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Abstract—Dealing with uncertainty introduces an increased
level of complexity to reliability analysis problems. The uncer-
tainties associated to reliability studies usually arise from the
difficulty to account for incomplete or imprecise reliabili ty data
and complex failure dependencies. This paper introduces the
Transferable Belief Model (TBM) to the reliability analysi s so
that epistemic uncertainties can be taken into account as well
as aleatory uncertainties. Two approaches are used to represent
failure dependencies of components: an implicit and an explicit
approach. The TBM model is then compared to an interval-
probability model by highlighting the different character istics of
the results obtained.
Keywords: Transferable Belief Model (TBM), Dempster-
Shafer (D-S) theory, reliability analysis, epistemic uncer-
tainty, failures dependencies, interval-probability.

I. I NTRODUCTION

Uncertainties are one of the most challenging problems in
reliability studies of complex systems [1]–[3]. They are present
in any reliability evaluation due to randomness in the failure
phenomena and difficulty to obtain failure data of components
with scarce failures. Uncertainties have been classified into
two subtypes: aleatory uncertainty and epistemic uncertainty.
Aleatory uncertainty is also called irreducible and inherent
uncertainty. It is the inherent variation associated with the
physical system or the environment under consideration [4]. It
represents, for example, the inherent variability of failures and
repair times of equipment. Epistemic uncertainty is subjective
and reducible because it arises from lack of knowledge or
data. It represents uncertainty of the outcome due to lack
of knowledge or information in any phase or activity of
the modeling process [4]. That’s why it is important that
aleatory and epistemic uncertainties are properly accounted
for in reliability studies.

Classical probability theory is adapted only for aleatory
uncertainty [5]. Epistemic uncertainty can be handled by
possibility theory, Dempster-Shafer (D-S) theory, interval anal-
ysis, and imprecise probabilities [6]. The possibility theory
is usually employed to quantify only epistemic uncertainty.
The D-S theory can be considered a generalization of classical
probability theory and also as a generalization of possibility
theory [1]. The D-S theory has several interpretations suchas
the Transferable Belief Model (TBM). The TBM is completely
dissociated from any model based on probability functions

and it separates the credal and the decision levels [7]. Hence,
in this work the TBM is proposed to handle both aleatory
and epistemic uncertainties in order to evaluate the system’s
reliability. This work only takes into account the credal level,
but the decision level can also be studied in our case.

Furthermore, in many reliability studies, the failure of sys-
tem’s components are assumed to be independent. However,
in reality, different types of dependencies can be involved,
making the results of reliability evaluations wrong. Fricks
and Trivedi [8] have proposed a classification of failure
dependencies (Common Cause Failures (CCFs), standby de-
pendencies, etc.). There are two principal methods to model
failure dependencies in system’s reliability analysis: implicit
and explicit methods [9]. The implicit method corresponds to
the case of the use of joint probabilities, correlations values or
conditional probabilities [10]. In explicit methods, the causes
of dependencies are explicitly included into the system’s logic
model [10] as a block in Reliability Block Diagrams (RBDs)
or a basic event in Fault Trees (FTs). Here, it is proposed to
use both approaches in the TBM model reliability analysis.

Section II treats the related work using the Dempster-Shafer
theory in reliability analysis. Section III presents the basic
notions of the TBM model. Next, the proposed TBM approach
is presented in section IV. In section V, failure dependencies
are treated using an implicit and explicit approach. The TBM
and interval-probability models are applied and a comparison
between both approaches is given. Finally, the paper finishes
with some conclusions and perspectives.

II. RELATED WORK

The first work introducing D-S theory in reliability analysis
was presented by Dempster and Kong [11]. They proposed
the use of a FT as a particular case of the tree of cliques to
propagate beliefs through the tree. The prior beliefs of basic
events of the tree represent prior failure beliefs of components.
The second work was presented by Guth in 1991 [12] and
concerned FT analysis. Guth represented the belief that a basic
eventA happens with failure probabilityp by three valued
logic (True, False and unknown) and proposed truth tables
with the three valued logic in order to propagate the beliefs
in FT. Chin et al. [13] proposed to use evidence theory to
capture the non-specificity and conflict features in judgment



experts. The beliefs are then propagated in a FT in order
to diagnose the fault distribution of web service process.
Walley [6] and Kozin et al. [14] turned out that in some
applications the use of Dempster’s combination rule led to
incorrect results. Almond [15] developed graphical models
using belief functions and applied this graphical model in
FT analysis. Rakowsky et al. [16] have modeled uncertainties
in Reliability-Centered Maintenance (RCM). They used belief
and plausibility measures to express the uncertainties of ex-
perts in reasoning. They also use weighted recommendations
during the RCM process. This approach was applied to a fire
detection and extinguishing system. Pashazadeh et al. [17]
proposed reliability assessment under epistemic uncertainty
using D-S and vague set theories. They eliminated the gap
between the representation of combined evidence and the way
of representing the components reliability in the Vague Set
theory. Simon et al. [18] have proposed to combine Bayesian
networks and D-S theory to study the reliability of systems
under imprecise reliability data. They used evidential networks
and junction tree inference algorithms.

Furthermore, there is very little work treating the use of
TBM theory to model failures dependencies in reliability
studies. Almond [15] proposed to treat the problem of de-
pendence between basic events by using pivotal variables
and information dependence breaking theorem. Walley [6]
proposed an example which indicated that D-S theory is not
suited to treat dependency in the case of total ignorance of
dependencies. Hence, an original TBM reliability analysisis
proposed in order to take into account failures dependencies
in reliability evaluations.

III. B ASIC NOTIONS OFTRANSFERABLE BELIEF MODEL

(TBM)

The TBM was introduced by Smets and Kennes [19] as a
subjectivist interpretation of D-S theory. The D-S theory,also
called evidence theory, was first described by Dempster in the
1960’s [20] with the study of upper and lower probabilities and
extended by Shafer in 1976 [21]. The TBM represents a unique
framework for representing and manipulating aleatory and
epistemic uncertainties. It is based on two levels: the credal
level, where available pieces of information are represented
by belief functions; and the pignistic or decision level, where
masses are transformed into pignistic probabilities. It was
originally applied in information fusion [22], [23], pattern
recognition [24], [25] and diagnostic [26]. In a finite discrete
space, the TBM can be interpreted as a generalization of
probability theory where probabilities can be assigned to
any subsets instead of singletons only. In this section, basic
notions, extended operations, and terminology of TBM are
explained. For a more detailed exposition see [19]–[21].

A. Frame of discernment

The frame of discernmentΩ is the definition domain of
the variable of interestx. It consists of all mutually exclusive
elementary propositions. It can be viewed as the sample
space in probability theory. As an example, let’s consider

Ω = {x1, x2} be a frame of discernment. Then,x1 and x2

are elementary propositions and mutually exclusive to each
other. The power set2Ω is the set of all the subsets ofΩ
including itself, i.e.:2Ω = {{∅}, {x1}, {x2}, Ω}.

B. Basic Probability Assignment (BPA)

A Basic Probability Assignment (BPA) onΩ, also called
Basic Belief Assignment (BBA), is a function,mΩ : 2Ω →
[0, 1], such that:

∑

A∈2Ω

mΩ(A) = 1 (1)

The numbermΩ(A) represents the belief value assigned to
the subsetA of Ω. The subsetsA ⊂ Ω such thatmΩ(A) > 0
are called focal sets ofmΩ. A BPA having a singleton{x}
(x ∈ Ω) as a unique focal set represents full knowledge.
A BPA having only singletons as focal sets is equivalent to
probabilities. A BPA havingΩ as a unique focal set represents
complete ignorance and is called vacuous.

C. Belief and plausibility functions

The beliefBel and plausibilityPl functions for a subsetA
are defined as following:

Bel(A) =
∑

B⊆A

mΩ(B)

Pl(A) =
∑

B∩A 6=∅

mΩ(B) ∀ A ⊆ Ω, ∀ B ⊆ Ω
(2)

Bel(A) measures the total assignment of belief toA
and all its subsets. The plausibility function measures the
extent to which we fail to disbelieve the hypothesis ofA.
[Bel(A), P l(A)] can be viewed as the confidence interval
which describes the uncertainty of A.

D. Combination rules

Consider two distinct pieces of evidencemΩ
i andmΩ

j from
two different sourcesi and j. In TBM, the principal combi-
nation rules are the conjunctive and disjunctive combination
rules [21]. The Dempster rule of combination is defined as
the conjunctive combination of two normal BPAs followed by
normalization. This rule is also called the orthogonal sum of
evidence. It is defined as follows:

mΩ
i⊕j(H) =

∑

A∩B=H,∀A,B⊆Ω

mΩ
i (A)mΩ

j (B)

1 − k
(3)

With: k =
∑

A∩B=∅,∀A,B⊆Ω

mΩ
i (A)mΩ

j (B)

The number defined byk is called the conflict factor
between the two pieces of evidencei andj.
As mentioned by some reliability researchers [6], [14], Demp-
ster combination rule sometimes generates wrong conclusions
in the case of serious conflict between evidences. In this case,
it is recommended to investigate the given information or to
collect more information. Several combination rules have been
defined and they often differ by the way the evidence mass of
an empty intersection is allocated [27], [28].



E. Operations on Joint Spaces

Consider a BPAmΩxΩy defined on the Cartesian product
ΩxΩy. The marginal BPAmΩxΩy↓Ωx on Ωx is defined by:

mΩxΩy↓Ωx(A) =
∑

B⊆ΩxΩy/Proj(B↓Ωx)=A

mΩxΩy (B)

∀A ⊆ Ωx

(4)

WhereProj(B ↓ Ωx) = {x ∈ Ωx/∃y ∈ Ωy, (x, y) ∈ B}. The
inverse operation is a particular instance of vacuous extension.
Consider a BPAmΩx defined onΩx. Its vacuous extension on
ΩxΩy is defined by:

mΩx↑ΩxΩy (B) =

{

mΩx(A) if B = A × Ωy

0 otherwise.

∀ A ⊆ Ωx

(5)

Let mΩxΩy denote a BPA onΩxΩy (with underlying
variables(x, y)), andm

ΩxΩy
y the BPA onΩxΩy with single

focal setΩx{y}. The conditional BPA ofx given y = y is
defined as:

mΩx [y] = (mΩxΩy ⊕ mΩxΩy
y )↓Ωx (6)

The conditioning operation for belief functions has the same
meaning as in Probability Theory. However, it also admits an
inverse operation called the ballooning extension. LetmΩx [B]
denote the conditional BPAs onΩx, givenB. The ballooning
extension ofmΩ

x [B] on ΩxΩy is the least committed BPA,
whose conditioning onB yields mΩx [y]. It is obtained as:

mΩx [B]⇑ΩxΩy (C) = 1C · mΩx [B](A)

1C =

{

1 if C = (B × A) ∪ (Bc × Ωx)
0 otherwise.

∀C ⊆ ΩxΩy

(7)

In order to optimize the TBM operations and saving time
and space, some computation algorithms were given in [15],
[29].

IV. T HE PROPOSEDTBM RELIABILITY ANALYSIS

In this paper, both system and components are allowed to
take only two possible states: either working (W ) or failed
(F ) (Binary State assumption). Using BPAs of functioning
and failure of system components, the goal is to obtain the
reliability of the whole system in the case of a parallel system.

A. Frame of discernment

Due to the Binary State assumption, the frame of discern-
mentΩi of a componenti is given by:Ωi = {Fi, Wi}. Fi and
Wi represent respectively the failure and the working states
of the componenti. The frame of discernment of components
1, 2 andS are then:Ω1 = {F1, W1}, Ω2 = {F2, W2} and
ΩS = {FS , WS}.

B. BPAs, belief and plausibility functions of system’s compo-
nents

BPA structure is more natural and intuitive way to express
one’s degree of belief in a hypothesis where only partial
evidence is available. In reliability studies, based on expert’s
opinion and experimental data, BPAs of components are
computed directly and this computation needs some reliability
expert’s efforts. The BPAs assigned to system’s componentsby
expert’s opinion and experimental data can be then expressed
by:

mΩi({Fi}) = fi

mΩi({Wi}) = wi ; i = 1, 2
mΩi({Wi, Fi}) = 1 − wi − fi

(8)

Using Eq. (2), belief and plausibility functions of compo-
nents 1 and 2 are computed. For example, If component 1 is
considered, then:Bel({F1}) = mΩ1({F1}) andPl({F1}) =
mΩ1({F1}) + mΩ1({F1, W1}).

C. Evaluation of BPAs, beliefs and plausibility functions of
the whole systemS

First, the vacuous extension is used to extendmΩ1 and
mΩ2 to the product spaceΩ1Ω2ΩS . The resulting BPAs are
combined using the Dempster combination rule. Then, the
resulting BPAs are combined withmΩ1Ω2ΩS

Parallel which represents
the relation between the systemS and its components 1 and
2. It is given by:

m
Ω1Ω2ΩS
Parallel

({(W1, W2, WS), (F1, F2, FS), (F1, W2, WS), (W1, F2, WS)}) = 1 (9)

To obtain BPAs of systemS, the final result is marginalized
on ΩS . Belief and plausibility functions are then computed
from mΩS . Formally, the final BPA is defined as follows :

mΩS = (mΩ1↑Ω1Ω2ΩS ⊕ mΩ2↑Ω1Ω2ΩS ⊕ mΩ1Ω2ΩS

Config )↓ΩS

The system’s reliabilityRS is then given by:

RS ∈ [Bel({WS}), P l({WS})]

The results of BPAs related to parallel configuration are
given in Table I. These results can be generalized to a parallel
system ofn components with BPAsm({Fi}), m({Wi}) and
m({Fi, Wi}) = 1 − m({Fi}) − m({Wi}) with (1 ≤ i ≤ n).
In an analogue way, the results for a series system are also
shown.

D. Numerical application: two cases

• Case I: Aleatory uncertainty
Consider a simple parallel system with components1
and 2. The BPAs of components are given in Table II.
Using belief and plausibility measures, the reliability of
the system isRs = 0.98.
When there is no epistemic uncertainty
(mΩi({Fi, Wi}) = 0), the system’s reliability results
are identical to the results obtained in the classical
probability theory.

• Case II: Aleatory and epistemic uncertainty



Table I: BPAs and reliability of parallel and series systems
with n components

BPAs Parallel system
mΩS{FS}

∏n
i=1 m{Fi}

mΩS{WS} 1 −
∏n

i=1(1 − m{Wi})
mΩS{FS , WS} −

∏n
i=1 m{Fi} +

∏n
i=1(1 − m{Wi})

Bel{WS} 1 −
∏n

i=1(1 − m{Wi})
Pl{WS} 1 −

∏n
i=1 m{Fi}

BPAs Series system
mΩS{FS} 1 −

∏n
i=1(1 − m{Fni

})
mΩS{WS}

∏n
i=1 m{Wni

}
mΩS{FS , WS}

∏n
i=1(1 − m{Fni

}) −
∏n

i=1 m{Wni
}

Bel{WS}
∏n

i=1 m{Wni
}

Pl{WS}
∏n

i=1(1 − m{Fni
})

Table II: BPAs of components1 and2

Case I Case II
Components fi wi fi wi

1 0.1 0.9 0.3 0.65
2 0.2 0.8 0.05 0.85

Here, let’s consider epistemic uncertainty
(mΩi({Fi, Wi}) > 0) for components1 and 2 as
shown in Table II. In this case we obtain an interval
value for the reliabilityRs = [0.9475, 0.985].

V. M ODELING FAILURE DEPENDENCIES INTBM AND

INTERVAL PROBABILITY APPROACHES

A. Introduction

Nowadays, complex systems use redundant components in
order to increase the overall systems reliability. However,
redundant systems are usually subject to multiple failure
dependencies [30]. CCFs were the most studied failure depen-
dencies models. Reliability researchers have usually explicitly
integrated CCFs in the system’s reliability model (FT [9], RBD
[31], stochastic Petri nets [8], etc.). Other failure dependencies
were integrated implicitly by increasing the failure ratesof
components [10]. The use of BPAs is proposed to represent
failure dependencies and extended operations defined in TBM
reliability analysis are used to obtain the whole system’s
reliability. Implicit and explicit approaches will be presented.
The TBM model is compared with an interval-probability
model. The values of reliability of components1 and 2 that
would be used from now on, are the same used for case II
shown in Table II.

B. The implicit approach

Let’s consider a simple systemS composed of two compo-
nents1 and 2 in parallel. Reliability experts have mentioned
that in γ1 of system’s functioning tests, the failure of compo-
nent 2 had led to the failure of component 1. The factorγ1 is
called the dependency factor. The objective is to evaluate the

Figure 1: Implicit approach: Results of TBM and Interval-
probability models.

system’s reliabilityRS under these assumptions in both TBM
and interval-probability approaches.

1) TBM model: In this approach, the BPAs of components
1 and 2 are given as stated in Eq. 8. The proposed TBM
approach is to code the dependence between components 1
and 2 by the conditional BPAs:

mΩ1 [F2]({F1}) = γ1

mΩ1 [F2]({W1, F1}) = 1 − γ1
(10)

The ballooning extension is used to decondition the BPAs
in Eq.10 toΩ1Ω2. Then, the BPAs obtained are extended to
Ω1Ω2ΩS and combined with the BPAs of the simple parallel
configuration and the BPAs of components1 and2. The final
result of the system’s reliability after marginalization on ΩS is
given in Eq. 11 and can be observed in Figure 1 as a function
of γ1. The factorγ1 can be viewed as a correlation factor
which assigns an additional BPA to the failure of component
1 knowing failure of component2.

RS = w1+w2−w1w2−γ1w1f2

1−k1

RS = 1 − f1f2+γ1(f2−f2w1−f1f2)
1−k1

(11)

Where the conflict factork1 is given by:k1 = γ1f2w1.

2) Interval-probability model:The idea of this approach
is to use the concepts of interval arithmetic to calculate
the reliability. In this case, each probability is represented
by an upper and a lower probability noted asP (X) and
P (X) respectively [6]. Then, the probability can be noted as
P (X) = [P (X), P (X)]. It can be noted that theBel(X) and
Pl(X) corresponding to a BPA can be represented as coherent
imprecise probabilities[P (X), P (X)] = [Bel(X), P l(X)].
Nevertheless, the opposite is not true, as there are some
coherent imprecise probabilities that cannot be defined with a
corresponding BPA. The corresponding interval-probabilities
to the BPAs of components1 and2 given in Eq. 12 are:



P (Fi) = [fi, 1 − wi]
P (Wi) = [wi, 1 − fi] for i = 1, 2

The conditional BPAs in Eq. 10 corresponds in the interval-
probability approach to:

P (F1/F2) = [γ1, 1]

The application of Bayes’rule gives the system’s failure prob-
ability: P (FS) = P (F1 ∩ F2) = P (F1/F2)P (F2). Then, the
system’s reliability is given in Eq. 12 and shown in Figure 1
as a function ofγ1.

RS = w2, RS = 1 − γ1f2 (12)

3) Discussion: From the Eq. 12, we can see that the
interval-probability approach is not sensible to the variation
of f1 or w1. In this case, the reliability is based only on
the conditional probabilityP (F1/F2) = γ1 and the values
of f2 and w2. The TBM approach does take into account
all the information about the system and its components as
it combines all the BPAs stated, but it introduces a conflict
factor k1 that is caused by the introduction of the conditional
BPA (cf. Eq. 10).

To make a similar approach to interval-probability using
the TBM, a third approach was analyzed in which the BPA
assigned to the component1 was ignored. In this case, there
is no conflict factor because information about component
1 is only taken into account one time with the conditional
BPA. The final BPA is obtained by only combining the
BPAs assigned for the system configuration, component2
and dependency factor. Finally, we obtain the same values of
reliability as in the interval-probability model (Eq. 12).

It can be concluded that the advantage of the TBM model
is that it takes into account the reliability data of component
1 which is not considered in the interval-probability approach
due to the use of Baye’s rule.

C. The explicit approach

In this approach, a virtual componentM with two statesE
andI is considered. This component serves to model depen-
dencies explicitly. The stateE of M indicates the presence
of CCFs. In this case, the components1 and 2 are both in
failure state(F1, F2) or in working state(W1, W2). The state
I indicates the absence of CCFs. In this case, components1
and2 may have all possible states.

1) TBM model:BPAs of components1 and2 are given as
stated in Eq. 8. Furthermore, the two previous assumptions are
coded by the conditional BPAs:

mΩ1Ω2 [E]({(F1, F2), (W1, W2)}) = 1 (13)

mΩ1Ω2 [I]({(F1, F2), (F1, W2), (W1, W2), (W1, F2)}) = 1
(14)

The frame of discernment ofM is then given by:ΩM =
{E, I} and the BPAs related toM are given in Eq. 15.

mΩM ({E}) = δ1, mΩM ({I}) = δ2

mΩM ({E, I}) = 1 − δ1 − δ2
(15)

Figure 2: Explicit approach: Results of TBM and Interval-
probability models.

The factor δ1 assigns an additional BPA to the fact that
components1 and2 are either working or have failed when the
virtual componentM is in the stateE. The factorδ2 assigns a
mass value to the fact that the components1 and2 may have
all possible states.

The BPAs of Eq.13 and Eq.14 are deconditioned to
Ω1Ω2ΩM . Then, the BPAs obtained and the BPAs of Eq.
15 are extended toΩ1Ω2ΩSΩM . The obtained BPAs are
then combined with the BPAs of the parallel structure. The
final results of the system’s reliability after marginalization
on ΩS are given in Eq. 16 and can be seen in Figure 2 as a
function ofδ1. Note thatδ2 doesn’t appear in the final solution,
which means that the epistemic uncertainty of the state of the
machineM doesn’t have any influence when the TBM model
is used. In this case, the BPA of Eq. 13 also introduces a
conflict factork2 = δ1(f1w2 + f2w1)) due to the fact that for
the stateE, the events(F1, W2) and (W1, F2) can’t happen.
Thanks to this, when the BPAs are combined, there is a conflict
between the BPA’s components and the conditional BPA.

RS = w1+w2−w1w2−δ1(f1w2+f2w1)
1−k2

RS = 1 − f1f2+δ1(f1+f2−f1w2−f2w1−2f1f2)
1−k2

(16)

2) Interval-probability model: In this case, the values of
P (Fi) andP (Wi) are the same used for the implicit approach.
As δ1 and δ2 are variable and it is not known which one is
greater than the other for a given combination of values, the
interval values ofP (E) andP (I) are expressed using the min
and max functions as follows:

P (E) = [min(δ1, 1 − δ2), max(δ1, 1 − δ2)]
P (I) = [min(δ2, 1 − δ1), max(δ2, 1 − δ1)]

Also note thatδ1 + δ2 6 1. For the conditional probability
P (F1 ∩ F2/E), the largest possible interval is used so that
every possible value is taken into account.



P (F1 ∩ F2/E) = [min(f1, f2), max(1 − w1, 1 − w2)]
P (F1 ∩ F2/I) = P (F1)P (F2)

In this case, the total probability theorem is used to calculate
P (Fs):

P (Fs) = P (F1 ∩ F2)
P (Fs) = P (F1 ∩ F2/E)P (E) + P (F1 ∩ F2/I)P (I)

Finally, knowing that Rs = 1 − P (Fs), the system’s
reliability is given in Eq. 17 and shown in Figure 2 as a
function of δ1.

RS = 1 − max(1 − w1, 1 − w2)max(δ1, 1 − δ2)−
−(1 − w1)(1 − w2)max(δ2, 1 − δ1)

RS = 1 − min(f1, f2)min(δ1, 1 − δ2)−
−f1f2min(δ2, 1 − δ1)

(17)

3) Discussion:For the case analyzed, it can be noted that
the TBM model gives a more precise interval for the system’s
reliability. On the other hand, the interval-probability model
becomes much more imprecise asδ1 grows. It can also be
seen that the results obtained with the TBM are included in
the results of the interval-probability model.

VI. CONCLUSIONS AND FUTURE WORK

The TBM theory has recently attracted the attention of
reliability engineering community. This paper proposes a TBM
based model and compares it with an interval-probability based
model. It takes into account failure dependencies in reliability
evaluations under both epistemic and aleatory uncertainties.
The proposed TBM reliability model was applied to evaluate
the reliability of a parallel system with two components and
the dependencies were implicitly and explicitly modeled. As
we can see from the results, with the TBM approach, the
epistemic uncertainties and the dependencies present in our
systems can be modeled. As it combines all of the BPAs to
obtain the results, it takes into account all of the information
known for the system. Future work would be focused on other
ways of coding the dependencies hypothesis and different
methods for incorporating them in the evaluation or reliability
of complex systems.
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