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Abstract

The present paper numerically analyzes a passive cooling system using cavities with different ge-
ometries filled with thermal conductivity-enhanced phase change material (PCM). A numerical
code is developed using an unstructured finite-volume method and an enthalpy-porosity tech-
nique to solve for natural convection coupled to a solid-liquid phase change. Five geometries
containing the same volume of PCM are compared while cooling the same surface. The un-
steady evolution of the melting front and the velocity and temperature fields is detailed. Other
indicators of cooling efficiency are monitored, including the maximum temperature reached at
the cooled surface. The computational results show the high impact of varying geometry: a
maximum temperature difference as high as 40 ◦C is observed between two of the cavities. The
best efficiency is obtained for a cavity shifted vertically relative to the cooled surface. Other
findings and recommendations are made for the design of PCM-filled cavities.

Keywords: Passive cooling, phase change material, melting, natural convection, enthalpy-
porosity method, unstructured finite-volume method.

1 Introduction

The melting of phase change materials (PCM) coupled to natural convection in cavities has
been studied extensively. This situation is encountered in many technical applications,
such as latent heat storage systems [1, 2] and thermal insulation for buildings [3, 4].
The melting of PCM is also used to control the temperature of the surface of electronic
components that release instantaneous or periodic high density heat fluxes to moderate
the need for classical cooling devices. There has been increasing interest in this type of
passive cooling for electronic circuits, such as chipsets, laptop processors or graphics cards
[5, 6]. These elements are continuously becoming smaller, and their released heat densities
are increasing; therefore, they require efficient, economic, and silent cooling systems. A
particular application for such systems is the cooling of electrical devices inside shelters
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located in difficult-to-access sites and subject to periodic temperature changes. In these
situations, cooling solutions that do not use moving mechanical elements, such as fans,
are more suitable to avoid the need for frequent maintenance.

Several authors have studied phase changes and natural-convection-dominated melting
in cavities. Beyond the development and application of numerical models and experimen-
tal techniques, these authors have proposed several methods and concepts to enhance
the heat transfer and melting rate. Gong et al. [7] demonstrated the positive effect of
inverting a square PCM container heated from the side during the melting process when
thermal stratification in the melt slows the melting rate. For the same geometry, Kho-
dadadi and Hosseinizadeh [8] numerically investigated the effect of adding nanoparticles
to the PCM. They showed that when the cavity is cooled laterally, the rate of freezing
increases because of the presence of nanoparticles. Starting from a study of PCM melt-
ing in a square enclosure heated from below, Ftëıti and Ben Nasrallah [9] examined the
impact of the aspect ratio of the PCM-filled cavity and found that flat cavities exhibit
faster melting but have a lower asymptotic limit of the total melt ratio (they imposed
a temperature boundary condition equal to the melting temperature at the top side of
the cavity and a lower temperature at the bottom). Hernandez-Guerrero et al. [10] also
studied the impact of the aspect ratio with a different numerical model and found similar
qualitative results for the case of tall cavities. It is worth noting that the two latter works
compared differently shaped cavities that contained varying quantities of PCM.

Several researchers have considered the cooling of a vertical surface that dissipates heat
flux using a tall enclosure filled with PCM. Binet and Lacroix [11] performed numerical
and experimental studies to analyze the impact of the positions of three heat sources, their
sizes and the aspect ratio of the cavity itself. A similar numerical study was conducted by
Krishnan and Garimella [12] on the conjugate heat transfer through the enclosure walls.
Pal and Joshi [13] studied a uniformly dissipating heat source using experiments and
numerical modeling, and they established correlations for the temporal evolution of the
parietal heat transfer and the melt fraction. Huang et al. [14] used a three dimensional
(3D) numerical model to investigate the cooling of photovoltaic cells by a PCM cavity
equipped with metallic internal fins.

A large amount of research has been conducted to investigate the applicability of
cooling by PCM for electronic and electric devices. For example, the work in [15] focused
on the cooling of a mobile device using embedded PCM cavities, [16, 17, 18, 6] focused on
PCM-based heat sinks, while in[19] PCM was used to control the temperature of Li-ion
batteries.

Unlike for thermal insulation, the efficiency of passive cooling with PCM is closely
related to the rapidity of its melting: the temperature of the heat-dissipating surface does
not rise rapidly because of the absorption of the latent heat of fusion.

The speed with which the PCM melts in a laterally heated cavity is controlled by
the conductivity of the solid PCM during the early stages and by the natural convection
currents in the melt during the later stages. This natural convection flow depends on the
thermo-physical properties of the PCM and the geometry of the cavity. Thus, the shape
and extent of the enclosure containing the PCM have an important effect on the kinetics
of the melting front and, therefore, on the temperature of the cooled wall.

In this work, we are interested in the cooling of a vertical surface releasing a fixed heat
flux by means of a PCM-filled capsule that entirely covers the surface. The aim of this
study is to propose and examine different geometric shapes and relative positions of the
capsule. Numerical simulation is a well-suited tool for this purpose, especially in the early
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stages of design. It allows different test situations to be compared before an experimental
prototype is constructed. A numerical model based on a fixed grid method and applied
to an unstructured finite-volume formulation has been developed for this purpose.

In the following sections, the studied system is described with the different considered
geometries and the flow conditions are then detailed. Next, the physical model and
the numerical method are presented, and the implemented code is validated. Afterwards,
detailed results are presented concerning the evolution of the velocity and the temperature
fields, the melting front and the rate of fusion. Finally, the geometric impact on the
coupled effects of natural convection and phase change is analyzed. Conclusions are then
drawn based on these results.

2 The studied system

In this study, we are interested in the case of a vertical wall releasing heat flux at a high
rate but for a limited duration. We aim to maintain this surface (designated Sh) at a
sufficiently low temperature to avoid damaging the electrical component behind it. To
achieve this objective, we provide this surface with an enclosure filled with a PCM. The
surface to be cooled constitutes one face, or a part of a face, of this enclosure while the
other faces are exposed to the external air and are subject to natural convection. When
the heat release from the surface Sh begins, its temperature rises until it reaches the
fusion temperature of the PCM, which causes the material to melt. Natural convection
currents take place progressively in the melt, and the generated flow ensures that heat
is transferred from the surface Sh to the solid PCM and maintains the melting process.
The strength of the fluid flow involved in this process is closely related to the shape of
the formed melted area, the extent of which is limited by the boundaries of the enclosure.
Therefore, we expect that the efficiency of the heat transfer and the rate at which PCM
melts, strongly depend on the shape of the enclosure.

The “natural” or “intuitive” choice of the shape of the PCM container can be re-
garded as the rectangular geometry which has been extensively studied in the literature
for its simplicity. It can also be considered that the circular shape has the advantage
of the absence of corners that may keep non melted PCM. Furthermore, the “intuitive”
choice of the relative position of the container to the heating surface would be a centered
position. Thus, in this study we aim to verify the relevance of these different choices.
Consequently, we proceeded to investigate the impact of different cavity shapes on the
natural convection flow coupled to the solid-liquid phase change. The five different ge-
ometries studied contained the same volume of PCM. Fig. 1 shows the computational
meshes used to model the cavities (the chosen meshes densities are described in section
4.4). In this figure, the location of the surface Sh is indicated in gray. The area of Sh is the
same for all of the cavities. These geometries (detailed in the next section) were not all
considered at the beginning of this work but were designed progressively given the results
obtained from the first tested shapes. However, the results obtained for the five cavities
will be presented together. Some of the cavities are rectangular, whereas others have
rounded corners. Barlett et al. [20] have studied natural convection in both rectangular
and rounded-corner cavities and have shown that the latter shape substantially improves
heat transfer. Thus, we considered rounded shapes in the present study and investigated
their potential role in situations involving a phase change.

A known drawback of the considered cooling system is the relatively low thermal con-
ductivity of common PCMs (e.g., wax paraffin), which may cause a high temperature
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peak at the surface in the case of high heat flux early-on in the heat release, when the
heat transfer occurs only by conduction. To overcome this limitation, several solutions
have been investigated in the literature, such as utilizing fins [6], including a high ther-
mal conductivity metallic foam [6, 21] or adding nanoparticles. Extensive reviews of all
these solutions can be found in [22, 23]. In our study, we consider a solution that in-
cludes graphite nanoparticles with high thermal conductivity in the PCM. These types
of materials have experienced extensive development and exhibit high potential for use
in several applications. Many researchers [24, 25] have demonstrated that the thermal
conductivity of these products can reach unity (SI units). As indicated above, in the
present study, we focus on the impact of the enclosure shapes on the melting kinematics,
natural convection strength and temperature extremes at the cooled surface. Therefore,
we choose not to consider the details of the mixture of PCM and nanoparticles and the
relationship between the percentage of nanoparticles and the thermophysical properties
of the obtained PCM, such as viscosity, effective conductivity and specific heat capacity.
Instead we consider a model PCM with constant thermophysical properties but enhanced
thermal conductivity (see next section for details).

3 Flow conditions and pcm properties

As stated above, in this work, we study the melting of PCM inside five cavities of different
shapes that surround the same volume. We limit our investigation to two-dimensional
configurations that can be modeled in a vertical plane. One of the sides of the first two
cavities on the left in Fig 1 (a and b) exactly matches the surface Sh. The first cavity is
rounded (a half disc), and the second is rectangular. The three other cavities (c, d and
e) have sides that vertically exceeded the surface Sh, and thus, their widths are smaller
than those of cavities (a) and (b). Cavity(c) is oblong with rounded corners, whereas
cavity (d) is rectangular. The last cavity (e) has the same geometry as cavity (d), but it
is translated upward such that its left and right sides exceed the surface Sh only at the
top. The surface Sh has a fixed height of H = 5 cm, whereas the dimensions of the five
cavities are adjusted to contain the same volume. These dimensions are given in Tab. 1
in terms of maximum width and height.

Tab. 1: Maximum widths wmax and heights hmax of the five cavities (in cm).
Cavity wmax hmax

(a) 2.5000 5.0000
(b) 1.9635 5.0000
(c) 1.5742 6.5742
(d) 1.4933 6.5742
(e) 1.4933 6.5742

The rate of heat flux at the surface Sh is fixed to a constant value, q′′ = 104 W.m−2, for
all cases. The heat transfer to the external air at the other boundaries is considered to oc-
cur by natural convection and is modeled by a heat transfer coefficient h = 30W.K−1.m−2,
whereas the external air temperature is assumed to be equal to the initial temperature of
the PCM, T∞ = T0 = 20 ◦C.

We consider a model PCM in this study composed of a pure paraffin wax and graphite
nanoparticles. To simplify the analysis in the study, the properties of this PCM are
considered to be identical in the solid and liquid phases and non-temperature dependent
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Fig. 1: The geometries of the five studied cavities: a,b, c, d, and e (from left to right) and
corresponding meshes (in gray: the position of the surface Sh).

(except in the body forces term). The values of the adopted properties are listed in Tab.
2. A maximum temperature difference ∆T characterizing the flow can be obtained by
considering the final or maximum admissible temperature that reaches the surface Sh,
which corresponds to the temperature at which an electronic device is damaged (i.e., 90
◦C): ∆T = 90− 20 = 70 ◦C. The Rayleigh number based on this temperature difference
and on the height H of the surface Sh is Ra = 2.7× 107, which corresponds to a laminar
flow regime. The Stefan number corresponding to this limit situation is Ste = 0.87.

Tab. 2: Thermophysical properties of the model enhanced-conductivity PCM .
Dynamic viscosity (µ) 5× 10−3Pa.s
Density (ρ) 800 kg.m−3

Thermal conductivity (k) 1 W.m−1K−1

Specific heat (Cp) 2500 J.kg−1K−1

Latent heat (L) 200 kJ.kg−1

Thermal dilatation coefficient (β) 10−3 K−1

Prandtl’s number (Pr) 12.5
Melting temperature (Tm) 20 ◦C

4 Computational modeling

4.1 The governing equations

The unsteady equations governing the flow of incompressible non-isothermal fluids are
solved over the entire computational domain. The equations of conservation of momen-
tum, mass and energy (in terms of temperature) are considered valid for both solid and
liquid phases, which are distinguished by a liquid volume fraction f that takes values 0 and
1, for solid and liquid phases, respectively. These conservation equations are considered
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in their integral forms:

∂

∂t

∫

V

ρ ~U dV +

∫

S

ρ ~U ~U · ~n dS = −

∫

V

~∇p dV +

∫

S

=
τ · ~n dS +

∫

V

SU dV (1)
∫

S

~U · ~n dS = 0 (2)

∂

∂t

∫

V

ρ CpT dV +

∫

S

ρ CpT ~U · ~n dS =

∫

S

k ~∇T · ~n dS +

∫

V

ρL
∂f

∂t
dV (3)

where
=
τ , is the viscous stress tensor for a Newtonian fluid:

=
τ = µ

(=

∇U + (
=

∇U)T
)

(4)

The integration occurs over a volume V surrounded by a surface S, which is oriented
by an outward unit normal vector ~n. The source term in the momentum conservation
equation (Eq. (1)) contains two parts:

SU = ρβ(T − Tref)~g + A ~U (5)

where β is the coefficient of volumetric thermal expansion. The first part of this source
term represents the buoyancy forces due the thermal dilatation. For sake of simplicity, the
Boussinesq’s approximation is used in this comparative study that focuses on the impact
of different geometries. The Tref temperature was chosen as the mean temperature of
the PCM liquid phase and was recalculated at each time step. Therefore, Tref is more
representative of the temperatures in the liquid phase throughout the whole process,
especially when all of the PCM has melted. The second part of the source term (Eq. 5) is
a penalization term that ensures zero velocity in the computational cells where the PCM
is solid, i.e., where f = 0. The penalization coefficient A, based on the Carman-Koseny
relation for a porous medium, is written as a function of f as follows:

A = −
C(1 − f)2

f 3 + ǫ
, (6)

where C = 1.6× 106, and ǫ = 10−3. This coefficient ensures a smooth transition between
solid and liquid media. In the case of pure PCM, the phase change front is sharp, and
the transition takes place over only one computational cell in the direction of the front
displacement.

In Eq. (3), the last term of the right hand side (RHS) introduces the effect of the
latent heat of phase change L into the energy equation. This effect is accounted for by
considering the variation in time of the liquid fraction f .

4.2 The numerical method

The conservation equations (1, 2 and 3) are solved by implementing them in an in-
house code called Tamaris. This code has a three-dimensional unstructured finite-volume
framework that is applied to hybrid meshes. The variable values (~U , p, T and f) are stored
in cell centers in a collocated arrangement. The cell shapes can vary (e.g., tetrahedral,
hexahedral, prismatic or pyramidal).
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Fig. 2: A computational cell C and one of its neighbors Nb.

To describe the discretization method used in the code, we can write Eqs. (1) and (3)
in the generic convection-diffusion form with respect to a conserved variable φ:

∂

∂t

∫

V

ρφ dV +

∫

S

ρφ~U · ~n dS =

∫

S

Γ~∇φ · ~n dS +

∫

V

Sφ dV, (7)

where Sφ is a source term. The spatial schemes used to approximate the diffusive and
convective fluxes are both second-order accurate. The diffusion term is discretized by
approximating the surface integrals with a sum over all cell faces f (Fig. 2):

∫

S

Γ~∇φ · ~n dS =
∑

f

ΓfAf (
−→
∇φ)f · ~nf , (8)

where Af is the area of face f . For unstructured meshes, orthogonality is an exception,

and it needs to be handled correctly. Thus, the normal gradient (
−→
∇φ)f ·~nf is decomposed

into an implicit contribution that uses the values of φ at the centers of the two cells sharing
the face f (the first term on the RHS of Eq. (9) ) and a non-orthogonality correction
term treated explicitly by a deferred approach to preserve the second-order accuracy of
the centered differencing. We use the over-relaxed decomposition suggested by [26] to
enhance the convergence properties of the discretization of the diffusive term:

(
−→
∇φ)f · ~nf =

φNb
− φc

||~d||

1

~d · ~nf

+
−→
∇φ ·

(

~nf −
~d

~d · ~nf

)

(9)

~d is the vector joining the centers of the two adjacent cells (see Fig. 2). The average

gradient
−→
∇φ is interpolated from the gradients of these neighboring cells.

The gradients of the variables at the cell centers are computed by Gauss’ theorem:

−→
∇φ =

1

V

∫

S

φ ~n dS =
1

V

∑

f

φfAf ~nf , (10)

where φf is the mean value of the variable interpolated using the values at the centers of
two cells sharing face f :

φf = ξφc + (1− ξ)φNb
with ξ =

fNb

CNb

(11)
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Once the gradient is calculated for all computational cells, the values are used to determine
a new estimate of φf as follows:

φf =
1

2

[(

φNb
+
−→
∇φNb

·
−−→
Nbf

)

+
(

φc +
−→
∇φc ·

−→
Cf
)]

(12)

These new values of φf are used to re-compute the gradients more accurately using Eq.
(10) [27].

Convection terms are also transformed into a sum over faces f by decomposing the
surface S:

∫

S

ρφ~U · ~n dS =
∑

f

(ρφA)f ~Uf · ~nf , (13)

where the face values φf require appropriate interpolation to be accurate and bounded.
Thus, we use the non-linear high-resolution (HR) bounded scheme CUBISTA by Alves et
al. [28] in the γ formulation of Ng et al. [29], where they expressed φf is a function of
the upwind (UP) value of φ and its centered differencing (CD) value:

φHR
f = φUP + γ(φCD

f − φUP ). (14)

The coefficient γ is determined for each face based on the local shape of the flow solution
using the normalized variable diagram (NVD) framework and observing the convection
boundedness criterion (CBC) [30]. The first term of the RHS of Eq. (14) is accounted
for implicitly, whereas the second term is treated explicitly with the deferred-correction
practice.

The pressure-velocity coupling is ensured by the SIMPLE algorithm [31], whereas the
mass fluxes at the cell faces are evaluated using the Rhie-Chow interpolation [32] to avoid
pressure checkerboarding. The implicit three-time-step Gear’s scheme of second-order
accuracy is used to discretize the unsteady terms:

∂

∂t

∫

V

ρφ dV =
3(ρφ)nc − 4(ρφ)n−1

c + (ρφ)n−2
c

∆t
V (15)

The superscript n stands for the current time step and ∆t = tn − tn−1 is the time step.
The RHS of Eq. (7) is taken at time tn. By applying the former discretizations, the
generic conservation Eq. (7) transforms into the algebraic form:

acφc +
∑

Nb

aNb
φNb

= bc. (16)

Within each iteration of the SIMPLE algorithm, after the resolution of the momentum
equation and of the Poisson equation for the pressure correction [27, 31], the energy
equation is solved, and the fluid fraction f is updated. These last two steps are repeated
until the variation of f is sufficiently small; then, the next SIMPLE iteration starts unless
the convergence for ~U , p and T is achieved, in which case a new time step is considered.
A diagram of this algorithm is given in Fig. 3. The resolution of the energy equation is
integrated in the SIMPLE iteration to take into account the high level of its coupling with
the momentum equation through the body forces term. Additionally, the liquid fraction
correction is iterated with the energy equation resolving to tightly couple the temperature
field with the liquid fraction field.
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Fig. 3: The liquid fraction updating procedure as included in the SIMPLE algorithm.
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In this study, the liquid fraction f is updated by the “new source” algorithm proposed
by Voller [33], where the new value of f at iteration k + 1 and in cell c is calculated as
follows:

fk+1

c = fk
c +

∆t akc
ρLV

(Tc − Tm), (17)

where Tm is the melting temperature of the PCM, and akc is the coefficient of Tc in the
discretized Eq. (16) that corresponds to temperature. This update is followed by an
overshoot/undershoot correction:

fk+1

c =

{

0 if fk+1
c < 0

1 if fk+1
c > 1.

(18)

Following the “new source” algorithm [33], the energy equation is penalized in the
computational cells belonging to the phase change front (0 < fc < 1) to ensure that
the temperature at these cells is equal to the melting temperature Tm. This procedure is
performed by adding a penalization source term, equal to 109×Tm, to the energy equations
corresponding to these cells. This practice accelerates the convergence of the f updating
algorithm, and the number of iterations needed to reach convergence (|fk+1

c −fk
c | < TOL)

may be lowered to 1 or 2 depending on the size of the mesh and time-steps. The value
of TOL is fixed in this work to 10−4. At each iteration, the discretization technique
presented above leads to a linear system of algebraic equations in the form of Eq. (16)
with a non-symmetric sparse matrix for each variable. These linear systems are solved
using an ILU-preconditioned GMRES procedure implemented in the IML++ library [34].

This general three-dimensional (3D) code can be restricted to deal with 2D computa-
tions (e.g., in the (~x, ~y) plan) without any change by considering a single layer of prismatic
computational cells (in the ~z direction) and by neutralizing the top and bottom faces (with
respect to ~z). In the scope of this work, all of the computational meshes were generated
using the open-source software Gmsh [35].

4.3 The code validation

The present code has been successfully validated in several situations involving flow and
heat transfer, as in [36, 37, 38]. We focus on validating the code when applied to the
case of melting of a pure PCM coupled to natural convection in the melt. The chosen
test case is the 2D numerical benchmark presented by Hannoun et al. [39], which involves
melting tin in a square cavity subject on one side to a temperature higher than the melting
temperature. The authors have presented extensive results obtained using a second-order
accurate finite-volume method in structured meshes as fine as 600 × 600.

We carry out a numerical simulation in the same conditions as those described in [39]
with the same material properties using a uniform grid 200 × 200 in size. In Fig. 4, we
plot the melting front at different times. These lines correspond to the isolines of f = 0.5.
We also present the total liquid fraction Fl in the entire square cavity, which is calculated
as follows:

Fl =
1

∑

c Vc

(

∑

c

Vcfc

)

, (19)

where Vc is the volume of a computational cell c, and the summation is over all cells in
the computational domain.

All these results are compared to those in [39] and exhibit satisfactory correspondence.
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Fig. 4: Comparison of the obtained melting front positions at several instants with the benchmark
results [39] (left) and the total liquid fraction in the cavity (right).

4.4 Mesh size-dependence study

To choose the mesh size with the best compromise between accuracy and computational
cost, we conduct a mesh size-dependence study to determine the number of computational
cells of the mesh needed to achieve satisfactory accuracy. The rectangular cavity (b)
undergoing an unsteady melting process in the same conditions as those described in
section 3 is chosen as an example to explain the mesh selection process. Three meshes
(m1, m2 and m3) of increasing size that contain 6000, 11660 and 24000 cells, respectively,
are considered. The results obtained with the three meshes are compared based on the
time evolution of the mean values and on the instantaneous spatial fields (i.e., melting
front position, temperature and liquid fraction).

Fig. 5(a) gives the form of the melting front obtained by the three meshes at time
t = 200 s. These fronts are obtained by plotting the f = 0.5 isovalue line of the liquid
fraction field. The fronts obtained by the three meshes are almost superimposed on each
other, which indicates that the mesh size has little influence on the front position. More
significant differences are observed in the temperature field, as seen in Fig. 5(b), which
shows the variation of the temperature along a horizontal axis passing through the center
of the cavity. For clarity, the plot is limited to the liquid region, where the temperature
is not constant. However, the results of the three meshes are comparable. To achieve a
quantitative comparison, we consider 50 points along this cutline and calculate the local
error in the temperature at each point j as follows: eij = (T i

j − T 3
j )/T

3
j × 100, where

i = 1, 2 stands for meshes m1 and m2; the results are compared to those of the finest
mesh m3. Thus, the mean value of the error is ē i =

∑

j e
i
j/50, and the maximum error is

eimax = maxj e
i
j . They are both reported in Tab. 3.

In addition to the spatial results, we compare the time evolution of the total liquid
fraction in the cavity Fl (Eq. (19)) and the mean temperature Tsm of the surface Sh,
which is calculated as follows:

Tsm =
1

∑

f∈Sh
Af

(

∑

f∈Sh

AfTf

)

, (20)
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Fig. 5: Comparison of results obtained by three meshes at t = 200 s: (a) melting front positions
and (b) temperature along the y = 0 cutline in the liquid phase.

Tab. 3: Relative error of the local values of T along the central horizontal cutline at
t = 200 s using the results given by the finest mesh m3 as the baseline.

mesh ē emax

m1 2.2% 8.1%
m2 1.2% 6.1%

where Af is the area of a mesh face f located on the surface Sh. Relative errors of meshes
m1 and m2 compared to m3 are calculated at each time step for Fl and Tsm over 1000 s.
The time average and maximum values of these errors are reported in Tab. 4

Tab. 4: Mean and maximum values of the relative error of Fl and Tsm for a duration of
1000 s. .

mesh ē(Fl) emax(Fl) ē(Tsm) emax(Tsm)
m1 0.11% 0.75% 0.68% 4.34%
m2 0.06% 0.40% 0.09% 1.43%

It is evident from Tabs. 3 and 4 that the results given by mesh m2 are sufficiently
close to those given by mesh m3, which is two times finer. Thus, the size of mesh m2 was
adopted to perform the computations presented in this work, and all the meshes generated
for the five cavities have approximately 11,000 cells.

5 Results

The computations for the five cavities were conducted assuming the same conditions
and using identical numerical parameters. The time step size was fixed to a relatively
small value ∆t = 10−2s, and at each time step, the convergence criteria of the SIMPLE
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algorithm were fixed at 10−4 for the velocity residuals and 10−6 for the temperature
residual. The residuals are calculated from Eq. (16) as follows:

Resφ =
∑

c

(

acφc +
∑

Nb

aNb
φNb

− bc

)

�
∑

c

acφc, (21)

where nc is the number of cells in the computational domain. Within each SIMPLE
iteration, the liquid fraction update algorithm is stopped when the difference between
two successive f values is less than 10−4. At the first SIMPLE iteration of a time step, a
few iterations are needed for f to converge (less than 3), and in the remaining SIMPLE
iterations, only one iteration is needed. For numerical stability reasons, the imposed heat
flux rate at the surface Sh is progressively raised during the first 5 seconds to reach its
constant value q′′ = 104 W.m−2. This practice enables easier convergence for the early
time steps.

5.1 Velocity field and melting front evolution

We show the flow patterns represented by velocity vectors in the five studied cavities in
Fig. 6. This figure also gives the position of the melting front (or the solid phase zones)
at five different instants during the process. At t = 50 s, a thin vertical layer of PCM has
melted, and it has roughly the same size and the same form in all the cavities. The flow
field has a regular form with ascendant and descendant parallel fluid currents. Up to this
time, the five cavities have the same behavior, and the geometry does not play a role. At
t = 100 s, more PCM has melted, especially near the upper part of the surface Sh. The
behavior of the cavities then differs visibly: the cavities (a) and (b) that do not exceed
the surface Sh have a melting front that extends more horizontally due to the presence of
the upper boundary. Thus, the shapes of melted zones are comparable between cavities
(a) and (b) and among (c), (d) and (e).

At t = 200 s, the melted PCM zone in the cavity (e) extends upward with a round
shape, and as a consequence, more solid PCM is exposed to the flow current of the liquid
for this cavity than the others (the liquid-solid interface is the most extended for cavity
(e)). From this instant on, the melting fronts in the five cavities present an inclined
curve because the melting is more advanced in the upper regions due to the thermal
stratification (see Fig. 8). The flow patterns in the cavity (e) show the formation of
recirculation above the surface Sh. This recirculation, visible at t = 200 s (Fig. 6), is in
fact an unsteady oscillatory phenomenon with a period less than 2 s, which is why it is
not visible in the figure when t = 300 s. These oscillations are induced by the formation
of a large liquid space above the surface Sh. At the upper extremity of Sh, the hot flow
stream rising along the surface oscillates between two orientations: a vertical orientation,
as observed at t = 300 s, and a roughly horizontal orientation, as observed at t = 200 s
or t = 500 s, which results in a secondary recirculation in the upper-right corner. This
unsteady behavior starts as early as t ≈ 150 s for cavity (e) but much later (t ≈ 800 s)
for cavity (d) because the upper liquid space is narrower. The flows in the three other
cavities do not show any oscillatory characteristics. At t = 500 s, the melting in all the
cavities is almost complete. We can visually observe that cavities (a) and (e) contain the
least amount of solid PCM. This observation is confirmed quantitatively in Fig. 11.

To give more quantitative details about the velocity field in the cavities, we plot the
vertical component of the velocity vector along the horizontal axis passing through the
center of the surface Sh in Fig. 7. Initially (up to t = 100 s), the velocities are similar,
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so they are not shown. At t = 200 s, we observe substantial differences in the maximum
value of the velocity near the boundary Sh, where cavity (e) exhibits the highest value
(6.5 × 10−3 m.s−1), and cavity (a) exhibits the lowest value (4.7 × 10−3 m.s−1). The
x positions of the positive maximum are nearly the same, whereas in the fluid zone
near the melting front, the downward negative velocities have different profiles due to
the differences in the position of the front. As the process continues (t = 300 s and
t = 500 s), the velocity level decreases progressively, and a large zone with almost zero
vertical velocity appears in the center of the cavities. The maximum value in cavity (e)
at t = 500 s is 3.1 × 10−3 m.s−1. This velocity decrease is due to the reduction of the
quantity of solid PCM, which is at the low temperature T = Tm, in the cavities compared
to the initial amounts. As a result, a weaker temperature gradient exists in the liquid
which results in weaker buoyancy forces.

5.2 Temperature field in the cavities

Fig. 8 shows the temperature field at six different times during the melting process. As
early as t = 200 s, we observe the establishment of thermal stratification in the melt, which
is slightly perturbed in the upper region by the upward fluid currents and near the lateral
boundaries by the convective heat exchange with the external media. Higher temperatures
were observed in the liquid of cavity (a), and lower temperatures were observed in cavity
(e). Quantitative changes in temperature are given in the next section. As for the melting
front position, we observe similarities in the temperature fields between cavities (a) and
(b) and between cavities (c) and (d), whereas cavity (e) exhibits a distinct temperature
pattern.

5.3 Evolution of the parietal temperature

The evolution of Tsmoy, the mean temperature of the surface Sh (Eq. (20)), gives an
overview of the impact of the flow and melting kinetics on the global temperature level
(Fig. 9). During the first minute, the mean temperature evolves identically and linearly
for all the cavities. This first phase is governed essentially by heat conduction; thus, it
gives the same results for all five cavities. After this phase of steep augmentation, Tsmoy

continues to increase in cavity (a) but with a weaker slope, but it decreases in all the other
cavities. The strongest decrease is observed for cavity (e), and it lasts for approximately
250 s before increasing again. For cavities (b), (c) and (d), this period is approximately
170 s.

Another important temperature to monitor is the maximum temperature Tmax of the
surface Sh because this temperature should be lower than the damage temperature of the
device to be cooled. Fig. 10 plots the maximum temperature for the five cavities. This
maximum is always located at the top of Sh, as in Fig. 8. Its evolution shows differences
between the cavities as early as t = 30 s. For cavity (a), Tmax exhibits two linear phases
with positive slopes with inflexions at about t = 75 s and Tmax = 65◦C. The evolution of
Tmax for cavity (b) has a horizontal plateau at 65◦C, whereas for the other three cavities,
this plateau is 15◦C lower and is slightly decreasing. The plateau for cavity (e) (∼ 200 s
long) is the longest.

The plateau in the Tsmoy and Tmax curves emerges because of the establishment of
natural convection currents and the presence of the front of solid PCM. The solid PCM
absorbs the thermal energy transported by the flow from the hot surface in the form of
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Fig. 6: Velocity vectors and melting fronts for the five cavities after 50 and 100 s.
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Fig. 6: (Cont.) Velocity vectors and melting fronts for the five cavities after 200 and 300 s.
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Fig. 6: (Cont.) Velocity vectors and melting fronts for the five cavities after 500 s.

latent heat, and its melting releases cold liquid at Tm, which increases the temperature
gradient. The circular shape of cavity (a) induces a larger distance between the solid PCM
and the surface Sh. This distance is less important for cavity (b), and its rectangular shape
induces a plateau in the temperature profile and a lower value of Tmax. When the cavities
are flatter, as for (c) and (d), the results are better. The shape of the cavity has another
effect in terms of the extent of the melting front, which is more extended for the cavities
with the lowest aspect ratio. The more geometrically extended this melting front is in
the cavity, the lower and longer the Tmax plateau. By comparing the curves of cavities
(c) and (d) with (e), we can conclude that an efficient way to increase the extent of the
front is to locate more PCM at the top of the cavity where it is in contact with oscillatory
natural convection streams. The higher temperature liquid is located in this zone because
of thermal stratification, which increases the melting rate.

5.4 Evolution of the global PCM melting

The total liquid fraction Fl defined by Eq. (19) can be monitored to follow the evolution
of the melting in the five cavities, as shown in Fig. 11. We observe that the curve of
Fl is linear and identical in all the cavities until t ≈ 150 s. After this time, the rate of
melting decreases in all the cavities except for cavity (e), for which the curve inflexion
occurs as late as t ≈ 250 s. This cavity has the fastest rate of melting, and the solid PCM
completely disappears at t ≈ 550 s. Cavity (a) is also completely melted at this time,
and even though it shows the highest maximum surface temperature (Fig. 10), its mean
surface temperature is lower than those of cavities (b), (c) and (d) after t ≈ 350 s (Fig.
9). Fig. 6 can explain these differences. The bottom left corner of the rectangular cavity
(b) keeps the PCM solid and limits its melting. In cavities (c) and (d), more solid PCM
is trapped in the lower part of the cavity located below the surface Sh. This zone is less
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Fig. 7: Vertical velocity components along the horizontal axis passing through the center of the
surface Sh for the five cavities after 200 s (a), 300 s (b) and 500 s (c).
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Fig. 8: Temperature fields in the five cavities after 50, 100, 200, 300, 400 and 500 s.
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Fig. 9: Evolution of the mean temperature of the surface Sh.
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Fig. 11: Evolution of the total liquid fraction in the five cavities.

influenced by the hot liquid streams recirculating inside the cavity, and thus, it is more
difficult to melt. As a consequence, cavities (c) and (d) are the last ones to completely
melt, approximately 250 s after cavities (a) and (e) are completely melted.

5.5 Parietal heat transfer

To quantify the heat transfer at the cooled surface, we define a global Nusselt number as
follows:

Nu =
q′′H

k(Tsmoy − Tm)
. (22)

Fig. 12 gives the evolution of the Nusselt number for the five cavities during the
melting process. After a fast transition period, where the Nu values are important
(Tsmoy − Tm ≈ 0), and before they drop to a value of 20, we observe an increase to-
ward a peak value followed by a progressive decrease toward an asymptotic value of 4.
The characteristic “bumps” in the curves obtained for the different cavities have different
sizes and correspond to the coupled impact of the natural convection and latent heat of
the melting of the PCM on the temperature of the cooled surface Sh. In agreement with
the results of velocity (Fig. 7) and parietal temperature (Fig. 9), the most important Nu
value is obtained for cavity (e), and the lowest is obtained for cavity (a) up to t ≈ 350 s.
After t ≈ 350 s, cavity (a) performs better than cavities (b), (c) and (d) when the rate
of fusion in these cavities slows down. However, the most interesting behaviors expected
from this mode of passive cooling are the fast reaction and limited maximum temperature.
With regard to these two features, cavity (a) is the worst choice and cavity (e) is the best
choice. We can also notice that for all the efficiency indicators (Tsmoy, Tmax, Fl and Nu),
the oblong cavity (c) performs slightly better than the rectangular cavity (d).



6 Conclusions 22

 0

 5

 10

 15

 20

 25

 0  200  400  600  800  1000

N
u

time [s]

cavity a
b
c
d
e

 0

 5

 10

 15

 20

 25

 0  200  400  600  800  1000

N
u

time [s]

cavity a
b
c
d
e

Fig. 12: Evolution of the parietal Nusselt number for the five cavities.

6 Conclusions

In this study, we numerically modeled the natural convection-dominated melting of a
PCM inside a cavity used to control the temperature of a surface releasing a heat flux.
We investigated the impact of the shape of this cavity and the relative position of the
cooled surface on the flow and heat transfer. We developed a numerical model using a fixed
grid enthalpy-porosity technique coupled with a three-dimensional flow solver based on an
unstructured finite-volume method involving second-order accurate spatial and temporal
numerical schemes.

Five geometries containing the same quantity of PCM were compared. The geometries
were rounded or rectangular, thick or thin, centered relative to the cooled surface or shifted
upward vertically. The unsteady behaviors of the five cavities were analyzed by examining
the evolution of the liquid-solid interface and considering the forms and strengths of the
natural convection flow. The fluid velocity increases for thinner cavities that have a space
above the cooled surface; thus, in the cavity shifted upward (cavity (e)) the maximum
velocity is achieved. In spite of the presence of this flow, strong thermal stratification
exists in the melt, which causes a hot spot located at the upper extremity of the surface
to appear.

Several efficiency indicators were monitored, including the mean and maximum tem-
peratures, the total liquid fraction and the parietal Nusselt number. All of these indicators
demonstrate the importance of the effect of the geometry on cooling efficiency. If we focus
on the maximum temperature indicator, we see that at as early as t = 100 s, the differ-
ence between the best and worst geometry choices ((e) and (a), respectively) is equal to
16.5 ◦C, and this difference reaches 40 ◦C when t = 300 s, which is of great importance
for the thermal protection of the heat-dissipating devices. We can summarize the most
important findings of this work as follows:

• In thin cavities, liquid PCM zones expand upward, while for wider cavities, this
expansion tends to be horizontal. Consequently, for the former cavities, the solid
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cold PCM is in contact with ascending hot liquid streams, which contributes to the
lowering of the global temperature.

• The last zones to melt in the cavities are located at the bottom and on the side
opposite to the cooled surface. Thus, PCM enclosures should be designed without
corners and without zones located below this surface.

• A portion of the PCM should be placed above the cooled surface.

• The use of rounded corners has a slight positive effect on the efficiency (e.g., Nu
and Tmax).

Based on these findings, more efficient geometries can be designed; however, in the
future, the impact of the geometry choice on the inverse process, i.e., solidification, should
be taken into account and analyzed. This aspect constitutes one of the goals of a future
work.
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[9] M. Ftëıti, S. Ben Nasrallah, Numerical study of interaction between the fluid struc-
ture and the moving interface during the melting from below in a rectangular closed
enclosure, Computational Mechanics 35 (3) (2005) 161–169.



6 Conclusions 24

[10] A. Hernández-Guerrero, S. Aceves, E. Cabrera-Ruiz, R. Romero-Mendez, Effect of
cell geometry on the freezing and melting processes inside a thermal energy storage
cell, Journal of Energy Resources Technology 127 (2) (2005) 95–102.

[11] B. Binet, M. Lacroix, Melting from heat sources flush mounted on a conducting
vertical wall, International Journal of Numerical Methods for Heat and Fluid Flow
10 (3) (2000) 286–306.

[12] S. Krishnan, S. Garimella, Analysis of a phase change energy storage system for
pulsed power dissipation, IEEE transactions on components and packaging technolo-
gies 27 (1) (2004) 191–199.

[13] D. Pal, Y. Joshi, Melting in a side heated tall enclosure by a uniformly dissipating
heat source, International Journal of Heat and Mass Transfer 44 (2) (2001) 375–387.

[14] M. Huang, P. Eames, B. Norton, Comparison of a small-scale 3D PCM thermal con-
trol model with a validated 2D PCM thermal control model, Solar Energy Materials
and Solar Cells 90 (13) (2006) 1961–1972.

[15] F. Tan, C. Tso, Cooling of mobile electronic devices using phase change materials,
Applied thermal engineering 24 (2-3) (2004) 159–169.

[16] V. Shatikian, G. Ziskind, R. Letan, Numerical investigation of a PCM-based heat
sink with internal fins: Constant heat flux, International Journal of Heat and Mass
Transfer 51 (5-6) (2008) 1488–1493.

[17] R. Akhilesh, A. Narasimhan, C. Balaji, Method to improve geometry for heat transfer
enhancement in PCM composite heat sinks, International Journal of Heat and Mass
Transfer 48 (13) (2005) 2759–2770.

[18] X. Wang, C. Yap, A. Mujumdar, A parametric study of phase change material
(PCM)-based heat sinks, International Journal of Thermal Sciences 47 (8) (2008)
1055–1068.

[19] R. Kizilel, R. Sabbah, J. Selman, S. Al-Hallaj, An alternative cooling system to
enhance the safety of Li-ion battery packs, Journal of Power Sources 194 (2) (2009)
1105–1112.

[20] A. Barletta, E. Nobile, F. Pinto, E. Rossi di Schio, E. Zanchini, Natural convec-
tion in a 2D-cavity with vertical isothermal walls: Cross-validation of two numerical
solutions, International Journal of Thermal Sciences 45 (9) (2006) 917–922.

[21] O. Mesalhy, K. Lafdi, A. Elgafy, K. Bowman, Numerical study for enhancing the
thermal conductivity of phase change material (PCM) storage using high thermal
conductivity porous matrix, Energy Conversion and Management 46 (6) (2005) 847–
867.

[22] S. Jegadheeswaran, S. Pohekar, Performance enhancement in latent heat thermal
storage system: A review, Renewable and Sustainable Energy Reviews 13 (9) (2009)
2225–2244.



6 Conclusions 25

[23] F. Agyenim, N. Hewitt, P. Eames, M. Smyth, A review of materials, heat transfer
and phase change problem formulation for latent heat thermal energy storage systems
(LHTESS), Renewable and Sustainable Energy Reviews 14 (2) (2010) 615–628.

[24] S. Kim, L. Drzal, High latent heat storage and high thermal conductive phase change
materials using exfoliated graphite nanoplatelets, Solar Energy Materials and Solar
Cells 93 (1) (2009) 136–142.

[25] A. Sari, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage
characteristics of paraffin/expanded graphite composite as phase change material,
Applied Thermal Engineering 27 (8-9) (2007) 1271–1277.

[26] H. Jasak, Error analysis and estimation for the finite volume method with applica-
tions to fluid flows, Ph.D. thesis, University of London (1996).
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