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Abstract—Dealing with uncertainty introduces an increased and it separates the credal and the decision levels [7]. ¢Jenc
level of complexity to reliability analysis problems. The wcer- in this work the TBM is proposed to handle both aleatory
tainties associated to reliability studies usually arise rbm the and epistemic uncertainties in order to evaluate the system

difficulty to account for incomplete or imprecise reliability data S . )
and complex failure dependencies. This paper introduces reliability. This work only takes into account the credaldg

Transferable Belief Model (TBM) to the reliability analysis so but the decision level can also be studied in our case.

that epistemic uncertainties can be taken into account as e Furthermore, in many reliability studies, the failure ofsy

as aleatory uncertainties. Two approaches are used to repsent tem’s components are assumed to be independent. However,

failure dependencies of components: an implicit and an exit i, yaqjity. different types of dependencies can be involved

approach. The TBM model is then compared to an interval- . S ) .
making the results of reliability evaluations wrong. Fsck

probability model by highlighting the different character istics of . i S .
the results obtained. and Trivedi [8] have proposed a classification of failure

Keywords: Transferable Belief Model (TBM), Dempster- dependencies (Common Cause Failures (CCFs), standby de-
Shafer (D-S) theory, reliability analysis, epistemic unce Ppendencies, etc.). There are two principal methods to model

tainty, failures dependencies, interval-probability. failure dependencies in system’s reliability analysispiliit
and explicit methods [9]. The implicit method corresponals t
. INTRODUCTION the case of the use of joint probabilities, correlationsigalor

Uncertainties are one of the most challenging problems @éonditional probabilities [10]. In explicit methods, thauses
reliability studies of complex systems [1]-[3]. They areggnt of dependencies are explicitly included into the systewggd
in any reliability evaluation due to randomness in the f&lu model [10] as a block in Reliability Block Diagrams (RBDs)
phenomena and difficulty to obtain failure data of composendr a basic event in Fault Trees (FTs). Here, it is proposed to
with scarce failures. Uncertainties have been classifiéd iruse both approaches in the TBM model reliability analysis.
two subtypes: aleatory uncertainty and epistemic ungegtai  Section Il treats the related work using the Dempster-Shafe
Aleatory uncertainty is also called irreducible and inmeretheory in reliability analysis. Section Il presents thesica
uncertainty. It is the inherent variation associated wtitle t notions of the TBM model. Next, the proposed TBM approach
physical system or the environment under considerationf4] is presented in section IV. In section V, failure dependesci
represents, for example, the inherent variability of fegBiand are treated using an implicit and explicit approach. The TBM
repair times of equipment. Epistemic uncertainty is subjec and interval-probability models are applied and a comparis
and reducible because it arises from lack of knowledge between both approaches is given. Finally, the paper figishe
data. It represents uncertainty of the outcome due to laekth some conclusions and perspectives.
of knowledge or information in any phase or activity of
the modeling process [4]. That's why it is important that
aleatory and epistemic uncertainties are properly aceount The first work introducing D-S theory in reliability analgsi
for in reliability studies. was presented by Dempster and Kong [11]. They proposed

Classical probability theory is adapted only for aleatorthe use of a FT as a particular case of the tree of cliques to
uncertainty [5]. Epistemic uncertainty can be handled lpropagate beliefs through the tree. The prior beliefs ofcbas
possibility theory, Dempster-Shafer (D-S) theory, intdranal- events of the tree represent prior failure beliefs of congmts
ysis, and imprecise probabilities [6]. The possibility dhe The second work was presented by Guth in 1991 [12] and
is usually employed to quantify only epistemic uncertaintgoncerned FT analysis. Guth represented the belief thatia ba
The D-S theory can be considered a generalization of cilssievent A happens with failure probability by three valued
probability theory and also as a generalization of podgibil logic (True, False and unknown) and proposed truth tables
theory [1]. The D-S theory has several interpretations sashwith the three valued logic in order to propagate the beliefs
the Transferable Belief Model (TBM). The TBM is completelyin FT. Chin et al. [13] proposed to use evidence theory to
dissociated from any model based on probability functiomapture the non-specificity and conflict features in judgimen

Il. RELATED WORK



experts. The beliefs are then propagated in a FT in order= {z1,22} be a frame of discernment. Then, and x»

to diagnose the fault distribution of web service procesare elementary propositions and mutually exclusive to each
Walley [6] and Kozin et al. [14] turned out that in someother. The power se2® is the set of all the subsets 6i
applications the use of Dempster's combination rule led tocluding itself, i.e.:2* = {{0}, {z1}, {z2}, Q}.

inc_orrect _results. Almond [15] (jevelo_ped graphical modeE' Basic Probability Assignment (BPA)

using belief functions and applied this graphical model in . 7 ]

FT analysis. Rakowsky et al. [16] have modeled uncertaintie A Basic Probability Assignment (BPA) of?, also called
in Reliability-Centered Maintenance (RCM). They usedfeli Basic Belief Assignment (BBA), is a functiomp® : 2 —
and plausibility measures to express the uncertaintiescof &> 1], such that:

perts in reasoning. They also use weighted recommendations Z m?(A) =1 (1)
during the RCM process. This approach was applied to a fire Ag2?

detection and extinguishing system. Pashazadeh et al. [¥fke numberm®(A) represents the belief value assigned to
proposed reliability assessment under epistemic unoéytaithe subsetd of €. The subsetst C Q) such thatm®(A4) > 0
using D-S and vague set theories. They eliminated the ga® called focal sets of®. A BPA having a singletor{z}
between the representation of combined evidence and the Wa&Yc ) as a unique focal set represents full knowledge.
of representing the components reliability in the Vague SRtBpA having only singletons as focal sets is equivalent to
theory. Simon et al. [18] have proposed to combine Bayesigfpbabilities. A BPA having? as a unique focal set represents

under imprecise reliability data. They used evidentialoeks

and junction tree inference algorithms. C. Belief and plausibility functions
Furthermore, there is very little work treating the use of The beliefBel and plausibilityP! functions for a subse#l
TBM theory to model failures dependencies in reliabilityare defined as following:
studies. Almond [15] proposed to treat the problem of de- B Q
pendence between basic events by using pivotal variables Bel(4) = Z m”(B)

and information dependence breaking theorem. Walley [6] BcA o (2)
proposed an example which indicated that D-S theory is not Pi(4) = Z m*(B) VACQ VBCQ
BNA#0Q

suited to treat dependency in the case of total ignorance of
dependencies. Hence, an original TBM reliability analysis  Bel(A) measures the total assignment of belief fo
proposed in order to take into account failures dependsncand all its subsets. The plausibility function measures the
in reliability evaluations. extent to which we fail to disbelieve the hypothesis 4f
[Bel(A), PI(A)] can be viewed as the confidence interval

IIl. BASIC NOTIONS OFTRANSFERABLEBELIEF MODEL which describes the uncertainty of A.

(TBM) o
The TBM was introduced by Smets and Kennes [19] as% Combination rules

subjectivist interpretation of D-S theory. The D-S thearigo ~ Consider two distinct pieces of evideneg® andmj’ from
called evidence theory, was first described by Dempsterein thvo different sources and j. In TBM, the principal combi-
1960's [20] with the study of upper and lower probabilitiesla Nation rules are the conjunctive and disjunctive combamei
extended by Shafer in 1976 [21]. The TBM represents a unig({#€s [21]. The Dempster rule of combination is defined as
framework for representing and manipulating aleatory arflf€ conjunctive combination of two normal BPAs followed by
epistemic uncertainties. It is based on two levels: the alred'0rmalization. This rule is also called the orthogonal sum o
level, where available pieces of information are repre=gntévidence. It is defined as follows:
by belief functions; and the pignistic or decision level,es

masses are transformed into pignistic probabilities. Iswa m?(A)m?(B)
originally applied in information fusion [22], [23], patte m%j(ﬂ) _ AnB=H\vA,BCQ (3)
recognition [24], [25] and diagnostic [26]. In a finite diete L—k

space, the TBM can be interpreted as a generalization ofpjith: k£ = Z m?(A)m?(B)

probability theory where probabilities can be assigned to ANB=0vA.BCQ

any subsets instead of singletons only. In this sectionicbas The number defined byt is called the conflict factor
notions, extended operations, and terminology of TBM aleetween the two pieces of evidencand ;.
explained. For a more detailed exposition see [19]-[21]. As mentioned by some reliability researchers [6], [14], pem
ster combination rule sometimes generates wrong conclsisio
in the case of serious conflict between evidences. In this, cas
The frame of discernmert® is the definition domain of it is recommended to investigate the given information or to
the variable of interest. It consists of all mutually exclusive collect more information. Several combination rules hagerb
elementary propositions. It can be viewed as the samplefined and they often differ by the way the evidence mass of
space in probability theory. As an example, let's considan empty intersection is allocated [27], [28].

A. Frame of discernment



E. Operations on Joint Spaces B. BPAs, belief and plausibility functions of system’s comp
Consider a BPAm'*>*» defined on the Cartesian producpents

Q.9Q,. The marginal BPARS= 1% on Q) is defined by: BPA structure is more natural and intuitive way to express
0010 00 one’s degree of belief in a hypothesis where only partial
m PP (A) = > m (B) evidence is available. In reliability studies, based oneet®
BCQ,Qy/Proj(BlQ.)=A (4) opinion and experimental data, BPAs of components are
computed directly and this computation needs some reiliabil
VA CQ, expert’s efforts. The BPAs assigned to system’s compormsnts

WhereProj(B | Q) = {z € Q,/3y € Q, (z,y) € B}. The expert's opinion and experimental data can be then exptesse
inverse operation is a particular instance of vacuous siden PY:

Consider a BPAn*+ defined orf2,. Its vacuous extension on m& ({F;}) =
2,Q, is defined by: m ({W;}) = w; =12 (8)
Q; o — 11—y —
mQxTQzQy (B) _ { QO (A) if B .: A x Qy - m ({Wza ‘FZ}) =1 W; - fz -
0 otherwise. ) Using Eg. (2), belief and plausibility functions of compo-
nents 1 and 2 are computed. For example, If component 1 is
VACQ, considered, thenBel({F}}) = m® ({F,}) and PI({F}}) =

Q Q
Let m$=% denote a BPA onQ,{, (with underlying m () + B (B, WA ).

variables(x,y)), and mff’“Qy the BPA on(,Q, with single C. Evaluation of BPAs, beliefs and plausibility functiorfs o

focal set(,{y}. The conditional BPA ofx giveny = y is the whole systend

defined as: First, the vacuous extension is used to extend: and

m[y] = (m @m0 (6) ™ to the product space;Q>Qs. The resulting BPAs are
combined using the Dempster combination rule. Then, the
The conditioning operation for belief functions has the santesulting BPAs are combined with$:¢%25}s which represents

Parallel

meaning as in Probability Theory. However, it also admits afe relation between the systeshand its components 1 and
inverse operation called the ballooning extension./k&t [B] 2. |t is given by:

denote the conditional BPAs dn,, given B. The ballooning

extension ofm$}[B] on 2,0, is the least committed BPA, 019205 1y
whose conditioning o3 yields m = [y]. It is obtained as: Parattet T

Wa, Wg), (F1, Fa, Fg), (F1, W2, Wg), (W1, Fa, Wg)}) =1 (9)

To obtain BPAs of systerd, the final result is marginalized

m®= [B]1%= (C) = 1¢ - m®[B](A) on Qg. Belief and plausibility functions are then computed
from m?s. Formally, the final BPA is defined as follows :
1 fC=(BxA)U(B®xQ,
fo= { 0 othermise ! DD = (s g patennas ® Meontig )

The system'’s reliabilityRs is then given by:

VO C 0,9,
Rs € [Bel({Ws}), PL({Ws})]

In order to optimize the TBM operations and saving time
and space, some computation algorithms were given in [15],The results of BPAs related to parallel configuration are
[29]. given in Table I. These results can be generalized to a pérall
system ofn components with BPAsn({F;}), m({W;}) and
IV. THE PROPOSEDTBM RELIABILITY ANALYSIS m({Fi, Wi}) = 1 = m({F;}) — m({W;}) with (1 <@ < n).
In an analogue way, the results for a series system are also

In this paper, both system and components are aIIowedSthown.

take only two possible states: either working’) or failed
(F) (Binary State assumption). Using BPAs of functionin@®. Numerical application: two cases
and failure of system components, the goal is to obtain the, ~55e |- Aleatory uncertainty

reliability of the whole system in the case of a parallel eyst Consider a simple parallel system with componehts

and 2. The BPAs of components are given in Table II.

Using belief and plausibility measures, the reliability of
Due to the Binary State assumption, the frame of discern- the system isR, = 0.98.

ment(); of a component is given by:Q); = {F;, W;}. F; and When there is no epistemic uncertainty

W, represent respectively the failure and the working states (m‘ ({F;, W;}) = 0), the system’s reliability results

of the component. The frame of discernment of components  are identical to the results obtained in the classical

1, 2 andS are then:Qy = {F1, W1}, Qy = {F,, Wa} and probability theory.

O ={Fs,Ws}. « Case ll: Aleatory and epistemic uncertainty

A. Frame of discernment



Table I: BPAs and reliability of parallel and series systems Implicit Approach

with n components N SRR RN R T Ty
BPAs Parallel system 0.96} e N
m“S{Fs} H?:l m{F;} J, SRR SERE DU U TR I B R ey $
m?s {Ws} 1-TT, (1 =m{W;}) 0.92}
m?{Fs, Ws} | =Ty m{Fi} + ITi2, (1 = m{Wi}) Rl
Bel{Ws} S Ay '
PUWs} 1 -1, m{Fi} |
BPAs Series system O N ik
mSs {Fg} 1-[[L, 1 —m{F,}) 0-84F [g " TBM Model
sz {WS} H?:l m{Wnl} osal | ¢ :’BM Without cx.)rnbining m{X}
sz {FSa WS} H?:1(1 _ m{Fnl }) _ HZL:I m{Wnl} - nte.rval probablllt.y J .
Bel{Ws? T, (W, } 0 0.2 0.4 ; 0.6 0.8 1
PHWs} [, (1 —m{F.})

Figure 1. Implicit approach: Results of TBM and Interval-
probability models.
Table 1I: BPAs of components and 2

Case | Case Il
Components  fi | w; fi | ws
1 011091 031065 system’s reliabilityRs under these assumptions in both TBM
2 021081 0.05 | 085 and interval-probability approaches.

1) TBM model:In this approach, the BPAs of components
1 and 2 are given as stated in Eq. 8. The proposed TBM
Here, let's consider epistemic uncertaintypproach is to code the dependence between components 1
(m*({F;,W;}) > 0) for componentsl and 2 as and 2 by the conditional BPAs:
shown in Table Il. In this case we obtain an interval m [B]({F1}) =
value for the reliabilityR, = [0.9475,0.985]. 2L 1)) N 10
Vs =| ] m [B](Wr, Fi}) = 1 -7 (10)
V. MODELING FAILURE DEPENDENCIES INTBM AND The ballooning extension is used to decondition the BPAs
INTERVAL PROBABILITY APPROACHES in Eq.10 toQ,Q,. Then, the BPAs obtained are extended to
A. Introduction 210Q:0Q¢ and combined with the BPAs of the simple parallel

Nowadays, complex systems use redundant componentS@ffiguration and th,e BPAs of componentand2. The final
order to increase the overall systems reliability. HoweveeSult Of the system's reliability after marginalization Qs is
redundant systems are usually subject to multiple failufven in Eq. 11 and can be observed in Figure 1 as a function
dependencies [30]. CCFs were the most studied failure dep8h 71- The factory; can be viewed as a correlation factor
dencies models. Reliability researchers have usuallyigstpl Which assigns an additional BPA to the failure of component
integrated CCFs in the system’s reliability model (FT [o0BR | Knowing failure of componer.

[31], stochastic Petri nets [8], etc.). Other failure degearcies

were integrated implicitly by increasing the failure ratefs §S = wﬁmfiﬂlfcj;ﬂlélh (11)
components [10]. The use of BPAs is proposed to represent Rg =1 — {if2tm ff_’gfwl’flh)

failure dependencies and extended operations defined in T . L o
reliability analysis are used to obtain the whole systeml:\slsl,yhere the conflict factok, is given by:ki = 71 fow:.
reliability. Implicit and explicit approaches will be pested.  2) Interval-probability model: The idea of this approach
The TBM model is compared with an interval-probabilitys to use the concepts of interval arithmetic to calculate
model. The values of reliability of componentsand 2 that the reliability. In this case, each probability is reprdsen
would be used from now on, are the same used for casebyf an upper and a lower probability noted &X) and
shown in Table II. P(X) respectively [6]. Then, the probability can be noted as
P(X) = [P(X), P(X)]. It can be noted that thBel(X) and
PI(X) corresponding to a BPA can be represented as coherent

Let's consider a simple systesicomposed of two compo- imprecise probabilitie$P(X), P(X)] = [Bel(X), PI(X)].
nentsl and 2 in parallel. Reliability experts have mentionedNevertheless, the opposite is not true, as there are some
that inv; of system’s functioning tests, the failure of compoeoherent imprecise probabilities that cannot be defineld ait
nent 2 had led to the failure of component 1. The faetois corresponding BPA. The corresponding interval-probtedi
called the dependency factor. The objective is to evaluate to the BPAs of components and2 given in Eq. 12 are:

B. The implicit approach



Explicit Apporach

P(F) = [fi,1 - w)] | S—
PWi) = [wi, 1 = fi] for i=1,2 T e
The conditional BPAs in Eq. 10 corresponds in the interval- e
probability approach to: oo
P(Fy/F2) = [m,1] R85
The application of Bayes'rule gives the system’s failuretpr ot
ablllty P(Fs) = P(Fl n FQ) = P(Fl/FQ)P(FQ) Then, the
system’s reliability is given in Eg. 12 and shown in Figure 1 0.75f
as a function ofy;. e TBMModel
0.7k Interval—-Probability]
Rg=wy, Rs=1-"f (12) 065
0 0.2 0.4 0.6 0.8 1
3) Discussion: From the Eq. 12, we can see that the Y4

interval-probability approach is not sensible to the Wi
of f1 or wi. In this case, the reliability is based only orfigure 2: Explicit approach: Results of TBM and Interval-
the conditional probabilityP(F,/F,) = v and the values Probability models.

of fo and we. The TBM approach does take into account

all the information about the system and its components as

it combines all the BPAs stated, but it introduces a conflict

factor £ that is caused by the introduction of the conditional The factoré, assigns an add|t!onal BPA to_the fact that
BPA (cf. Eq. 10). components and?2 are either working or have failed when the

irtual componeni/ is in the stater. The factord, assigns a

.. . - . |
To make a similar approach to interval-probability uslnﬁI
the TBM, a third approach was analyzed in which the BP. ass vglue fo the fact that the componenind2 may have
all possible states.

assigned to the componehtwas ignored. In this case, there .
is no conflict factor because information about componentThe BPAs of Eq.13 and E9'14 are deconditioned to
1 is only taken into account one time with the conditiongf1{}2¢2a- Then, the BPAs obtained and t_he BPAs of Eq.
BPA. The final BPA is obtained by only combining thel® @€ extended td2(,Q2s,,. The obtained BPAs are
BPAs assigned for the system configuration, comporﬂentt_hen combined with the BI?AS qf th_e parallel stru_cture. The
and dependency factor. Finally, we obtain the same values'ge! results_of th_e system's reliability after r_“arg'”a“
reliability as in the interval-probability model (Eq. 12). on Q,S are given in Eq. 16 and'can be seen n Figure 2 as a
It can be concluded that the advantage of the TBM mod@n_ctmn ofd;. Note thatd, _doesntappear.m the final solution,
is that it takes into account the reliability data of comptnneWh'Ch means that the epistemic uncertainty of the stateef th

1 which is not considered in the interval-probability aprioa Machine) doesn't have any influence when the TBM model
due to the use of Baye's rule. is used. In this case, the BPA of Eg. 13 also introduces a

conflict factorks = 61 (f1w2 4+ fowy)) due to the fact that for
C. The explicit approach the stateF, the eventg Fy, W,) and (W1, F») can’t happen.
In this approach, a virtual componehf with two states?  Thanks to this, when the BPAs are combined, there is a conflict
and is considered. This component serves to model depdietween the BPA's components and the conditional BPA.
dencies explicitly. The stat& of M indicates the presence

of CCFs. In this case, the componentsand 2 are both in R — witws—wiws—81(fiwatfows)
. . . Lvg — —
fal_Iur(_a state(Fy, F») or in working state(V_Vh Ws). The state . _1_ b f2+61(1f1]-€ﬁ-2f2—f1w2—f2w1—2f1f2) (16)
I indicates the absence of CCFs. In this case, comporients 5= T—k>
and2 may have all possible states. 2) Interval-probability model:In this case, the values of

1) TBM model:BPAs of components and2 are given as p(r;) and P(W;) are the same used for the implicit approach.
stated in Eqg. 8. Furt[hermore, the two previous assumpticns a g 5, andd, are variable and it is not known which one is
coded by the conditional BPAs: greater than the other for a given combination of values, the

m 2 (E|({(Fy, Fy), (Wi, W)}) = 1 (13) interval vaIues_oTP(E) and P(I) are expressed using the min
and max functions as follows:

mM B I({(Fy, Fy), (Fi, Wa), (Wi, Wa), (Wi, F2)}) = 1

(14) P(E) = [min(d1,1 — d2), max(d1,1 — §2)]
The frame of discernment o/ is then given by:Q,, = P(I) = [min(d2,1 — 1), max(d2,1 — 61)]
{E, I} and the BPAs related to/ are given in Eq. 15. Also note thatd; + d2 < 1. For the conditional probability
m ({E}) = 61, m® ({I}) =y P(Fy N F»/E), the largest possible interval is used so that

(15)

m ({E1}) =1— 01 — &2 every possible value is taken into account.



(6]
(7]
(8]

P(Fy N Fy/E) = min(f1, f2),maz(l — w1, 1 — ws))
P(Fl ﬂFQ/I)ZP(Fl)P(Fg)

In this case, the total probability theorem is used to cakeul
P(F):
9]
P(F,) = P(F) N Fy) o
P(F,) = P(F\ N Fy/E)P(E) + P(F, N F»/T)P(I) [10]
Finally, knowing thatR;, = 1 — P(Fy), the system’s (11
reliability is given in Eq. 17 and shown in Figure 2 as a
function of ¢;. [12]

Re=1—mazx(l —wy,1 —wa)max(dy,1 — dz)— [13]
—(1 —w1)(1 — we)maz(dz,1 — 61)

ES =1- min(fl, fg)min(él, 1— 62)—
—flfgmin(ég, 1-— 51)

3) Discussion:For the case analyzed, it can be noted théi]
the TBM model gives a more precise interval for the system[%e]
reliability. On the other hand, the interval-probabilityodel
becomes much more imprecise &s grows. It can also be
seen that the results obtained with the TBM are included i
the results of the interval-probability model.

(17)

(14]

VI. CONCLUSIONS AND FUTURE WORK [18]

The TBM theory has recently attracted the attention of
reliability engineering community. This paper propose8MT  [19]
based model and compares it with an interval-probabiligela
model. It takes into account failure dependencies in riiigb [20]
evaluations under both epistemic and aleatory uncersintij21]
The proposed TBM reliability model was applied to evaluate
the reliability of a parallel system with two components an?
the dependencies were implicitly and explicitly modeled. A
we can see from the results, with the TBM approach, the]
epistemic uncertainties and the dependencies presentrin ou
systems can be modeled. As it combines all of the BPAs [m]
obtain the results, it takes into account all of the inforiowat
known for the system. Future work would be focused on othgk
ways of coding the dependencies hypothesis and different
methods for incorporating them in the evaluation or religbi

of complex systems. 26]
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