z (with n ′ = n+i ′ ).
This gives a bijection between pairs (k, k ′ ) and triples (q, s, s ′ ). Now,

1 2 k 2 + mk ′2 = 1 2 (ms + 2s ′ ) 2 + m(s -s ′ ) 2 = 1 2 m(m + 2)s 2 + (m + 2)s ′2 and 1 2 m(m + 2)s 2 = 1 2 m(m + 2)(n -(m+2)p-mq 2m(m+2) ) 2 = α m p,q (n)
Remark 2.9. On [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF] section 4.2.3, Lg acts on F g N S ⊗ L(j, ℓ) as unitary, projective, positive energy representation of level ℓ + 2 (see [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF] def. 4.36).

Corollary 2.10. Let p = 2j + 1, q = 2k + 1 and m = ℓ + 2, then:

ch(F g N S ⊗ L(j, ℓ)) = 1≤q≤m+1 p≡q[2] F m pq .ch(L(k, ℓ + 2)) with F m pq (t) = t -1/16 χ N S (t) n∈Z (t α m p,q (n) -t α m -p,q (n) )
We apply theorem 2.7, propositions 2.5 and

Proof. Lg acts on H as (I ⊗ X + X ⊗ I), then:

ch(F g N S ⊗ L(j, ℓ)) = ch(F g N S )
.ch(L(j, ℓ)); now by proposition 2.8:

θ(t, z).(θ p,m (t, z) -θ -p,m (t, z)) = 0≤q<2(m+2) p≡q[2] ( n∈Z t α m pq (n) -t α m -p,q (n) )θ q,m+2 (t, z)
But for m + 2 ≤ q ′ < 2(m + 2), q ′ = 2(m + 2) -q with 1 ≤ q ≤ m + 2. Now by symmetry, θ 2(m+2)-q,m+2 = θ -q,m+2 , and 

F m p,2(m+2)-q = -F m pq because α m p,2(m+2)-q (n) = α m -p,q (-n -1). Finally, F m p0 = F m p,m+2 = 0 because α m p,0 (n) = α m -p,0 (-n) and α m p,m+2 (n) = α m -p,m+2
F g N S ⊗ L(j, ℓ) = 1≤q≤m+1 p≡q[2] M m pq ⊗ L(k, ℓ + 2)
with M m pq the multiplicity space. Proof. By complete reducibility and remark 2.9, F g N S ⊗L(j, ℓ) is a direct sum of irreducibles of type L(k, ℓ + 2); the result follows by corollary 2.10.

Corollary 2.12. As ĝ = ĝ+ ⋉ ĝrepresentations, we obtain;

F g N S ⊗ (L(j, ℓ) ⊗ F g N S ) = 1≤q≤m+1 p≡q[2] M m pq ⊗ (L(k, ℓ + 2) ⊗ F g N S )
Proof. Recall proposition 4.35 and remark 4.36 of [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF]. Next, the characters of ĝ-modules are defined as for ĝ+ -modules.

Coset construction 2.2.1 General framework

Let h be a Lie ⋆-superalgebra acting unitarily on an inner product space H, a direct sum of irreducibles of finitely many isomorphic type H i :

H = i M i ⊗ H i with M i the multiplicity space.
Remark 2.13. h acts on H as π(X) = I ⊗ π i (X).

Definition 2.14. Let K i = Hom h (H i , H), space of homomorphisms that supercommute with h (graded intertwinners).

Reminder 2.15.

Hom h (H i , H j ) = δ ij C, End h (H) = End(M i ) ⊗ C.
Lemma 2.16. K i admits a natural inner product.

Proof. If S, T ∈ K i , then T ⋆ S ∈ End h (H i ) = C, and so, (S, T ) = T ⋆ S defines the inner product.

Lemma 2.17. ρ :

K i ⊗ H i → H such that: ρ( ξ i ⊗ η i ) = ξ i (η i ), is a unitary isomorphism of h-modules.
Proof. Let m i ⊗ η i ∈ H and ξ i : η i → m i ⊗ η i , then ξ i ∈ K i , because h acts on H as I ⊗ π i ; and so, ρ is surjective. Now, (ρ(

ξ ′ i ⊗ η ′ i ), ρ( ξ j ⊗ η j )) = (ξ ′ i (η ′ i ), ξ j (η j )) = (ξ ⋆ j ξ ′ i (η ′ i ), η j ) = (ξ ⋆ j , ξ ′ i )(η ′ i , η j ) = ( ξ ′ i ⊗ η ′ i , ξ j ⊗ η j ) Remark 2.
18. An operator A on H which supercommutes with h, acts by definition, on each K i by an A i , and, identifying M i and K i , A = A i ⊗ I Let d be a Lie ⋆-superalgebra acting as π(D) on H, and as π i (D) on H i .

Corollary 2. [START_REF] Verrill | Positive energy representations of L σ SU(2r) and orbifold fusion[END_REF]. Proof. π = (I ⊗ π i + σ i ⊗ I) and

If ∀D ∈ d, σ(D) = π(D) -I ⊗ π i (D) supercommutes with h, then d acts on M i as σ i (D) with σ(D) = σ i (D) ⊗ I. Definition 2.20. Let B F (D 1 , D 2 ) := [π F (D 1 ), π F (D 2 )] -π F [D 1 , D 2 ]. Remark 
B H = (I ⊗ B H i + B M i ⊗ I). M i ⊗ H i ⊂ H, so, b H I = b M i ⊗H i I = I ⊗ B H i + B M i ⊗ I. Finally, B M i ⊗ I = b H I -I ⊗ B H i = (b H -b H i )I ⊗ I 2.

Application

We apply the previous result to corollary 2.12 with h = ĝ and d = W 1/2 .

Convention 2.23. To have a graded Lie bracket coherent with tensor product, we need to introduce the following convention: let A, B be superalgebras, then, the product on A ⊗ B is defined as follows:

(a ⊗ b).(c ⊗ d) = (-1) ε(b)ε(c) ac ⊗ bd with ε(b) , ε(c) ∈ Z 2
Lemma 2.24. Let t be a Lie superalgebra, then, by the previous convention:

[X ⊗ I + I ⊗ X, Y ⊗ I + I ⊗ Y ] ε = [X, Y ] ε ⊗ I + I ⊗ [X, Y ] ε
Corollary 2.25. The Witt superalgebra W 1/2 acts on the multiplicity space M m pq as unitary, projective and positive energy representation, with central charge,

c M m pq = dim(g) 2 (1 - 2g 2 (ℓ + g)(ℓ + 2g) ) = 3 2 (1 - 8 m(m + 2) ) m = ℓ + 2, g = 2 and dim(g) = 3. Proof. W 1/2 acts as I ⊗X on M m pq ⊗(L(k, ℓ+2)⊗F g N S ), as X ⊗I +I ⊗X on F g N S ⊗ (L(j, ℓ) ⊗ F g N S )
), it's projective thanks to lemma 2.24, unitary, positive energy, and their difference supercommutes with ĝ by proposition ??. Now by proposition 2.22:

c M m pq = c F g NS ⊗(L(j,ℓ)⊗F g NS ) -(c L(k,ℓ+2)⊗F g NS ) ) = c F g NS + c L(j,ℓ) + c F g NS -(c L(k,ℓ+2) + c F g NS ) = 3 2 • ℓ+ 1 3 g ℓ+g dim(g) -ℓ+g ℓ+2g dim(g)
Remark 2.26. Let ĝ ⊂ ĝ ⊕ ĝ be the diagonal inclusion, then the previous construction is equivalent to the Kac-Todorov one [START_REF] Kac | Superconformal current algebras and their unitary representations[END_REF]: the coset action of Vir 1/2 is given by L ĝ⊕ĝ n -L ĝ n and G ĝ⊕ĝ r -G ĝ r . There exists also an manner to write this action only with ordinary loop algebra, due to Goddard, Kent, Olive [START_REF] Goddard | Unitary representations of the Virasoro and super-Virasoro algebras[END_REF] (used and discussed in [START_REF] Palcoux | Neveu-Schwarz and operators algebras III : Subfactors and Connes fusion[END_REF] section 2.7).

Character of the multiplicity space

Definition 2.27.

Vir 1/2 -module's character is ch(H)(t) = tr(t L 0 -C 24 ).
Corollary 2.28. (Character of the multiplicity space)

ch(M m pq )(t) = t -c(m) 24 .χ N S (t).Γ m pq (t) with Γ m pq (t) = n∈Z (t γ m pq (n) -t γ m -pq (n) ), χ N S (t) = n∈N ⋆ 1 + t n-1/2 1 -t n and γ m pq (n) = [2m(m + 2)n -(m + 2)p + mq] 2 -4 8m(m + 2)
Proof. It follows by corollaries 2.10, 2.11, and, γ m pq (n) = α m pq (n) -1 16 + cm 24 . Lemma 2.29. The lowest eigenvalue of L 0 on M m pq is:

h = h m pq = [(m + 2)p -mq] 2 -4 8m(m + 2) Proof. χ N S (t) ∼ 1 + t 1 2 and min{γ m pq (n), γ m -pq (n), n ∈ Z} = γ m pq (0) = h m p,q
Lemma 2.30. Let (p ′ , q ′ ) = (m -p, m + 2 -q), then:

ch(M m pq ) ∼ t -cm 24 .χ N S (t).t h m pq .(1 -t pq 2 -t p ′ q ′ 2 ) Proof. γ m -pq (0) = γ m pq (0) + pq 2 , γ m -pq (-1) = γ m pq (0) + p ′ q ′ 2 ; and, γ m pq (0), γ m -pq (0), γ m -pq (-1) are the three lowest numbers of {γ m pq (n), γ m -pq (n), n ∈ Z}. Corollary 2.31. L(c m , h m pq ) is a Vir 1/2 -submodule of M m pq Proof. ch(M m pq ).t cm 24 ∼ t h m pq , then, the h m pq -eigenspace of L 0 is one-dimensional; L(c(m), h m pq ) is the minimal Vir 1/2 -submodule of M m pq containing it. Corollary 2.32. ch(L(c m , h m pq )) ≤ ch(M m pq ) ∼ t h m pq -cm 24 .χ N S (t)(1 -t pq 2 -t p ′ q ′ 2 ) Theorem 2.33. (Unitarity sufficient condition) Let integers m ≥ 2, 1 ≤ p ≤ m -1, 1 ≤ q ≤ m + 1 and p ≡ q[2], then: L(c m , h m pq ) is a unitary highest weight representation of Vir 1/2
Proof. Recall denitions 2.5 and 2.21 of [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF]. M m pq is unitary; so is its Vir 1/2 -submodule L(c m , h m pq ).

Remark 2.34. FQS criterion proves this is all its discrete series.

3 Kac determinant formula

Preliminaries

Let c, h ∈ C, recall section 2.3 of [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF] for definitions of Verma module V (c, h), sesquilinear form (., .) and maximal proper submodule K(c, h).

Let (c, h) = (c m , h m pq ) = ( 3 2 (1 - 8 m(m+2) ), [(m+2)p-mq] 2 -4 8m (m+2) 
).

Lemma 3.1. h m pq + h m qp = p 2 +q 2 -2 16 (1 -2c m /3) + (p-q) 2 4 and h m pq .h m qp = 1 16 2 [2(p-q) 2 -(1-2c m /3)(pq-p-q-1)].[2(p-q) 2 -(1-2c m /3)(pq+p+q+1)]
Then, solving the system of the lemma, we can define

h c pq , ∀c ∈ C. Definition 3.2. ϕ pp (c, h) = (h -h c pp ) and ϕ pq (c, h) = (h -h c pq )(h -h c qp ) if p = q Lemma 3.3. ϕ pq ∈ C[c, h] is irreducible. Definition 3.4. Let V n (c, h) the n-eigenspace of D = L 0 -hId generated by the vectors G -j β . . . G -j 1 L -iα . . . L -i 1 Ω such that i s + j s = n, with 0 < i 1 ≤ . . . ≤ i α , 1 2 ≤ j 1 < . . . < j β ; let d(n) its dimension. Remark 3.5. d(n) < ∞, d(n) = 0 for n < 0. Clearly (V n (c, h), V n ′ (c, h)) = 0 if n = n ′ and V (c, h) = V n (c, h).
Definition 3.6. Let M n (c, h) the matrix of (., .) on V n (c, h)

and det n (c, h) = det(M n (c, h)) Examples 3.7. M 0 (c, h) = (Ω, Ω) = (1), M1 2 (c, h) = (G -1 2 Ω, G -1 2 Ω) = (2h), M 1 (c, h) = (L -1 Ω, L -1 Ω) = (2h), and, M3 2 (c, h) = (G -1 2 L -1 Ω, G -1 2 L -1 Ω) (G -1 2 L -1 Ω, G -3 2 Ω) (G -3 2 Ω, G -1 2 L -1 Ω) (G -3 2 Ω, G -3 2 Ω) = 2h + 4h 2 4h 4h 2h + 2 3 c Remark 3.8. det3 2 (c m , h) = 8h[h 2 -( 3 2 -cm 3 )h + c/6] = 8h(h -h m 13 )(h -h m 31 ), then, det3 2 (c, h) = 8h(h -h c 13 )(h -h c 31 ) = 8ϕ 11 (c, h).ϕ 13 (c, h) ∀c ∈ C Theorem 3.9. (Kac determinant formula) det n (c, h) = A n 0<pq/2≤n p≡q[2] (h -h c pq ) d(n-pq/2) = A n 0<pq/2≤n p≤q, p≡q[2] ϕ d(n-pq/2) pq (c, h)
with A n > 0 independent of c and h.

Singulars vectors and characters

Definition 3.10.

A vector s ∈ V (c, h) is singular if: (a) L 0 .s = (h + n)s with n > 0 (its level) (b) Vir + 1/2 .s = 0 (recall definition 2.13 of [15]) Remark 3.11. Let n > 0, s ∈ V n (c, h) is singular iff G 1/2 .s = G 3/2 .s = 0 Examples 3.12. (mG -3/2 -(m + 2)L -1 G -1/2 )Ω ∈ V 3/2 (c m , h m 13 ), G -1/2 Ω ∈ V 1/2 (c, h c 11 ), (L 2 -1 -4 3 h c 22 L -2 -G -3/2 G -1/2 )Ω ∈ V 2 (c, h c 22 ) Definition 3.13. K n (c, h) = ker(M n (c, h)) = {x ∈ V n (c, h); (x, y) = 0 ∀y}
Proposition 3.14. The singular vectors generate K(c, h).

Proof. They clearly generate a subspace of

K(c, h). Now, let v ∈ K n (c, h), then Vir + 1/2 .v is of level < n and ∃n ′ such that (Vir + 1/2 ) n ′ +1 .v = {0} and (Vir + 1/2 ) n ′ .v = {0}
and contains a singular vector generating v.

Definition 3.15. Let V s (c, h) the minimal Vir 1/2 -submodule of V (c, h) containing s and V s n (c, h) = V s (c, h) ∩ V n (c, h). Lemma 3.16. Let s singular of level n ′ , then dim(V s n (c, h)) = d(n -n ′ ). Proof. D.(A.s) = nA.s ⇐⇒ D.(AΩ) = (n -n ′ )AΩ Lemma 3.17. ch(V (c, h)) = t h-c 24 χ N S (t) Proof. ch(V (c, h)) = tr(t L 0 -c 24 ) = t h-c 24 m∈ 1 2 N d(m)t m χ N S (t) = n∈N ⋆ ( 1+q n-1 2 1-q n ) = n∈N ⋆ (1 + q n-1 2 )(1 + q n + q 2n + ...) Identifying q n-1 2 to G n-1 2
, q n to L n , the coefficient of q m is exactly d(m).

Corollary 3.18. ch(V s (c, h)) = t n+h-c 24 χ N S (t), with n the level of s. p≡q [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF] d(n -pq/2)

Remark 3.19. dim(L n (c, h)) = dim(V n (c, h)) -dim(K n (c, h)), then, ch(L(c, h)) = ch(V (c, h)) -s ch(V s (c, h)) + s,s ′ ch(V s ∩ V s ′ ) -. . .. Corollary 
Proof. It's clear that only the product of the diagonal entries of M n (h, c) gives a non-zero contribution to the highest power of h (and that its coefficient is > 0 and independent of c); and that M is the sum of possibles m i + n j such that im i + jn j = n with i ∈ N + 1 2 , j ∈ N, m i ∈ {0, 1}, n j ∈ N. Let m n (p, q) be the number of such partitions of n, in which p/2 appears exactly q times; then, M = 0<pq/2≤n q.m n (p, q). Now, if p ≡ 0 [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF], the number of such partitions in which p/2 appears ≥ q times is d(n -pq/2); so, m n (p, q) = d(n -pq/2) -d(n -p(q + 1)/2). If p ≡ 1 [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF], then, m n (p, q) = 0 if q > 1 and m n (p, 1) = d(n -p/2)m n-p/2 (p, 1); so, by induction, m n (p, 1) = q (-1) q+1 d(n -pq/2), where d(0) = 1 and d(k) = 0 if k < 0. Now:

M = 0<pq/2≤n
p≡0 [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF] q.m n (p, q) + 0<p/2≤n p≡1 [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF] m n (p, 1) = 0<pq/2≤n p≡0 [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF] q.(d(n -pq/2) -d(n -p(q + 1)/2)) + 0<p/2≤n p≡1 [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF] ( q (-1) q+1 d(n -pq/2)) = 0<pq/2≤n p≡0 [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF] d(n -pq/2) + 0<pq/2≤n p≡1 [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF] (-1) q+1 d(n -pq/2) Finally, the (p, q) term with q ≡ 1 [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF] of the first sum, vanishes with the (p ′ , q ′ ) = (q, p) term of the second, so the result follows.

Lemma 3.22. If t → A(t) is a polynomial mapping into d × d matrices and dim(kerA(t 0 )) = k, then (t -t 0 ) k divides det(A(t)).
Proof. Take a basis v i such that A(t 0 )v i = 0 for i = 1 . . . k. Thus, (t-t 0 ) divides A(t)v i for i = 1 . . . k, and (t-t 0 ) k divides det(A(t)). Lemma 3.23. Consider det n (c, h) as polynomial in h for c fixed. If n ′ is minimal such that det n ′ vanishes at h = h 0 , then (h -h 0 ) d(n-n ′ ) divides det n .

Proof. Clearly V (c, h 0 ) admits a singular vector s of level n ′ . Now, V s n (c, h 0 ) is d(n -n ′ ) dimensional, and is contained in ker(M n (c, h 0 )). So, the result follows by previous lemma. Lemma 3.24. det n vanishes at h c pq , for 0 < pq/2 ≤ n, p ≡ q [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF].

Proof. Let m ≥ 2 integer, 1 ≤ p ≤ m -1, 1 ≤ q ≤ m + 1, p ≡ q[2].
Thanks to GKO construction, we have corollary 2.32:

ch(L(c m , h m pq )) ≤ ch(M m pq ) ∼ t -cm 24 .χ N S (t).t h m pq .(1 -t pq 2 -t p ′ q ′ 2 )
So, V (c m , h m pq ) admits a singular vector at level ≤ min(pq/2, p ′ q ′ /2) by corollary 3.20, and then, dim(ker(M n (c m , h m pq ))) > 0 for n ≥ pq/2. Hence, det n vanishes at h m pq for m sufficiently large integer. But then, det n vanishes at infinite many zeros of the irreducible ϕ pq , which so, divides det n .

Proof of the theorem 3.9 By lemma 3.23 and 3.24, det n is divisible by

d n (c, h) = 0<pq/2≤n
p≡q [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF] (h -h c pq ) d(n-pq/2) since the h c pq are distincts for generic c. Now, by proposition 3.21, det n and d n have the same degree M, and the coefficient of h M is > 0 and independent of c, h. So, the result follows. 2 4 Friedan-Qiu-Shenker unitarity criterion

Introduction

Recall section 2.3 of [START_REF] Palcoux | Neveu-Schwarz and operators algebras I : Vertex operators superalgebras[END_REF] for definitions of Verma module V (c, h), sesquilinear form (., .) and ghost. The goal of this section is to give a proof of the FQS theorem for the Neveu-Schwarz algebra, in a parallel way that [START_REF] Friedan | Details of the nonunitarity proof for highest weight representations of the Virasoro algebra[END_REF] give for the Virasoro algebra, expoiting Kac determinant formula:

det n (c, h) = A n 0<pq/2≤n p≡q[2] (h -h c pq ) d(n-pq/2)
with A n > 0 independent of c and h.

Lemma 4.1. If V (c, h) admits no ghost then c, h ≥ 0 Proof. Since L n L -n Ω = L -n L n Ω + 2nhΩ + c n(n 2 -1)
12

Ω, we have (L -n Ω, L -n Ω) = 2nh + n(n 2 -1)
12 c ≥ 0. Now, taking n first equal to 1 and then very large, we obtain the lemma. 

. (FQS unitary criterion)

Let h ≥ 0 and 0 ≤ c < 3/2; V (c, h) admits ghost if (c, h) does not belong to: 

c = c m = 3 2 (1 - 8 m(m + 2) ), h = h m p,q = [(m + 2)p -mq] 2 -4 8m(m + 2) with integers m ≥ 2, 1 ≤ p ≤ m -1, 1 ≤ q ≤ m + 1 and p ≡ q[2]. Remark 
(p -q) ± (p ′ -q ′ )]m ± = 2(∓p ′ -p). Now, if [(p -q) ± (p ′ -q ′ )] = 0 then 0 = -(p + p ′ ) ≤ -2 or (p, q) = (p ′ , q ′ ), contradiction; hence, m ± = 2 ∓p ′ -p (p-q)±(p ′ -q ′ ) and 1 m ± = 1 2 ( q±q ′ p±p ′ -1). If q = 1, we see that q±q ′ p±p ′ > 0 ⇒ p ′ q ′ > pq, contradiction. Else, q = 1; let (p -q) ± (p ′ -q ′ ) = -2s with s ∈ Z ⋆ .
The goal is to find the biggest m ± ∈ [2, +∞[ among the following solutions, parametered by s ∈ Z ⋆ , k ∈ Z, with p ′ q ′ ≤ pq:

• (p ′ + , q ′ + ) = (q -s + k, p + s + k) and m + = p+q+k-s s • (p ′ -, q ′ -) = (p + s + k, q -s + k) and m -= -k-s s
But, at fixed s and k, m + -m -= p+q+2k s , and p + q + 2k = p ′ + + p ′ -> 0, so, if s > 0, we choose m + , and if s < 0, we choose m -.

Let s > 0, k ∈ Z and (p ′ , q ′ ) = (q -s + k, p + s + k). p ′ q ′ ≤ pq ⇒ k < s. The biggest m is given by s = 1 and k = 0. Now, (q -1)(p + 1) > pq if q > p + 1, so we take k = -1 in this case and so (p ′ , q ′ ) = (q -2 + κ, p + κ), . Definition 4.13. Let p ′ q ′ > pq; C p ′ q ′ is a first intersector of C ′ pq , if at level p ′ q ′ /2, it's the first starting from c = 3/2. Proposition 4.14. The first intersectors on C ′ pq are C q-1+k,p+1+k , k ≥ κ, at m = p + q + k -1.

at m = p + q -2 + κ. Let s < 0, k ∈ Z and (p ′ , q ′ ) = (p + s + k, q -s + k). p ′ q ′ ≤ pq ⇒ k < -s. Now if -k-s s = m > p+q-2, then k > -s(p+q - 
Proof. We take the same structure that proof of proposition 4.9. (p ′ , q ′ ) = (q -1 + k, p + 1 + k) corresponds to s = 1 and k ≥ κ ⇔ p ′ q ′ > pq. Now, let (u, v) = (q -s ′ + k ′ , p

+ s ′ + k ′ ) or (p + s ′ + k ′ , q -s ′ + k ′ ), if m ′ = p+q+k ′ -s ′ s ′ or -k ′ -s ′ s ′
≥ m and uv ≤ p ′ q ′ , then, k ′ = k and s ′ = 1. So, C q-1+k,p+1+k first intersects C ′ pq . Now, if m ′ > m -1 and s ′ = 1, then, uv > p ′ q ′ ; so, there is no other first intersector. Proof. m = p + q + k -1 with k ≥ κ, so, the set of such m is N ≥2 . Now, let m ≥ 2 fixed, then, p + q ≤ m + 1 -κ But, h m pq = h m m-p,m+2-q , so we obtain the discrete series: Integers m ≥ 2, 1 ≤ p ≤ m -1, 1 ≤ q ≤ m + 1 and p ≡ q [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF]. Remark 4.16. We can write the series without redondancy as: m ≥ 2, 1 ≤ p < q -1 ≤ m and p ≡ q [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF]. Proof. K n ′ (c, h) is trivial on W p ′ q ′ j , except on J p ′ q ′ j , where dim(K n ′ ) = 1.

Lemma 4.31. I pqk is eliminated on level n ′ = (q -1 + k)(p + 1 + k)/2.

Proof. By proposition 4.2, M n ′ (c, h) is positive on h ≥ 0, c ≥ 3/2. Now, at level n ′ , we can go from this sector to W p ′ q ′ κ without crossing a vanishing curve, so, (w κ , w κ ) > 0 before crossing C p ′ q ′ . But it vanishes to first order on C p ′ q ′ , so, after crossing it, w κ becomes a ghost. Now, by lemma 4.30 and induction, so is for v κ , w κ+1 , v κ+1 , ... up to v k (c, h) ∈ I pqk ∩ U p ′ q ′ k . Finally, v k (c, h) continues to be a ghost on all I pqk , because I pqk cross no other vanishing curve on level n ′ . Lemmas 4.12, 4.20, 4.22 and 4.31 imply theorem 4.4 and theorem 1.2.

2 .

 2 The classification of unitary representations L(c, h) is: (a) Continuous series: c ≥ 3/2 and h ≥ 0. (b) Discrete series: (c, h) = (c m , h m pq ) with:

Proposition 4 . 2 .

 42 If h ≥ 0 and c ≥ 3/2 then V (c, h) admits no ghost. Now, it suffices to classify no ghost cases for h ≥ 0 and 0 ≤ c < 3/2. Lemma 4.3. m → c m is an inscreasing bijection from [2, +∞[ to [0, 3/2[. The FQS theorem gives as necessary condition exactly the same discrete series that GKO construction gives as sufficient condition (theorem 2.33): Theorem 4.4

Definition 4 . 11 .≤ h ≤ h c qp or h ≤ h c pp } Lemma 4 . 12 .

 411412 1) ≥ -s, contradiction. Definition 4.10. For q = 1, let C ′ p1 be all of C p1 for m ≥ 2, ie, 0 ≤ c ≤ 3 2 , else, define C ′ pq to be the part of C pq for which m > p + q -2 + κ. C ′ pq is the open subset of C pq between c = 3 2 and its first intersection at level pq/2. The first step of the proof of theorem 4.4 is to eliminate all on 0 ≤ c ≤ 3 2 , except the curves C ′ pq . Let n ∈ 1 2 N: lim n→∞ S n is all 0 ≤ c < 3 2 of the plane. Proof. lim pq/2→∞ (c p+q-2 ) = 3/2 and lim c→3/2 (h c pq ) = h 3/2 pq = (p-q) 2

8

 8 

Lemma 4 . 15 .

 415 The discrete series of theorem 4.4 consists exactly of these first intersections F pqk , on all the C ′ pq .

Definition 4 . 17 .

 417 Let R 11 = {0 ≤ c < 3/2, h < 0}; for p = 1, let R 1p = R p1 be the open region bounded by C ′ p1 , C ′ 1p and C ′ p-2,1 ; for q = 1, R pq , the open region bounded by C ′ pq , C ′ p-1,q-1 and C ′ q-2+κ,p+κ . Lemma 4.18. No vanishing curves at level n = pq/2 intersect R pq .Proof. A vanishing curve which did intersect R pq , would have to intersect its boundary. This does not happen by proposition 4.14.Lemma 4.19. S n -S n-1/2 = pq/2=n p≡q[2] R pq ∪ C ′ pq Proof. S 1/2 = R 11 ∪ C ′ 11 , C pq -C ′ pq ⊂ S n-1/2 and lemma 4.18. Lemma 4.20. All S n is eliminated, except C ′ pq , pq/2 ≤ n.

  2.21. If F is unitary, projective and positive energy (see definition??), the cocycle b F is defined by B F (D 1 , D 2 ) = b F (D 1 , D 2 )I F .Proposition 2.22. If in addition to corollary 2.19, π and π i are unitary, projective, positive energy representations, then, so is σ i , and the cocycle of d on M i is the difference of the cocycles on H and on H i .

  4.5. Combining theorem 2.33 and lemma 4.1, we see that h m pq ≥ 0 solutions m + and m -such that [

, contradiction.

Proof of proposition 4.2

Proof. By continuity, it suffices to treat the region R = {h > 0 , c > 3/2}. Now, we see that (c, h c pq ) ∈ R, so by Kac determinant formula (theorem 3.9), det n (c, h) is nowhere zero on R. So, it suffices to prove that the form is positive for one pair (c, h) ∈ R.

If α = (a 1 , ..., a r 1 ; b 1 , ..., b r 2 ), let n(α) = a i + b j , r(α) = r 1 + r 2 . Let u α = A α Ω, with A α the product of L -a i and G -b j in the following order: if n ≤ m then L -n or G -n is before L -m or G -m ; example: G -1/2 L 2 -1 G -5/2 Ω. (u α ) form a basis of V (c, h). Now, thanks to this order, we easily prove by induction on n(α) + n(β) that:

So, ∀n ∈ 1 2 N and ∀u ∈ V n (c, h), u = n(α)=n λ α u α and:

for h sufficiently large and independent of u.

Then, the form is positive for h large, and so is ∀(c, h) ∈ R by continuity. = lim m→∞ (h m pq ). For 0 ≤ c < 3 2 , we see the curve as

Proposition 4.9. When the curve C pq first appears at level n = pq/2, if q = 1, it intersects no other vanishing curves, else, its first intersection moving forward c = 3/2 is with C q-2+κ,p+κ , at m = p + q -2 + κ.

Proof. Let (p ′ , q ′ ) = (p, q) with p ′ q ′ ≤ pq, then the intersection points R pq ∪ C ′ pq . Now, we see that, for p = q, R pq is between C pq and C qp ; R pp is under C pp , and for p ′ q ′ ≤ pq with (p ′ , q ′ ) = (p, q), R pq is necessarily over C p ′ q ′ and C q ′ p ′ , or under them. So (recall section 3.1), ϕ pq (c, h) < 0 and ϕ p ′ q ′ (c, h) > 0 on R pq , and d(0) = 1; then, det pq/2 (c, h) < 0 and V (c, h) admits ghosts on R pq . Now, given lemma 4.12 and 4.20, we have to eliminate the intervals on C ′ pq , between the points of the discrete series.

Definition 4.21. Let I pqk be the open subset of C ′ pq between F p,q,k-1 and F p,q,k for k > κ; and I pqκ , beyond F pqκ .

The goal is to eliminate the open subset I pqk , k ≥ κ. Recall that when C p ′ q ′ = C q-1+k,p+1+k first appears at level n ′ = p ′ q ′ /2, there is a ghost on R p ′ q ′ ; we will show that this ghost continue to exist on I pqk .

(ie, with j = k), then s ′ = 1; now, by proposition 4.9, the first is with j = κ. Lemma 4.24. Let M t be an d-dimensional polynomial matrix with det(M t ) vanishing to first order at t = 0; then, the null space is 1-dimensional.

Proof. Let α 1 (t), ..., α d (t) be the eigenvalues of M t ; they are analytic in t. Now, det(M t ) = α i (t) = (α 0 i + α 1 i t + ...), vanishing to first order at t = 0, so, there exists a unique i such that α 0 i = 0, and dimkerM 0 = 1.

Corollary 4.25. Let (c, h) ∈ C pq , not on an intersection at level pq/2, then, the null space of

Proof. If this determinant were zero, then (c, h + pq) would be on a vanishing curve C uv of level ≤ 1 2 (p ′ q ′ -pq): h m pq + pq/2 = h m uv and uv ≤ p ′ q ′ -pq. Then, we find (u, v) or (v, u) = (ms ′ -p, (m + 2)s ′ + q), with s ′ ∈ Z ⋆ . So now, uv ≤ p ′ q ′ -pq is equivalent to ((1 + s ′ )m-p)((1 -s ′ )(m+ 2) -q) ≥ 0, but 1 ≤ p < m and 1 ≤ q < m + 2, so, s ′ = 0, contradiction.

To read the followings proposition and its proof, recall section 3.12. It's strictly parallel that in [START_REF] Friedan | Details of the nonunitarity proof for highest weight representations of the Virasoro algebra[END_REF] for the Virasoro algebra. Proposition 4.27. For j = κ, ..., k there is an open neighborhood U p ′ q ′ j of F p+k-j,q+k-j,j = F q ′ -1-j,p ′ +1-j,j and a nowhere zero analytic function v j (c, h)

be a neighborhood of F p+k-j,q+k-j,j , small enough that it intersects no vanishing curves but C p ′ q ′ and C p ′′ q ′′ at level n ′ . Choose coordinates (x, y) in U, real analytic in (c, h), such that C p ′′ q ′′ is given by x = 0 and C p ′ q ′ by y = 0. This is possible because the intersection is transversal. At level n ′′ , x = 0 is the only vanishing curve in U. K n ′′ (0, y) is one dimensional and form a line bundle over the vanishing curve x = 0 near y = 0. Let v ′′ j (0, y) be a nowhere zero analytic section of this line bundle, and let v ′′ j (x, y) be an analytic function on U with values in V n ′′ (x, y), which extends this section.

. For y = 0, the order of vanishing of det n ′ (x, y) at x = 0 is also d(n ′ -n ′′ ). Therefore, for y = 0, V ′′ (0, y) = K n ′ (0, y). Let V ′ (x, y) such that V n ′ = V ′′ ⊕ V ′ and we write:

with Q, S symmetric and 3 blocks divisible by x because V ′′ (0, y) ⊂ K n ′ (0, y).

The key point now, is that Q(0, 0) is non-degenerate. To see this, first note that v ′′ j (0, y) is singular, M n ′ (0, y)v ′′ j (0, y) = 0 and L 0 v ′′ j (0, y) = (h + p ′′ q ′′ /2)v ′′ j (0, y); recall that (0, y) = (c, h) ∈ C p ′′ q ′′ . Now, since all is analytic, ∀α, β ∈ V ′′ (x, y):

with Ω the cyclic vector of V (c, h + p ′′ q ′′ /2); so:

Since (0, 0) = F p ′′ q ′′ j , lemma 4.26 gives det(Q(0, 0)) = 0; so, Q(x, y) is nondegenerate on all U (we can replace U by a small neighborhood of (0, 0)).

and make the change of basis:

Let V ′′′ (x, y) be the new complement of V ′′ (x, y), on which T (x, y) defined the inner product. The order of vanishing argument implies that det(T (x, y)) is non-zero for y = 0 and vanishes to first order at y = 0. The one dimensional null space of T (x, 0) is K n ′ (x, 0) for x = 0. At x = y = 0, the one dimensional null space of T (0, 0) and V ′′ (0, 0), span the d(n'-n")+1 dimensional K n ′ (0, 0). By the same argument which gave v ′′ j (x, y), we can choose a nowhere zero analytic function v j (x, y) on U, with values in V ′′′ (x, y) such that v j (x, 0) is in the null space of T (x, 0) and therefore in K n ′ (x, 0). Since T (x, y) is non-degenerate for y = 0, v j (x, 0) is not in K n ′ (x, y) if y = 0 Definition 4.28. Let J p ′ q ′ j , κ < j ≤ k, be the open interval on C p ′ q ′ between F p+k-j,q+k-j,j and F p+k-j-1,q+k-j-1,j , and let J p ′ q ′ κ be the open interval on C p ′ q ′ lying between c = 3/2 and F p+k-κ,q+k-κ,κ . Definition 4.29. Let W p ′ q ′ j , κ ≤ j ≤ k be a neighborhood of a point of J p ′ q ′ j , which intersects no other vanishing curves on level n ′ , such that: :

, and:

where f j , g j are nonzero function.

Wassermann's argument

We need to recall sections 2.3 and 3.12; by lemma 4.15 the discrete series are the intersections of C ′ pq and

). This section will prove theorem 1.3, thanks to an argument that A. Wassermann uses for the Virasoso case in [START_REF] Wassermann | Kac-Moody and Virasoro algebras[END_REF].

Lemma 5.1. At level ≤ M, we find only two singular vectors s and s ′ at level pq/2 and p ′ q ′ /2.

Proof. We can suppose p ′ q ′ > pq; by proof of proposition 4.27:

2 Then, by proposition 3.14, the result follows.

Proof. By section 3.12 and lemma 5.1.

Lemma 5.3. h m pq + M > m 2 /8 Proof. h m pq + M = max(γ m -p,q (0), γ m -p,q (-1)). γ m -p,q (0) = x 2 -4 8m(m+2) , γ m -p,q (-1) = (x-2m(m+2)) 2 -4 8m(m+2)

, with x = (m + 2)p + mq. 

Theorem 5.5. The characters of the discrete series are:

Proof. ch(L(c m , h m pq )) = ch(M m pq ), the result follows by corollary 2.28.

Remark 5.6. (Tensor product decomposition)

We then recover a result due to Frenkel in [START_REF] Frenkel | Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory[END_REF]:

as Lg-module. Proof. It suffices to take j = ℓ = 0, and to see that c 2 = h 2 11 = h 2 13 = 0. Corollary 5.8. (Duality)Let H be an irreducible positive energy represemtation of the loop superalgebra g ⊕ g, let A be the operator algebra generated by the modes of the coset operators L n and G r , let B be the operator algebra generated by the modes of the diagonal loop superalgebra g. Then, A and B are each other algebraic graded commutant (see [START_REF] Wassermann | Kac-Moody and Virasoro algebras[END_REF]). Definition 5.9. (Vertex algebra supercommutant or centralizer algebra ) Let V be a vertex superalgebra and W a vertex sub-superalgebra, then, the vertex algebra supercommutant of W is the vertex superalgebra corresponding to the vectors v ∈ V such that the modes of the corresponding field supercommute with the modes of fields for vectors of W (see [START_REF] Kac | Vertex algebras for beginners[END_REF]).

Corollary 5.10. (Vertex superalgebra duality) In the vertex superalgebra generated by g ⊕ g, the vertex superalgebras generated by the Neveu-Schwarz coset and the diagonal loop superalgebra, are each others supercommutants.