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ABSTRACT

Dealing with uncertainty adds a further level of complexityproblems of reliability analysis. The uncertain-
ties which impact reliability studies usually involve imoplete or imprecise reliability data and complex failure
dependencies. This paper proposes an original methoddlaggd on the Transferable Belief Model (TBM) to
include failure dependencies between components in thieai@n of the reliability of the whole system, given
both epistemic and aleatory uncertainties. First, basedxpert opinion and experimental data, Basic Probability
Assignments (BPAs) are assigned to reliability data coreptsy TBM operations are then used to obtain the
reliability of the whole system, for series, parallel, ssrparallel, parallel-series, and bridge configuratitmslicit,
explicit, and discounting approaches are presented famgadccount of failure dependencies. Finally, the proposed

model is applied to take into account Common Cause Faill@€3-§) in a case study.

KEY WORDS
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ments (BPAS), epistemic uncertainty, failures depengencommon Causes Failures (CCFs).

INTRODUCTION

Uncertainties are one of the most challenging problems linhidity studies of complex systems [1]-[3]. They
are present in any reliability evaluation, owing to randessin failure phenomena and the difficulty of obtaining
failure data for components that fail only infrequently.déntainties have been classified into two subtypes: algator
uncertainty and epistemic uncertainty. Aleatory uncatyais also called irreducible, or inherent uncertaintyisit

the inherent variation associated with the physical systerthe environment under consideration [4]. Aleatory
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uncertainty includes, for example, the inherent varigbibf failures and repair times of equipment. Epistemic
uncertainty is subjective and reducible because it arrees & lack of knowledge or data. It represents the unceytaint
of the outcome due to lack of knowledge or information in ahpge or activity of the modeling process [4]. This
uncertainty is associated with incompleteness in the atgllgtate of knowledge and has an impact on the evaluation
of system reliability. It is therefore important to take pes account of aleatory and epistemic uncertainties in any
analysis of reliability.

In safety and reliability studies, the system’s reliabibitt any time is evaluated using the probabilities of compdme
failing at the same time. These failure probabilities aréneged using laboratory and generic reliability data
provided by reliability databases [5]. However, using ditan the laboratory and from generic data sources
involves epistemic uncertainty. As mentioned by Kletz [Bgcause of operating conditions and environments,
when using generic reliability data the reliability paraers for the components used can deviate by a factor of 3
or 4, and a factor of 10 is not unusual. Furthermore, accgrthnDrouin et al. [7], uncertainties in probabilistic
risk assessment are mainly epistemic.

In the presence of epistemic uncertainty, classical prtibakheories are based on the representation of failure
probabilities of components at time t by Probability Dep$tunctions (PDFs). The PDF,(x) at timet indicates

the probability that the value of the failure probabilityr fa component at time¢ falls betweenz and x + dz.
Classical probability theories based on Monte Carlo Sitimia (MCS) can then be used to evaluate the reliability
of the whole system. The D-S theory, which is a generalinatibclassical probability theory, can also be used to
evaluate the reliability of the whole system, using Strégshnique [8], which allows belief mass functions to be
derived from individual PDFs.

However, in some cases, there is not sufficient informatlmuacomponents’ reliability data to derive PDFs. This is
particularly frequent when systems have only rare compioiadares (nuclear systems, chemical processes, railway
systems, etc.) or have not been operating long enough tadgrealid statistical data. As an alternative to generic
reliability data, expert knowledge/judgment is used [9].this work, the reliability parameters of components are
based on expert judgment.

When using a classical probabilistic approach based on MiftfSexpert judgment, reliability researchers generally
assume a log-normal or log-triangular distribution for ®BF for conventional reasons. This arbitrary choice of
PDF can make the resulting reliability evaluation impreca@ even erroneous. The D-S theory does not need
to assume a PDF for component failure. It allows a flexiblerespntation of uncertainty for data sources of
different types, and expert judgment in particular. Momownultiple expert knowledge can provide more reliable
information for an observation (e.g., the failure probigpibf a component) than a single expert can. The expert

judgment can often suffer from incompleteness and conflle® theory addresses these issues effectively and is
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able to combine multi-expert knowledge by taking into astdgnorance and conflicts through a belief structure.
The D-S representation is proposed in this paper as an tatragay of dealing with the issue at hand (expert
judgment), without the use of unjustified assumptions coring the PDF distribution. The D-S theory has several
interpretations, such as the Transferable Belief ModelMJBn this work the TBM is proposed for using expert
judgment in order to evaluate the reliability of the wholestgyn.

In many reliability studies failures of system components assumed to be independent. However, in reality,
different types of dependencies can be involved, rendetiegresults of reliability evaluations false. Fricks and
Trivedi [10] have proposed a classification of failure degmnries (Common Cause Failures (CCFs), standby
dependencies, etc.). There are two principal methods toehfadure dependencies in system reliability analysis:
implicit and explicit methods [11]. The implicit method ishere joint probabilities, correlation values or condiabn
probabilities [12] are used. In explicit methods, the causiedependencies are explicitly included in the system’s
logic model [12] as a block in Reliability Block Diagrams (RB) or a basic event in Fault Trees (FTs). Here we
propose using the two approaches, together with an additdiscounting approach, for reliability analysis using

the TBM model.

I. RELATED WORK

The first work introducing D-S theory in reliability analgsivas presented by Dempster and Kong [13]. They
proposed the use of an FT as a particular case of the treeqoieslito propagate beliefs through the tree. The prior
beliefs of basic events of the tree represent prior failugbels of components. The second work was presented
by Guth in 1991 [14] and concerned FT analysis. Guth reptedete belief that a basic evedt happens with
failure probabilityp by three-valued logic (True, False and Unknown) and progppdagh tables with the three-
valued logic in order to propagate the beliefs in FT. Chinlefl®] proposed using evidence theory to capture the
non-specificity and conflict features in judgments. Thediglare then propagated in an FT in order to diagnose
the fault distribution of web service process. Walley [16H&Kozine et al. [17] showed that in some applications
the use of Dempster's combination rule led to incorrect lteséimond [18] developed graphical models using
belief functions and applied this graphical model in FT gsisl. Rakowsky et al. [19] have modeled uncertainties in
Reliability-Centered Maintenance (RCM). They use belied alausibility measures to express the uncertainties of
experts in reasoning. They also use weighted recommemdadizring the RCM process. This approach was applied
to a fire detection and extinguishing system. Pashazaddh[@Dhproposed reliability assessment under epistemic
uncertainty using D-S and vague set theories. They elimth#ite gap between the representation of combined
evidence and the representation of component reliabititthe Vague Set theory. Simon et al. [21] have proposed
combining Bayesian networks and D-S theory to study theléiiy of systems given imprecise reliability data.

They use evidential networks and junction tree inferengerd¢hms.
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There is very little work covering the use of TBM theory to mnebdailure dependencies in reliability studies.
Almond [18] proposed addressing the problem of dependeatwden basic events by using pivotal variables and
information dependence breaking theorem. Walley [16] psal an example which indicated that D-S theory is
not well suited to handle dependency in the case of totalragmae of dependencies. An original TBM reliability

analysis is therefore proposed in order to take into accfailoire dependencies in reliability evaluations.

Il. BASIC NOTIONS OF THETRANSFERABLE BELIEF MODEL (TBM)

The TBM was introduced by Smets and Kennes [22] as a suhbigclivterpretation of D-S theory. The D-S
theory, also called evidence theory, was first described éyister in the 1960's [23] with the study of upper and
lower probabilities and extended by Shafer in 1976 [24]. TBM is a framework well suited for representing and
manipulating aleatory and epistemic uncertainties. Itaisdal on two levels: the credal level, where available pieces
of information are represented by belief functions, and glgistic or decision level, where belief functions are
transformed into probability measures. It was originajpked in information fusion [25], [26], pattern recogoiti
[27], [28] and diagnosis [29]. In a finite discrete space, TB&M can be interpreted as a generalization of probability
theory where probabilities can be assigned to any subs&tsaith of singletons only. In this section, basic notions,

extended operations, and the terminology of TBM are explhif-or a more detailed presentation see [22]-[24].

A. Frame of discernment

The frame of discernmenX is the definition domain of the variable of interestlt consists of all mutually
exclusive elementary propositions. It can be viewed asadngpte space in probability theory. As an example, let us
consider a frame of discernmeklit= {1, z2}. Then,z; andx, are elementary propositions and mutually exclusive

of each other. The power sgt is the set of all the subsets o&f including itself, i.e.:2% = {0, {z1}, {z2}, X}.

B. Basic Probability Assignment (BPA)

Probability theory is based on the definition of a probab#ipace X, M, P), whereX is the frame of discern-
ment, P the probability function defined on a collectidd of subsets (events); of X that satisfies the properties
of a o-algebra,i.e. M is closed under complementation and countable unions,taiotldws easily that it is also
closed under countable intersections. The probabilityction P, a function mapping the collection of events M
into [0, 1], is required to resped?(X) = 1 and P(()) = 0 and to be sub-additive.e. P(AUB) < P(A) + P(B),
and this inequality holds for any countable collection dfjaiint events.

These properties are essential for understanding theretiiées with D-S theory. A Basic Probability Assignment

(BPA) on X, also called a Basic Belief Assignment (BBA), is a function} : 2X — [0, 1], which maps probability
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masses onto subsets of events, and not only onto eventstigitch
> m¥(4)=1. 1)
Ae2x

The impact of a piece of evidence on an agent is translatedh afl@acation of parts of an initial unitary amount of
belief among the subsets of frame of discernment. The numbetA) represents the part of the agent’s belief that
supports A [22]. A clear distinction has to be made betweababilities and basic belief assignment: probability
distribution functions are defined o¥i and BPAs on the power set‘. The number of possible hypotheses is then
2¢card(X) in D-S theory, while in probability theory it is card(X). Meover, D-S theory ignores the sub-additivity
hypothesis required for probability functions in probapitheory. The subsetsl ¢ X such thatm™(4) > 0
are called focal sets af2X. A BPA having a singletor{z} (z € X) as a unique focal set represents complete
knowledge. A BPA having only singletons as focal sets is\ejant to probabilities. A BPA having as a unique
focal set represents complete ignorance and is called uacuo
D-S includes an additional dimension of uncertainty whemgared to a probabilistic model. BPAs can be assigned
to subsets of events without distributing these BPAs furtimeevents. For example, in the case of lack of knowledge,
the expert is not obliged to assume a specific BPA for the oenae of an event. This is why we say that the
BPA is an incompletely defined probability space. Moreoie§ theory is a generalization of the Bayesian theory
of subjective probability. Whereas the Bayesian theoryireg probabilities for each question of interest, BPAs
allow us to base degrees of belief for one question on pribebifor a related question. This means that in
reliability engineering, with D-S theory, we can take intmaunt the reliability of experts, who give the BPAs for
components failure, in the evaluation of the reliabilitytb& whole system. In addition, BPA has further properties,
which distinguishes it from being a probability functioefer Klir and Folger [30]:

« It is not required thain(X) = 1.

« It is not required thain(A) < m(B) when A C B.

« No relationship betweem(A4) andm(A).

« Also m(A) +m(A) does not always have to be 1.

Belief and plausibility functions:
The beliefBel and plausibilityPI functions for a subsefl are defined as follows:
Bel(A)=> m*(B) and Pi(4)= Y m*B) forany ACX 2)
BCA BNA#)

Bel(A) measures the total assignment of beliefA@nd all its subsets. The plausibility function measures the

extent to which we fail to disbelieve the hypothesishf{Bel(A), PI(A)] can be viewed as the confidence interval
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which describes the uncertainty of A. The functiaisl and PI, although they too are functions mapping events
A onto [0, 1], and mappind) onto 0 and) into 1, do not fulfill in the general case the sub-additivitpperties

given for probability.

C. Combination rules

Consider two distinct pieces of evidenge® andeX from two different sourcesandj. In TBM, the principal
combination rules are the conjunctive and disjunctive doation rules [24]. The conjunctive combination is given
by:

miq, (H) = > mX (A)ymX (B),VH C X (3)
ANB=HYA,BCX

The disjunctive combination is given by:
mi0),; (H) = > m¥(A)m;(B),VH C X 4)
AUB=H,YA,BCX
Dempster’s rule of combination is defined as the conjunctiombination of two normal BPAs followed by

normalization. This rule is also called the orthogonal sifmrevadence. It is defined as follows:

mX () = > ANB=H YA BCX m%X(A)mJX B)
eI 1= Anp=pva.pcx M (A)m¥(B)

The number defined by = 3~ 5_p 4 pcx i (A)m X (B) is called the conflict factor between the two pieces

(®)

of evidences and .

As some reliability researchers [16], [17] have pointed, @gmpster's rule sometimes generates incorrect con-
clusions in the case of serious conflict between evidencthigncase, it is recommended to investigate the given
information or to collect more information. Several condtion rules have been defined and they often differ in

the way the evidence mass of an empty intersection is aédd&l], [32].

D. Discounting

It sometimes occurs that a source of information induces & B#, but there is some doubt regarding the
reliability of this source. Such metaknowledge may be regnéed by discounting [24%~ by some factob < [0, 1],

which leads to a BPAn{ defined as:

mf(A) = 1-0)m*(A) VACX A#X (6)

mE(X) = 6+ (1-6H)mX(X) (7)
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A discount rated = 1 means that the source can certainly not be trusted: thetires®PA is then vacuous. In
contrast, a null discount rate leaves® unchanged: this corresponds to the situation where theesasiknown to

be fully reliable.

E. Coarsening and Refinement

The first step in TBM is to define the frame of discernment. Aeeddy Shafer [24], the degree of granularity
of the frame is always, to some extent, a matter of convensime any element representing a state can always
be split into several possibilities. Hence, it is fundana¢md examine how a belief function defined on a frame
may be expressed in a finer or, conversely, in a coarser fradie [B3].

Consider two finite set¥ andY. A mappingp : 2¥ — 2% is called a refining if it verifies:

e p(B) =Uyepr{y}) VBCY.

« The set{p(y),y € Y} C 2% is a partition of X.

Y is called a coarsening of, and X is called a refinement of".

A BPA mY onY can be transformed into a BPAX on a refinementX by transferring each massY (B) for

B CY tomX(A) for A = p(B). This operation is called a vacuous extensiomdf to X. It is defined as follows:

Y(B) if A=p(B) forsome BCY
¥ (4) = m” (B) p(B) c ®)
0 otherwise.

F. Operations on Joint Spaces
Consider a BPARX*Y defined on the Cartesian produktx Y. The marginal BPAR**Y+X on X is defined

by:

mXinX(A) — Z mXXY(B) VAC X 9)
BCXxY/Proj(BLX)=A

Where Proj(B | X) = {x € X/3y € Y, (x,y) € B}. The inverse operation is a particular instance of vacuous

extension. Consider a BPAX defined onX. Its vacuous extension o x Y is defined by:

mX(A) if B=AxY forsome ACX

0 otherwise.

Let m*Y" denote a BPA onX x Y (with underlying variablegx, y)), andm;\" the BPA onX x Y with single

focal setX x {y}. The conditional BPA ok giveny = y is defined as:

m*[y] = (m™*Y @my V) (11)
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The conditioning operation for belief functions has the sanmeaning as in Probability Theory. However, it also
admits an inverse operation called the ballooning extensietm~ [y] denote the conditional BPAs on X, given
The ballooning extension ofiX [y] on X x Y is the least committed BPA whose conditioning pgields m~X [y].

It is obtained as:

mX [y (B) = mX[y](A) if B=(Ax {y})U(X x (Y \{y})) for someA C X, 12)
0 otherwise.

In order to optimize the TBM operations and save time and espsa@me computation algorithms were given in

[18], [34].

[1l. THE PROPOSEDIBM RELIABILITY ANALYSIS

In this paper, both system and components have only two lfesstiates: either working/X() or failed (F') (i.e.
we make the so-calleBinary State assumptignUsing BPAs of functioning and failed system componertis, t
goal is to obtain the reliability of the whole system in thesea®f series, parallel, series-parallel, parallel-seares

bridge configurations.

A. Frame of discernment

In virtue of the Binary State assumption, the frame of disoentX; of a componentis given byX; = {F;, W,}.
F; and W; represent respectively the failure and the working stafethe component. The study is started by
considering a simple systes composed of two components 1 and 2. The frames of discernofiea@mponents

1, 2 andS are then:X; = {Fy, W1}, Xy = {F;,Ws} and Xg = {Fs, Ws}.

B. BPAs, belief and plausibility functions of system conepds

BPA structure is a more natural and intuitive way to exprese’sodegree of belief in a hypothesis where
only partial evidence is available. In reliability studidgmsed on expert opinion and experimental data, BPAs of
components are computed directly and this computationinesjsome efforts from a reliability expert. The BPAs

assigned to system components by expert opinion and expetaindata can be then expressed by:
mX ({F}) = fim™ (W) =wim™ (Wi, F}) =1 —wi — fi ; i=12 (13)

Using Eqg. (2), the belief and plausibility functions of cooments 1 and 2 are computed. For example, if
component 1 is considered, theBel({F;}) = m™ ({F1}) and PI({Fi}) = mX ({F1}) + m™ ({Fy, W1}).
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C. Assignment of BPAs for component failure

The BPAs for the different component reliability paramstare acquired from different sources. In safety and
reliability engineering, data are usually taken from géndata or based on expert judgment [35]. In the present
study, BPAs are directly obtained from experts because tisemot enough reliability data from reliability databases
covering the components used in the system under consaterdhe TBM postulates that the impact of a piece
of evidence on an expert is translated by an allocation ofspafr an initial unitary amount of belief among the
propositions (the subsets) of; = {F;, W;}. For a subset” of X;, m*:(Y) is a part of the expert’s belief that
supportsY'. For example, an expert 1 may report havin@ apart of belief supporting the proposition "component
A is working at timet”. The same expert reports havinda part of belief supporting the proposition "component
A is not working at timet”. Mathematically, this can be written as;* ({Wa4}) = 0.7, my*({Fa}) = 0.1
andm* ({Wa, Fa}) = 0.2, becausen; * ({Wa, Fa}) = 1 — m7*({Wa}) — m;"*({Fa}). Obviously, the BPA
mi4({Wa, Fa}) represents the epistemic uncertainty of the expert coimgethe functioning of component at
time ¢ due to lack of information.

The problem we now face is how to combine two or more BPAs frdffergnt experts regarding the same
component A. Several combination rules were defined in DeBrth In this work, we assume the independence of
different experts’ opinions. This is why we use Dempsteute rof combination. Now, let us assume that another
expert 2 reports as follows in relation to the same comporenty*({Wa}) = 0.8, my*({Fa}) = 0.15 and

ma 4 ({Wa, Fa}) = 0.05. These two independent assessments for the same companei¢ combined using the
D-S combination rule. The conflict factor is thén= 0.1850. The BPAs obtained arezf@Q({WA}) = 0.9264,
mi@a({Fa}) = 0.0613 andmi@),({Wa, Fa}) = 0.0123.

Dempster’s rule satisfies the properties of associatiettynmutativity and non-idempotence. However, two major
limitations of this rule are its lack of robustness in thegamce of highly conflicting informatiork(— 1), and the
requirement that the sources of information must be indégen The problem of conflict has been addressed by
several authors, who have proposed rules which are gepegtlassociative [33]. The other important limitation of
Dempster’s rule lies in the assumption that the BPAs musidiendt, i.e, the experts’ opinions must be independent.
The idea is that in combination operations no elementaryBdtuld be counted twice. This problem was addressed
by Ling et al. [36], who proposed a rule limited to the combioma of belief functions having at most two focal
sets including the frame of discernment. Elouedi et al. [@#&ended this method to belief functions that can be
decomposed as the conjunctive sum of simple belief funstibenoeux [38] proposed a commutative, associative
and idempotent cautious rule for belief functions which ao¢ separable. This cautious rule generalizes a method
proposed by Kennes [39] for combining separable BPAs indume non-distinct items of evidence, based on an

application of category theory to evidential reasoningeSenrules provide reliability analysis with an appropriate
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Parallel system Series system
BPAs
m*s {Fg} I[ fi 1=l (1= fi)
m*s{Ws} 1—[[o (1 — wi) [Limy wi
m*s {Fs,Ws} [T (1 —wi) =TI fi [[a (1= fi) =TTy wi
Bel{Ws} LTI, (1 = w) [T, w;
PUWs} 1Ly fi 1, (1 - fi)
Rs L-The (O —wi), 1Ty il LS wi [L2, (1= fi)]

TABLE |: BPAs and reliability of parallel and series systemigh n components

means of taking account of non-independent expert judgemémtthis work, we assume the absence of significant

conflicts between experts’ opinions, as well as their indelpace.

D. Evaluation of BPAs, beliefs and plausibility functiorfstioe whole systen§

First, vacuous extension is used to extent]” andm™> to the product spac&; x X, x Xg. The resulting BPAs

are combined using Dempster’s rule. Then, the resulting B&& combined withn)é;;ﬁ;XXS which represents

the system configuration. The B%ggzﬁ;XXS represents the relation between the sysfeind its components

1 and 2. It is given by:

Mg, XXX (L(Wy, Wa, W), (F1, F, Fs), (Fi, Wa, Fs), (W1, Fy, Fs)}) = 1 for a series configuration.

And mp: <82 XS ({(Wy, Wa, W), (F1, F, Fs), (F1, Wa, Ws), (Wi, Fa, Ws)}) = 1 for a parallel configuration. To
obtain BPAs of systeny, the final result is marginalized okis. Belief and plausibility functions are then computed

from m-~s. Formally, the final BPA is defined as follows:

mXS — (leTXlXXQXXs @ngTxlXXQXXS @m)c(;:ﬁ;XXs)\LXS (14)

The system’s reliabilityRs is then given byRs € [Bel({Ws}), Pl({Ws})]

1) Parallel configuration: The results of BPAs related to parallel configuration can d&eegalized tar (1 <1 <
n) components with BPAY;, w;, and1 — f; — w; (cf. Table I).

2) Series configurationThe results of BPAs related to series configuration can bergéined ton (1 <i <n)
components with BPAS;, w;, and1 — f; — w; (cf. Table I).

3) Series-parallel, parallel-series, and complex confagioms: BPAs of series-parallel and parallel-series systems
are evaluated by calculating the BPAs for the individualeseand parallel sections and then combining them. For
complex configurations, minimal paths are used to find thth ttable for the functioning systenx(= 1 if the
component is up ando if the component is down). The different combinations in thah table are then used to
define the unique focal element of the BR#,, s, indicating if the system is workindl’s or failed Fs in all 2"

combinations of component states.
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A
B

S1 S2
D
—1 A ’/ — A I B |—
v—‘\ C E >—‘\ C J—<
: B T
F
S3 S4

Fig. 1: RBDs of systems: S1, S2, S3 and S4

Probabilistic TBM

Components approach approach
P; m* ({F}) mX{Wi})  mN({F, Wi}
A 0.1 0.1 0.9 0
B 0.2 0.2 0.8 0
C 0.15 0.15 0.85 0
D 0.3 0.3 0.7 0
E 0.05 0.05 0.95 0
F 0.35 0.35 0.65 0

TABLE II: Case I: BPAs and failure probabilities of componed, B, C, D, F and F’

E. Numerical application: two cases

o Case I: Aleatory uncertainty
Consider four systems (cf. Figure 1): a simple series systittn2 componentsd and B, a simple parallel
system with 2 componentd and B, a parallel-series system with 6 componedtsB, C, D, E, and F,
and a bridge system with 5 components B, C, D, and E. Let us consider only aleatory uncertainty for
components A, B, C, D, E and F, as shown in Table Il (there is pistemic uncertainty about components,
i.e. m~: ({F;,W;}) = 0). In order to compare our approach with a classical prolsigilapproach, we use
BPAs in the TBM approach, and crisp failure probabilitiescomponents’; in the conventional probabilistic
approach (cf. Table Il). In this case, it is well known that= m~: ({F;}) for each component The system
reliabilities for S1, S2, S3 and S4 are then computed usiegTBM model and the probabilistic approach
based on minimal cut-sets [40]. As we expected, we obtainséme results for the reliabilities of all four
systems with the two approaches (cf. Table III).
Case II: Aleatory and epistemic uncertainty
We now consider epistemic uncertainty for components A, Barld F, as shown in Table V. The present

probabilistic method of determining the system’s religie involves representing the epistemic component



SPECIAL ISSUE: UNCERTAINTY IN ENGINEERING RISK AND RELIABLITY, JOURNAL OF RISK AND RELIABILITY 11

Systems TBM approach Probabilistic approach

Rg Rg
S1 0.980 0.980
S2 0.720 0.720
S3 0.829 0.829
S4 0.958 0.958

TABLE llI: Case I: Reliability of systemsS1, S2, S3 and S4

A mX1><X2><XS(A)
{(F1, Fy, Fs)} fife
{(F1,Wa,Ws)} frws

{(F1, Fy, Fg), (F1, Wy, Ws)} J1(1 —we — f2)
{(Wh, F5,Ws)} w1 fa
{(W1’W2’WS)} wiw2

{(W1, Wa, W), (Wq, Fy, Ws)} w1 (1 —wy — fo)
{(Fl,FQ,Fs),(Wl,FQ,Ws)} (1 — w1 — )
{(F1, Wo, W), (W1, W2, Ws)} wy(1 —wy — f1)
{(Wlﬁ Wa, WS)’ (FlﬁFQ’FS)7 (F17W27WS)7 (WlaF27WS)} (1 — Wy — fl)(l — Wy — f2)

TABLE IV: BPAs results of simple parallel system without ésplencies

failure probabilities by a specified PDF (log-normal, nokn@angular, etc.). The PDF;(x) at timet indicates
the probability that the value of the failure probabilityatomponent at timet falls between: andz +dz. In
order to compare our results with those obtained by a clalgsiobabilistic approach, the epistemic uncertainty
will be represented by a log-normal PDF which is defined by diarer and an error factor (EF) obtained

from the BPAs as follows:
m;
EF;

Bel({Fi}) =

In this probabilistic approach, the @FAULT TREE + softwarackage developed by ISOGRAPH is used
to generate minimal cut-sets and system reliabilities sesuMonte-Carlo sampling simulations to repeatedly
sample component failure probabilities from the apprdpridistributions, and to calculate and record the
system’s reliabilities. The confidence interval of the p@bitistic approach i99%. Table VI presents the
results computed by the TBM and by probabilistic approachiable IV also gives analytical expressions
for parallel systemS1 of focal sets and corresponding BPAs before marginalinatin Xg. It shows that
the differences between results obtained using these tff@ralit approaches are very small. However, the
width of the support defined by the probabilistic approachigher than the width of the support in the TBM
approach. By assuming a log-normal PDF for system and coemidailures, we introduce more uncertainty

into the probabilistic approach.
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Components Probabilistic TBM
approach approach
m; EF;, m* ({5} mM (Wi mt({F Wi
A 0.25 1.25 0.2 0.7 0.1
B 0.075 1.50 0.05 0.9 0.05
C 0.180 1 0.18 0.82 0
D 0.175 1.75 0.1 0.75 0.15
E 0.050 1 0.05 0.95 0
F 0.08 2.67 0.03 0.87 0.1

TABLE V: Case Il: BPAs and parameters of log-normal PDF of pomentsA, B, C, D, E and F'

Systems TBM approach Probabilistic approach
Confidence Interval99%)
Rg Rg
S1 [0.9700, 0.9900] 0.9630,0.9912]
S2 [0.6300, 0.7600] 0.5975,0.7716]
S3 [0.7941,0.8117] 0.7891,0.8123]
S4 [0.9156,0.9753] 0.8873,0.9759]

TABLE VI: Case IlI: Reliability of systemsS1, S2, S3 and S4

—_————

IV. M ODELING FAILURE DEPENDENCIES INTBM RELIABILITY ANALYSIS

A. Introduction

Nowadays, complex systems use redundant components im todiecrease the overall system reliability.
However, redundant systems are usually subject to muftillere dependencies [41]. CCFs were the most frequently
studied failure dependency models. Reliability reseaschave usually integrated CCFs in the system reliability
model (FT [11], RBD [42], stochastic Petri nets [10], et©}her failure dependencies were integrated implicitly by
increasing the failure rates of components [12]. The useRASBis proposed to represent failure dependencies, and
extended operations defined in TBM reliability analysis biain the whole system’s reliability. Implicit, explicit,

and discounting approaches will be presented. Numerisaltseeshow the differences between the three approaches.

B. The implicit approach

Let us consider a simple systethcomposed of two components 1 and 2 in parallel. BPAs of coraptsi
and?2 are given in Eq. 15. Suppose that reliability experts penfog functional system tests have observed that
the failure of component 2 leads to the failure of componeim 4; cases. The factoy, is called the dependency
factor. Let us also suppose that these experts have inditate BPAs of components and 2 (cf. Eq. 15). The

goal is to evaluate the system reliabiliys given this information.

mX ({F}) = fiymS (W) =wim™ (Wi, B} =1—w; — f; ; i=1,2 (15)
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The proposed implicit approach is to code the dependeneyeegt components 1 and 2 by the conditional BPAs:

m B ({F}) =mn (16)
le [FQ]({Wl, Fl}) =1- Y1 (17)

The ballooning extension is used to decondition the BPAsqriL& and Eq.17 toX; x X,. The BPAs obtained
are then vacuous extended 35 x X» x Xg and combined using Dempster's rule with the BPAs of the stmpl
parallel configuration and the BPAs of componentand 2 extended toX; x X3 x Xg. The final results after
marginalization onXg are given in Table VII. The factot; can be viewed as a correlation factor which assigns
an additional BPA to the failure of componentgiven the failure of componert Note that this conditional BPA

(cf. Eq. 16) introduces a conflict factéf = v fow;.

C. The explicit approach

We now again consider the parallel systémmeferred to above. Let/ be a virtual component with two states,
E and!. The E state indicates the presence of CCFs. In this case, the ecwnsi and2 are both failed I, F3)
or both working (W1, W5). The I state indicates the absence of CCFs. In this case, all sta¢epossible for

componentd and2. These two assumptions are coded by the conditional BPAs:
m X [B({(Fy, F), (Wi, Wa)}) = 1 (18)
mA X ({(F, Fy), (Fy, Wa), (Wi, Wa), (Wi, B)}) =1 (19)
The frame of discernment a¥/ is then given byX,, = {E, I} and the BPAs related td/ are given by:
m({E}) = di;m({1}) = d;m({E,I}) =1 — 61 — 02 (20)

The BPAs of Eq.18 and Eq.19 are deconditionedXtpx X5. The BPAs obtained and the BPAs of Eqg. 20 are
extended toX; x Xs x Xg x Xj;. The obtained BPAs are then combined with the BPAs of thellphstructure. The
final results after marginalization akig are given in Table VII. The factaf; can be viewed as a correlation factor
which assigns an additional BPA to the fact that componérdad 2 are either both working or failed, knowing
the stateF’ of virtual componentV/. The factord, assigns a mass value to the fact that the comporieatsd 2
may have all possible states. Since the BPA is vacuous, ghestate/ of component), d» does not appear in

the final results. Note that in this case, the BPA of Eq. 18 altoduces a conflict factot, = 61 (frws + fowy)).
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BPAS m**({Fs}) m ({Ws})

Implicit approach NERETEES ARS ) RS Y

Explicit approach Ll bl ey 20 o) e
Discounting approach Il it (= fo—wa) s (L= fy—wn)+ (i) (frovatfows)

TABLE VII: Implicit, explicit, and discounting approacheBPAs of systemS (k; = v, fow; andkge = 61 (fiws +
Jawt))

D. The discounting approach

We now return again to the systefhreferred to above. The BPAs of componehtand2 are given in Eq. 20.
There are several discounting approaches [24] in liteeatOur discounting operation involves weakening, in the
BPAs of Table IV which assume independence, the césesiV,, W) and (W;, F», Wg), by applying a factor
1 —p1 (u1 € [0,1]), while adding the BPAgym ({(F1, Wa, Ws)}) and uym({(Fy, Wz, Wg)}) to the case of total
ignorance{ (W1, Wa, Wg), (F1, F», Fs), (F1, Wa, Wg), (W1, F», Ws)} (cf. Eq. 21, 22, and 23). The corresponding

BPAs in Table IV are then modified accordingly. Final resalfer marginalization oX g are given in table VII.

mq({(F1, Wa, Ws)}) = (1 — ) m({(F1, W2, Ws)}) (21)
ma({ (W, F2, Ws)}) = (1 — ) m({(Wh, F2, Ws)}) (22)
md({(Wl, Wg, Ws), (Fl, FQ, Fs), (Fl, WQ, Ws), (Wl, FQ, Ws)}) = (23)

m({(Wh Wa, WS)’ (Fl’F%FS)v (Flv Wa, Ws), (Wl’F% WS)})_F/“'m({(Wl?F?’ WS)})_F/“'m({(Fl? Wa, WS)})

E. Comparison between approaches

To illustrate the three approaches, the BPAs of compondnéd B defined in Table V (Case Il) are used.
The BPAs and reliability of syster§ are then computed as a function of dependency faeigré;, andu; (cf.
Figure 2). In the three cases, as would be expected, thdilitjiaof system S decreases as facteis 61, and
increase. The explicit approach models CCFs, because fo@lMcomponenil/ allows us to model any condition
or event that affects several components, inducing theiukaneous failure. In the case of several CCFs, The
number of components is higher than in the implicit appro@atch typei of CCFs will be modeled by a virtual
component)M;). Furthermore, the discounting approach means that thes@PAomponents can be revised during
system operation. For example, if in a functioning systenteutainty concerning a given component’s state is
increased as a result of some external event, a discounp@gtion can be performed on the associated BPAs by

m* ((W3}) = L ({Wi}), m*({F}}) = tan({E}}) andm*(©2) = (1—1) +£.m(%2) whereQ = {W, F;} (0 < ¢ < 1).
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Fig. 2: Implicit, explicit and discounting approaches: iRbility of systemS as a function of dependency factors
Y1, 01, and

Components m~:({F;}) mXi({W;}) mXi({F;, W;})

Ch 0.15 0.82 0.03
CP 0.06 0.88 0.06
CP3 0.15 0.85 0

GMy 0.1 0.89 0.01
GM> 0.2 0.74 0.06

TABLE VIII: Case study: BPAs of components

V. CASE STUDY

The complexity within a railway system lies not in any partar technical aspect, although these are complicated,
but in the interactions and relationships between the miffe components. Particularly, there are a number of
subsystems which present complicated dependencies.

Let us consider a system composed of a computer with 3 powmlies and two operated subsystems for self-
diagnosis of failures [43]. The first subsystem (cf. Figuyés3composed of two redundant global memori€s\(;

and G Ms) in series with a 2 out of 3 control processofsK;, C P, andC Ps). The second operated subsystem is
composed of one global memorg {/;) in series with a 1 out of 3({ P, C'P, and C Ps) control processors. This
kind of system is often used for a safety-critical signalgygtem such as automatic train stop. It is supposed that
only if both subsystems fail, then the total system failsgdaously. Subsystems have two failure modes: the first
due to the use of subsystems and the second due to the failposver supplies. The power supplies configuration
is not static. It's a function of the solicitation of the optrd subsystems, and may have a 1 out of 3 or a 2 out of
3 configurations. That's why it is too difficult to model thevper supplies in the RBD of the whole system. The
study is only concerned by CCFs induced by power suppliexeSihe two subsystems share a common power
supply, it may happen a failure of power supplies which iretuthe common mode failures of both subsystems.
Reliability experts give BPAs of failure components (cfblaVIll). The objective is to evaluate the whole system’s
reliability as a function of the BPA of the CCFs. The case wtilildstrates the case when CCFs are induced by
power supplies.

First, the Typed State Influence Diagram (TSID) of system Kafjure 3) is presented in order to identify the
whole system states as a function of the components statesBPAs of subsystemd and B are computed, and
it is assumed thain(CCF's) = x (0 < x < 1). The three approaches defined above are used to evaluate the
system’s reliability as a function of the presence of CCHssatering thaty = v; = 61 = pp anddy, = 1 — é;.

This means that in the case study there is no epistemic aitgrregarding the presence of CCFs. The epistemic
uncertainty concerns only the system components’ failla@.dThe probabilistic approach is based on the use

of log-normal PDFs (see section IlIl.LE) and the beta mode] fegfined in @FAULT TREE + which assumes
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Subsystem A

Subsystem B

Subsystem A

r — — "
| Success

CCF due to
lpower supplies

Fig. 3: RBDs of subsystemd and B and TSID of the whole system

TBM approaches

Probabilistic approach

X Explicit approach Implicit approach Discounting approaghConfidence Interval99%)
Rs Rs k Rs k Rs

0 | [0.9964,0.9978] 0 [0.9964, 0.9978] 0 [0.9964,0.9978] 0 [0.9964, 0.9979]
0.1 | [0.9964,0.9977] 0.0098 [0.9964,0.9977] 0.0117 [0.9847,0.9978] O [0.9958,0.9974]
0.2 | [0.9963,0.9975] 0.0196  [0.9963,0.9976] 0.0234 [0.9730,0.9978] O [0.9950, 0.9970]
0.3 | [0.9963,0.9974] 0.0294  [0.9963,0.9975] 0.0351 [0.9614,0.9978] O [0.9942, 0.9965]
0.4 | [0.9962,0.9972] 0.0392 [0.9963,0.9973] 0.0468 [0.9497,0.9978] O [0.9933, 0.9960]
0.5 | [0.9962,0.9970] 0.0490 [0.9962,0.9972] 0.0584  [0.9380,0.9978] 0 [0.9924, 0.9954]
0.6 | [0.9962,0.9968] 0.0588  [0.9962,0.9970] 0.0701 [0.9263,0.9978] O [0.9914, 0.9948]
0.7 | [0.9961,0.9967] 0.0686  [0.9962,0.9969] 0.0818 [0.9146,0.9978] O [0.9903, 0.9941]
0.8 | [0.9961,0.9965] 0.0784  [0.9961,0.9967] 0.0935 [0.9029,0.9978] O [0.9892, 0.9934]
0.9 | [0.9960,0.9963] 0.0882 [0.9961,0.9966] 0.1052 [0.8912,0.9978] O [0.9880, 0.9927]

1 | [0.9959,0.9961] 0.0980 [0.9960,0.9964] 0.1169 [0.8795,0.9978] 0 [0.9868, 0.9920]

TABLE IX: Case study: system’s reliability and conflict facs

to add a proportions due CCFs to the failures probabilities of components, ireefach component we have

Pr(i) = Pr(i) + Pocr(i) and Poerp(i) = B.Pr(i) where Pr(i), Pr(i), and Pccor(i) are respectively the total

failure probability, the independent failure probabilignd the failure probability due to CCFs of componént

In this case, the factof is equal toy. Results show that CCFs tend to decrease significantly teeathwsystem

reliability in all the cases (cf. Table 1X). Compared to d@gjiland implicit approaches, discounting and probahdist

approaches introduce more uncertainty regarding systéabitity. Note that the fairly low values of the conflict

factors provide ara posteriorijustification of the use of Dempster’s rule in this work.

VI. CONCLUSIONS AND FUTURE WORK

The TBM theory has recently attracted the attention of tialydity engineering community. This paper presents

an original approach for taking account of failure depemdsnin reliability evaluations, given both epistemic
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and aleatory uncertainties. First, the proposed TBM réiighmodel was applied to evaluate the reliability of
series, parallel, series-parallel, parallel-series amdigb systems in the presence of both epistemic and aleatory
uncertainties. The TBM model was then incorporated intolicitp explicit and discounting methods for handling
failure dependencies in reliability evaluations. Finalhe model was applied to take into account CCFs in evalgatin
the reliability of a system composed of a computer with dysdrated subsystems for the self-diagnosis of failures.
Future research tasks include the application of the TBhbédity model in FT analysis. Other failure dependency

models (beta factor, load-sharing, etc.) will also be ideldi in future work.
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