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ABSTRACT

Dealing with uncertainty adds a further level of complexityto problems of reliability analysis. The uncertain-

ties which impact reliability studies usually involve incomplete or imprecise reliability data and complex failure

dependencies. This paper proposes an original methodologybased on the Transferable Belief Model (TBM) to

include failure dependencies between components in the evaluation of the reliability of the whole system, given

both epistemic and aleatory uncertainties. First, based onexpert opinion and experimental data, Basic Probability

Assignments (BPAs) are assigned to reliability data components. TBM operations are then used to obtain the

reliability of the whole system, for series, parallel, series-parallel, parallel-series, and bridge configurations.Implicit,

explicit, and discounting approaches are presented for taking account of failure dependencies. Finally, the proposed

model is applied to take into account Common Cause Failures (CCFs) in a case study.
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INTRODUCTION

Uncertainties are one of the most challenging problems in reliability studies of complex systems [1]–[3]. They

are present in any reliability evaluation, owing to randomness in failure phenomena and the difficulty of obtaining

failure data for components that fail only infrequently. Uncertainties have been classified into two subtypes: aleatory

uncertainty and epistemic uncertainty. Aleatory uncertainty is also called irreducible, or inherent uncertainty. Itis

the inherent variation associated with the physical systemor the environment under consideration [4]. Aleatory
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uncertainty includes, for example, the inherent variability of failures and repair times of equipment. Epistemic

uncertainty is subjective and reducible because it arises from a lack of knowledge or data. It represents the uncertainty

of the outcome due to lack of knowledge or information in any phase or activity of the modeling process [4]. This

uncertainty is associated with incompleteness in the analysts’ state of knowledge and has an impact on the evaluation

of system reliability. It is therefore important to take proper account of aleatory and epistemic uncertainties in any

analysis of reliability.

In safety and reliability studies, the system’s reliability at any time is evaluated using the probabilities of components

failing at the same time. These failure probabilities are estimated using laboratory and generic reliability data

provided by reliability databases [5]. However, using datafrom the laboratory and from generic data sources

involves epistemic uncertainty. As mentioned by Kletz [6],because of operating conditions and environments,

when using generic reliability data the reliability parameters for the components used can deviate by a factor of 3

or 4, and a factor of 10 is not unusual. Furthermore, according to Drouin et al. [7], uncertainties in probabilistic

risk assessment are mainly epistemic.

In the presence of epistemic uncertainty, classical probability theories are based on the representation of failure

probabilities of components at time t by Probability Density Functions (PDFs). The PDFfi(x) at time t indicates

the probability that the value of the failure probability for a componenti at time t falls betweenx andx + dx.

Classical probability theories based on Monte Carlo Simulations (MCS) can then be used to evaluate the reliability

of the whole system. The D-S theory, which is a generalization of classical probability theory, can also be used to

evaluate the reliability of the whole system, using Strat’stechnique [8], which allows belief mass functions to be

derived from individual PDFs.

However, in some cases, there is not sufficient information about components’ reliability data to derive PDFs. This is

particularly frequent when systems have only rare component failures (nuclear systems, chemical processes, railway

systems, etc.) or have not been operating long enough to provide valid statistical data. As an alternative to generic

reliability data, expert knowledge/judgment is used [9]. In this work, the reliability parameters of components are

based on expert judgment.

When using a classical probabilistic approach based on MCS with expert judgment, reliability researchers generally

assume a log-normal or log-triangular distribution for thePDF for conventional reasons. This arbitrary choice of

PDF can make the resulting reliability evaluation imprecise or even erroneous. The D-S theory does not need

to assume a PDF for component failure. It allows a flexible representation of uncertainty for data sources of

different types, and expert judgment in particular. Moreover, multiple expert knowledge can provide more reliable

information for an observation (e.g., the failure probability of a component) than a single expert can. The expert

judgment can often suffer from incompleteness and conflict.D-S theory addresses these issues effectively and is
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able to combine multi-expert knowledge by taking into account ignorance and conflicts through a belief structure.

The D-S representation is proposed in this paper as an attractive way of dealing with the issue at hand (expert

judgment), without the use of unjustified assumptions concerning the PDF distribution. The D-S theory has several

interpretations, such as the Transferable Belief Model (TBM). In this work the TBM is proposed for using expert

judgment in order to evaluate the reliability of the whole system.

In many reliability studies failures of system components are assumed to be independent. However, in reality,

different types of dependencies can be involved, renderingthe results of reliability evaluations false. Fricks and

Trivedi [10] have proposed a classification of failure dependencies (Common Cause Failures (CCFs), standby

dependencies, etc.). There are two principal methods to model failure dependencies in system reliability analysis:

implicit and explicit methods [11]. The implicit method is where joint probabilities, correlation values or conditional

probabilities [12] are used. In explicit methods, the causes of dependencies are explicitly included in the system’s

logic model [12] as a block in Reliability Block Diagrams (RBDs) or a basic event in Fault Trees (FTs). Here we

propose using the two approaches, together with an additional discounting approach, for reliability analysis using

the TBM model.

I. RELATED WORK

The first work introducing D-S theory in reliability analysis was presented by Dempster and Kong [13]. They

proposed the use of an FT as a particular case of the tree of cliques to propagate beliefs through the tree. The prior

beliefs of basic events of the tree represent prior failure beliefs of components. The second work was presented

by Guth in 1991 [14] and concerned FT analysis. Guth represented the belief that a basic eventA happens with

failure probabilityp by three-valued logic (True, False and Unknown) and proposed truth tables with the three-

valued logic in order to propagate the beliefs in FT. Chin et al. [15] proposed using evidence theory to capture the

non-specificity and conflict features in judgments. The beliefs are then propagated in an FT in order to diagnose

the fault distribution of web service process. Walley [16] and Kozine et al. [17] showed that in some applications

the use of Dempster’s combination rule led to incorrect results. Almond [18] developed graphical models using

belief functions and applied this graphical model in FT analysis. Rakowsky et al. [19] have modeled uncertainties in

Reliability-Centered Maintenance (RCM). They use belief and plausibility measures to express the uncertainties of

experts in reasoning. They also use weighted recommendations during the RCM process. This approach was applied

to a fire detection and extinguishing system. Pashazadeh et al. [20] proposed reliability assessment under epistemic

uncertainty using D-S and vague set theories. They eliminated the gap between the representation of combined

evidence and the representation of component reliability in the Vague Set theory. Simon et al. [21] have proposed

combining Bayesian networks and D-S theory to study the reliability of systems given imprecise reliability data.

They use evidential networks and junction tree inference algorithms.
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There is very little work covering the use of TBM theory to model failure dependencies in reliability studies.

Almond [18] proposed addressing the problem of dependency between basic events by using pivotal variables and

information dependence breaking theorem. Walley [16] proposed an example which indicated that D-S theory is

not well suited to handle dependency in the case of total ignorance of dependencies. An original TBM reliability

analysis is therefore proposed in order to take into accountfailure dependencies in reliability evaluations.

II. BASIC NOTIONS OF THETRANSFERABLE BELIEF MODEL (TBM)

The TBM was introduced by Smets and Kennes [22] as a subjectivist interpretation of D-S theory. The D-S

theory, also called evidence theory, was first described by Dempster in the 1960’s [23] with the study of upper and

lower probabilities and extended by Shafer in 1976 [24]. TheTBM is a framework well suited for representing and

manipulating aleatory and epistemic uncertainties. It is based on two levels: the credal level, where available pieces

of information are represented by belief functions, and thepignistic or decision level, where belief functions are

transformed into probability measures. It was originally applied in information fusion [25], [26], pattern recognition

[27], [28] and diagnosis [29]. In a finite discrete space, theTBM can be interpreted as a generalization of probability

theory where probabilities can be assigned to any subsets instead of singletons only. In this section, basic notions,

extended operations, and the terminology of TBM are explained. For a more detailed presentation see [22]–[24].

A. Frame of discernment

The frame of discernmentX is the definition domain of the variable of interestx. It consists of all mutually

exclusive elementary propositions. It can be viewed as the sample space in probability theory. As an example, let us

consider a frame of discernmentX = {x1, x2}. Then,x1 andx2 are elementary propositions and mutually exclusive

of each other. The power set2X is the set of all the subsets ofX including itself, i.e.:2X = {∅, {x1}, {x2},X}.

B. Basic Probability Assignment (BPA)

Probability theory is based on the definition of a probability space (X,M,P ), whereX is the frame of discern-

ment,P the probability function defined on a collectionM of subsets (events)Ai of X that satisfies the properties

of a σ-algebra,i.e. M is closed under complementation and countable unions, and it follows easily that it is also

closed under countable intersections. The probability function P, a function mapping the collection of events M

into [0, 1], is required to respectP (X) = 1 andP (∅) = 0 and to be sub-additive,i.e.: P (A∪B) ≤ P (A) +P (B),

and this inequality holds for any countable collection of disjoint events.

These properties are essential for understanding the differences with D-S theory. A Basic Probability Assignment

(BPA) onX, also called a Basic Belief Assignment (BBA), is a function,mX : 2X → [0, 1], which maps probability
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masses onto subsets of events, and not only onto events, suchthat:

∑

A∈2X

mX(A) = 1. (1)

The impact of a piece of evidence on an agent is translated by an allocation of parts of an initial unitary amount of

belief among the subsets of frame of discernment. The numbermX(A) represents the part of the agent’s belief that

supports A [22]. A clear distinction has to be made between probabilities and basic belief assignment: probability

distribution functions are defined onX and BPAs on the power set2X . The number of possible hypotheses is then

2card(X) in D-S theory, while in probability theory it is card(X). Moreover, D-S theory ignores the sub-additivity

hypothesis required for probability functions in probability theory. The subsetsA ⊂ X such thatmX(A) > 0

are called focal sets ofmX . A BPA having a singleton{x} (x ∈ X) as a unique focal set represents complete

knowledge. A BPA having only singletons as focal sets is equivalent to probabilities. A BPA havingX as a unique

focal set represents complete ignorance and is called vacuous.

D-S includes an additional dimension of uncertainty when compared to a probabilistic model. BPAs can be assigned

to subsets of events without distributing these BPAs further on events. For example, in the case of lack of knowledge,

the expert is not obliged to assume a specific BPA for the occurrence of an event. This is why we say that the

BPA is an incompletely defined probability space. Moreover,D-S theory is a generalization of the Bayesian theory

of subjective probability. Whereas the Bayesian theory requires probabilities for each question of interest, BPAs

allow us to base degrees of belief for one question on probabilities for a related question. This means that in

reliability engineering, with D-S theory, we can take into account the reliability of experts, who give the BPAs for

components failure, in the evaluation of the reliability ofthe whole system. In addition, BPA has further properties,

which distinguishes it from being a probability function: refer Klir and Folger [30]:

• It is not required thatm(X) = 1.

• It is not required thatm(A) ≤ m(B) whenA ⊆ B.

• No relationship betweenm(A) andm(Ā).

• Also m(A) +m(Ā) does not always have to be 1.

Belief and plausibility functions:

The beliefBel and plausibilityPl functions for a subsetA are defined as follows:

Bel(A) =
∑

B⊆A

mX(B) and Pl(A) =
∑

B∩A 6=∅

mX(B) for any A ⊆ X (2)

Bel(A) measures the total assignment of belief toA and all its subsets. The plausibility function measures the

extent to which we fail to disbelieve the hypothesis ofA. [Bel(A), P l(A)] can be viewed as the confidence interval
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which describes the uncertainty of A. The functionsBel andPl, although they too are functions mapping events

A onto [0, 1], and mapping∅ onto 0 andΩ into 1, do not fulfill in the general case the sub-additivity properties

given for probability.

C. Combination rules

Consider two distinct pieces of evidencemX
i andmX

j from two different sourcesi andj. In TBM, the principal

combination rules are the conjunctive and disjunctive combination rules [24]. The conjunctive combination is given

by:

mX
i ∩©j(H) =

∑

A∩B=H,∀A,B⊆X

mX
i (A)mX

j (B),∀H ⊆ X (3)

The disjunctive combination is given by:

mX
i ∪©j(H) =

∑

A∪B=H,∀A,B⊆X

mX
i (A)mX

j (B),∀H ⊆ X (4)

Dempster’s rule of combination is defined as the conjunctivecombination of two normal BPAs followed by

normalization. This rule is also called the orthogonal sum of evidence. It is defined as follows:

mX
i⊕j(H) =

∑

A∩B=H,∀A,B⊆X mX
i (A)mX

j (B)

1−
∑

A∩B=∅,∀A,B⊆X mX
i (A)mX

j (B)
(5)

The number defined byk =
∑

A∩B=∅,∀A,B⊆X mX
i (A)mX

j (B) is called the conflict factor between the two pieces

of evidencei andj.

As some reliability researchers [16], [17] have pointed out, Dempster’s rule sometimes generates incorrect con-

clusions in the case of serious conflict between evidence. Inthis case, it is recommended to investigate the given

information or to collect more information. Several combination rules have been defined and they often differ in

the way the evidence mass of an empty intersection is allocated [31], [32].

D. Discounting

It sometimes occurs that a source of information induces a BPA mX , but there is some doubt regarding the

reliability of this source. Such metaknowledge may be represented by discounting [24]mX by some factorδ ∈ [0, 1],

which leads to a BPAmX
δ defined as:

mX
δ (A) = (1− δ)mX (A) ∀ A ⊆ X,A 6= X (6)

mX
δ (X) = δ + (1− δ)mX(X) (7)
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A discount rateδ = 1 means that the source can certainly not be trusted: the resulting BPA is then vacuous. In

contrast, a null discount rate leavesmX unchanged: this corresponds to the situation where the source is known to

be fully reliable.

E. Coarsening and Refinement

The first step in TBM is to define the frame of discernment. As noted by Shafer [24], the degree of granularity

of the frame is always, to some extent, a matter of convention, since any element representing a state can always

be split into several possibilities. Hence, it is fundamental to examine how a belief function defined on a frame

may be expressed in a finer or, conversely, in a coarser frame [24], [33].

Consider two finite setsX andY . A mappingρ : 2Y → 2X is called a refining if it verifies:

• ρ(B) =
⋃

y∈B ρ({y}) ∀B ⊆ Y .

• The set{ρ(y), y ∈ Y } ⊆ 2X is a partition ofX.

Y is called a coarsening ofX, andX is called a refinement ofY .

A BPA mY on Y can be transformed into a BPAmX on a refinementX by transferring each massmY (B) for

B ⊆ Y to mX(A) for A = ρ(B). This operation is called a vacuous extension ofmY to X. It is defined as follows:

mX(A) =







mY (B) if A = ρ(B) for some B ⊆ Y

0 otherwise.
(8)

F. Operations on Joint Spaces

Consider a BPAmX×Y defined on the Cartesian productX × Y . The marginal BPAmX×Y ↓X on X is defined

by:

mX×Y ↓X(A) =
∑

B⊆X×Y/Proj(B↓X)=A

mX×Y (B) ∀A ⊆ X (9)

WhereProj(B ↓ X) = {x ∈ X/∃y ∈ Y, (x, y) ∈ B}. The inverse operation is a particular instance of vacuous

extension. Consider a BPAmX defined onX. Its vacuous extension onX × Y is defined by:

mX↑X×Y (B) =







mX(A) if B = A× Y for some A ⊆ X

0 otherwise.
(10)

Let mXY denote a BPA onX × Y (with underlying variables(x, y)), andmXY
y the BPA onX × Y with single

focal setX × {y}. The conditional BPA ofx given y = y is defined as:

mX [y] = (mXY
∩©mXY

y )↓X (11)
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The conditioning operation for belief functions has the same meaning as in Probability Theory. However, it also

admits an inverse operation called the ballooning extension. LetmX [y] denote the conditional BPAs on X, giveny.

The ballooning extension ofmX [y] on X × Y is the least committed BPA whose conditioning ony yieldsmX [y].

It is obtained as:

mX [y]⇑XY (B) =







mX [y](A) if B = (A× {y}) ∪ (X × (Y \ {y})) for someA ⊆ X,

0 otherwise.
(12)

In order to optimize the TBM operations and save time and space, some computation algorithms were given in

[18], [34].

III. T HE PROPOSEDTBM RELIABILITY ANALYSIS

In this paper, both system and components have only two possible states: either working (W ) or failed (F ) (i.e.

we make the so-calledBinary State assumption). Using BPAs of functioning and failed system components, the

goal is to obtain the reliability of the whole system in the case of series, parallel, series-parallel, parallel-seriesand

bridge configurations.

A. Frame of discernment

In virtue of the Binary State assumption, the frame of discernmentXi of a componenti is given byXi = {Fi,Wi}.

Fi andWi represent respectively the failure and the working states of the componenti. The study is started by

considering a simple systemS composed of two components 1 and 2. The frames of discernmentof components

1, 2 andS are then:X1 = {F1,W1}, X2 = {F2,W2} andXS = {FS ,WS}.

B. BPAs, belief and plausibility functions of system components

BPA structure is a more natural and intuitive way to express one’s degree of belief in a hypothesis where

only partial evidence is available. In reliability studies, based on expert opinion and experimental data, BPAs of

components are computed directly and this computation requires some efforts from a reliability expert. The BPAs

assigned to system components by expert opinion and experimental data can be then expressed by:

mXi({Fi}) = fi;m
Xi({Wi}) = wi;m

Xi({Wi, Fi}) = 1−wi − fi ; i = 1, 2 (13)

Using Eq. (2), the belief and plausibility functions of components 1 and 2 are computed. For example, if

component 1 is considered, then:Bel({F1}) = mX1({F1}) andPl({F1}) = mX1({F1}) +mX1({F1,W1}).
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C. Assignment of BPAs for component failure

The BPAs for the different component reliability parameters are acquired from different sources. In safety and

reliability engineering, data are usually taken from generic data or based on expert judgment [35]. In the present

study, BPAs are directly obtained from experts because there is not enough reliability data from reliability databases

covering the components used in the system under consideration. The TBM postulates that the impact of a piece

of evidence on an expert is translated by an allocation of parts of an initial unitary amount of belief among the

propositions (the subsets) ofXi = {Fi,Wi}. For a subsetY of Xi, mXi(Y ) is a part of the expert’s belief that

supportsY . For example, an expert 1 may report having a0.7 part of belief supporting the proposition ”component

A is working at timet”. The same expert reports having a0.1 part of belief supporting the proposition ”component

A is not working at timet”. Mathematically, this can be written asmXA

1 ({WA}) = 0.7, mXA

1 ({FA}) = 0.1

andmXA

1 ({WA, FA}) = 0.2, becausemXA

1 ({WA, FA}) = 1 − mXA

1 ({WA}) −mXA

1 ({FA}). Obviously, the BPA

mXA

1 ({WA, FA}) represents the epistemic uncertainty of the expert concerning the functioning of componentA at

time t due to lack of information.

The problem we now face is how to combine two or more BPAs from different experts regarding the same

component A. Several combination rules were defined in D-S theory. In this work, we assume the independence of

different experts’ opinions. This is why we use Dempster’s rule of combination. Now, let us assume that another

expert 2 reports as follows in relation to the same componentA: mXA

2 ({WA}) = 0.8, mXA

2 ({FA}) = 0.15 and

mXA

2 ({WA, FA}) = 0.05. These two independent assessments for the same component can be combined using the

D-S combination rule. The conflict factor is thenk = 0.1850. The BPAs obtained aremXA

1 ∩©2({WA}) = 0.9264,

mXA

1 ∩©2({FA}) = 0.0613 andmXA

1 ∩©2({WA, FA}) = 0.0123.

Dempster’s rule satisfies the properties of associativity,commutativity and non-idempotence. However, two major

limitations of this rule are its lack of robustness in the presence of highly conflicting information (k 7→ 1), and the

requirement that the sources of information must be independent. The problem of conflict has been addressed by

several authors, who have proposed rules which are generally not associative [33]. The other important limitation of

Dempster’s rule lies in the assumption that the BPAs must be distinct, i.e, the experts’ opinions must be independent.

The idea is that in combination operations no elementary BPAs should be counted twice. This problem was addressed

by Ling et al. [36], who proposed a rule limited to the combination of belief functions having at most two focal

sets including the frame of discernment. Elouedi et al. [37]extended this method to belief functions that can be

decomposed as the conjunctive sum of simple belief functions. Denoeux [38] proposed a commutative, associative

and idempotent cautious rule for belief functions which arenot separable. This cautious rule generalizes a method

proposed by Kennes [39] for combining separable BPAs induced by non-distinct items of evidence, based on an

application of category theory to evidential reasoning. These rules provide reliability analysis with an appropriate
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Parallel system Series system
BPAs

mXS{FS}
∏n

i=1 fi 1−
∏n

i=1(1− fi)
mXS{WS} 1−

∏n
i=1(1− wi)

∏n
i=1 wi

mXS{FS ,WS}
∏n

i=1(1− wi)−
∏n

i=1 fi
∏n

i=1(1− fi)−
∏n

i=1wi

Bel{WS} 1−
∏n

i=1(1− wi)
∏n

i=1 wi

Pl{WS} 1−
∏n

i=1 fi
∏n

i=1(1− fi)

RS [1−
∏n

i=1(1− wi), 1 −
∏n

i=1 fi] [
∏n

i=1wi,
∏n

i=1(1− fi)]

TABLE I: BPAs and reliability of parallel and series systemswith n components

means of taking account of non-independent expert judgments. In this work, we assume the absence of significant

conflicts between experts’ opinions, as well as their independence.

D. Evaluation of BPAs, beliefs and plausibility functions of the whole systemS

First, vacuous extension is used to extendmX1 andmX2 to the product spaceX1×X2×XS. The resulting BPAs

are combined using Dempster’s rule. Then, the resulting BPAs are combined withmX1×X2×XS

Config which represents

the system configuration. The BPAmX1×X2×XS

Config represents the relation between the systemS and its components

1 and 2. It is given by:

mX1×X2×XS

Series ({(W1,W2,WS), (F1, F2, FS), (F1,W2, FS), (W1, F2, FS)}) = 1 for a series configuration.

And mX1×X2×XS

Parallel ({(W1,W2,WS), (F1, F2, FS), (F1,W2,WS), (W1, F2,WS)}) = 1 for a parallel configuration. To

obtain BPAs of systemS, the final result is marginalized onXS . Belief and plausibility functions are then computed

from mXS . Formally, the final BPA is defined as follows:

mXS = (mX1↑X1×X2×XS ⊕mX2↑X1×X2×XS ⊕mX1×X2×XS

Config )↓XS (14)

The system’s reliabilityRS is then given byRS ∈ [Bel({WS}), P l({WS})]

1) Parallel configuration:The results of BPAs related to parallel configuration can be generalized ton (1 ≤ i ≤

n) components with BPAsfi, wi, and1− fi − wi (cf. Table I).

2) Series configuration:The results of BPAs related to series configuration can be generalized ton (1 ≤ i ≤ n)

components with BPAsfi, wi, and1− fi − wi (cf. Table I).

3) Series-parallel, parallel-series, and complex configurations: BPAs of series-parallel and parallel-series systems

are evaluated by calculating the BPAs for the individual series and parallel sections and then combining them. For

complex configurations, minimal paths are used to find the truth table for the functioning system (xi = 1 if the

componenti is up and0 if the component is down). The different combinations in thetruth table are then used to

define the unique focal element of the BPAmconfig indicating if the system is workingWS or failedFS in all 2n

combinations of component states.
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Fig. 1: RBDs of systems: S1, S2, S3 and S4

Probabilistic TBM
Components approach approach

Pi mXi({Fi}) mXi({Wi}) mXi({Fi,Wi})
A 0.1 0.1 0.9 0
B 0.2 0.2 0.8 0
C 0.15 0.15 0.85 0
D 0.3 0.3 0.7 0
E 0.05 0.05 0.95 0
F 0.35 0.35 0.65 0

TABLE II: Case I: BPAs and failure probabilities of components A, B, C, D, E andF

E. Numerical application: two cases

• Case I: Aleatory uncertainty

Consider four systems (cf. Figure 1): a simple series systemwith 2 componentsA andB, a simple parallel

system with 2 componentsA and B, a parallel-series system with 6 componentsA, B, C, D, E, andF ,

and a bridge system with 5 componentsA, B, C, D, andE. Let us consider only aleatory uncertainty for

components A, B, C, D, E and F, as shown in Table II (there is no epistemic uncertainty about components,

i.e. mXi({Fi,Wi}) = 0). In order to compare our approach with a classical probabilistic approach, we use

BPAs in the TBM approach, and crisp failure probabilities ofcomponentsPi in the conventional probabilistic

approach (cf. Table II). In this case, it is well known thatPi = mXi({Fi}) for each componenti. The system

reliabilities for S1, S2, S3 and S4 are then computed using the TBM model and the probabilistic approach

based on minimal cut-sets [40]. As we expected, we obtain thesame results for the reliabilities of all four

systems with the two approaches (cf. Table III).

Case II: Aleatory and epistemic uncertainty

We now consider epistemic uncertainty for components A, B, Dand F, as shown in Table V. The present

probabilistic method of determining the system’s reliabilities involves representing the epistemic component
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Systems TBM approach Probabilistic approach
RS RS

S1 0.980 0.980
S2 0.720 0.720
S3 0.829 0.829
S4 0.958 0.958

TABLE III: Case I: Reliability of systems:S1, S2, S3 andS4

A mX1×X2×XS(A)

{(F1, F2, FS)} f1f2
{(F1,W2,WS)} f1w2

{(F1, F2, FS), (F1,W2,WS)} f1(1− w2 − f2)
{(W1, F2,WS)} w1f2
{(W1,W2,WS)} w1w2

{(W1,W2,WS), (W1, F2,WS)} w1(1− w2 − f2)
{(F1, F2, FS), (W1, F2,WS)} f2(1− w1 − f1)
{(F1,W2,WS), (W1,W2,WS)} w2(1− w1 − f1)
{(W1,W2,WS), (F1, F2, FS), (F1,W2,WS), (W1, F2,WS)} (1− w1 − f1)(1 − w2 − f2)

TABLE IV: BPAs results of simple parallel system without dependencies

failure probabilities by a specified PDF (log-normal, normal, triangular, etc.). The PDFfi(x) at timet indicates

the probability that the value of the failure probability ofa componenti at timet falls betweenx andx+dx. In

order to compare our results with those obtained by a classical probabilistic approach, the epistemic uncertainty

will be represented by a log-normal PDF which is defined by a medianm and an error factor (EF) obtained

from the BPAs as follows:

Bel({Fi}) =
mi

EFi

In this probabilistic approach, the @FAULT TREE + software package developed by ISOGRAPH is used

to generate minimal cut-sets and system reliabilities. It uses Monte-Carlo sampling simulations to repeatedly

sample component failure probabilities from the appropriate distributions, and to calculate and record the

system’s reliabilities. The confidence interval of the probabilistic approach is99%. Table VI presents the

results computed by the TBM and by probabilistic approaches. Table IV also gives analytical expressions

for parallel systemS1 of focal sets and corresponding BPAs before marginalization on XS . It shows that

the differences between results obtained using these two different approaches are very small. However, the

width of the support defined by the probabilistic approach ishigher than the width of the support in the TBM

approach. By assuming a log-normal PDF for system and component failures, we introduce more uncertainty

into the probabilistic approach.
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Components Probabilistic TBM
approach approach

mi EFi mXi({Fi}) mXi({Wi}) mXi({Fi,Wi})
A 0.25 1.25 0.2 0.7 0.1
B 0.075 1.50 0.05 0.9 0.05
C 0.180 1 0.18 0.82 0
D 0.175 1.75 0.1 0.75 0.15
E 0.050 1 0.05 0.95 0
F 0.08 2.67 0.03 0.87 0.1

TABLE V: Case II: BPAs and parameters of log-normal PDF of componentsA, B, C, D, E andF

Systems TBM approach Probabilistic approach
Confidence Interval (99%)

RS RS

S1 [0.9700, 0.9900] [0.9630, 0.9912]
S2 [0.6300, 0.7600] [0.5975, 0.7716]
S3 [0.7941, 0.8117] [0.7891, 0.8123]
S4 [0.9156, 0.9753] [0.8873, 0.9759]

TABLE VI: Case II: Reliability of systems:S1, S2, S3 andS4

IV. M ODELING FAILURE DEPENDENCIES INTBM RELIABILITY ANALYSIS

A. Introduction

Nowadays, complex systems use redundant components in order to increase the overall system reliability.

However, redundant systems are usually subject to multiplefailure dependencies [41]. CCFs were the most frequently

studied failure dependency models. Reliability researchers have usually integrated CCFs in the system reliability

model (FT [11], RBD [42], stochastic Petri nets [10], etc.).Other failure dependencies were integrated implicitly by

increasing the failure rates of components [12]. The use of BPAs is proposed to represent failure dependencies, and

extended operations defined in TBM reliability analysis to obtain the whole system’s reliability. Implicit, explicit,

and discounting approaches will be presented. Numerical results show the differences between the three approaches.

B. The implicit approach

Let us consider a simple systemS composed of two components 1 and 2 in parallel. BPAs of components1

and 2 are given in Eq. 15. Suppose that reliability experts performing functional system tests have observed that

the failure of component 2 leads to the failure of component 1in γ1 cases. The factorγ1 is called the dependency

factor. Let us also suppose that these experts have indicated the BPAs of components1 and 2 (cf. Eq. 15). The

goal is to evaluate the system reliabilityRS given this information.

mXi({Fi}) = fi;m
Xi({Wi}) = wi;m

Xi({Wi, Fi}) = 1−wi − fi ; i = 1, 2 (15)
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The proposed implicit approach is to code the dependency between components 1 and 2 by the conditional BPAs:

mX1 [F2]({F1}) = γ1 (16)

mX1 [F2]({W1, F1}) = 1− γ1 (17)

The ballooning extension is used to decondition the BPAs in Eq.16 and Eq.17 toX1 ×X2. The BPAs obtained

are then vacuous extended toX1 ×X2 × XS and combined using Dempster’s rule with the BPAs of the simple

parallel configuration and the BPAs of components1 and 2 extended toX1 × X2 × XS . The final results after

marginalization onXS are given in Table VII. The factorγ1 can be viewed as a correlation factor which assigns

an additional BPA to the failure of component1, given the failure of component2. Note that this conditional BPA

(cf. Eq. 16) introduces a conflict factork1 = γ1f2w1.

C. The explicit approach

We now again consider the parallel systemS referred to above. LetM be a virtual component with two states,

E andI. TheE state indicates the presence of CCFs. In this case, the components1 and2 are both failed(F1, F2)

or both working(W1,W2). The I state indicates the absence of CCFs. In this case, all statesare possible for

components1 and2. These two assumptions are coded by the conditional BPAs:

mX1×X2 [E]({(F1, F2), (W1,W2)}) = 1 (18)

mX1×X2 [I]({(F1, F2), (F1,W2), (W1,W2), (W1, F2)}) = 1 (19)

The frame of discernment ofM is then given byXM = {E, I} and the BPAs related toM are given by:

m({E}) = δ1;m({I}) = δ2;m({E, I}) = 1− δ1 − δ2 (20)

The BPAs of Eq.18 and Eq.19 are deconditioned toX1 × X2. The BPAs obtained and the BPAs of Eq. 20 are

extended toX1×X2×XS×XM . The obtained BPAs are then combined with the BPAs of the parallel structure. The

final results after marginalization onXS are given in Table VII. The factorδ1 can be viewed as a correlation factor

which assigns an additional BPA to the fact that components1 and2 are either both working or failed, knowing

the stateE of virtual componentM . The factorδ2 assigns a mass value to the fact that the components1 and2

may have all possible states. Since the BPA is vacuous, giventhe stateI of componentM , δ2 does not appear in

the final results. Note that in this case, the BPA of Eq. 18 alsointroduces a conflict factork2 = δ1(f1w2 + f2w1)).
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BPAs mXS({FS}) mXS({WS})

Implicit approach f1f2+γ1(f2−f2w1−f1f2)
1−k1

w1+w2−w1w2−γ1w1f2
1−k1

Explicit approach f1f2+δ1(f1+f2−f1w2−f2w1−2f1f2)
1−k2

w1+w2−w1w2−δ1(f1w2+f2w1)
1−k2

Discounting approach f1f2
1

w1w2+w1(1−f2−w2)+w2(1−f1−w1)+(1−µ1)(f1w2+f2w1)
1

TABLE VII: Implicit, explicit, and discounting approaches: BPAs of systemS (k1 = γ1f2w1 andk2 = δ1(f1w2 +
f2w1))

D. The discounting approach

We now return again to the systemS referred to above. The BPAs of components1 and2 are given in Eq. 20.

There are several discounting approaches [24] in literature. Our discounting operation involves weakening, in the

BPAs of Table IV which assume independence, the cases(F1,W2,WS) and (W1, F2,WS), by applying a factor

1− µ1 (µ1 ∈ [0, 1]), while adding the BPAsµ1m({(F1,W2,WS)}) andµ1m({(F1,W2,WS)}) to the case of total

ignorance{(W1,W2,WS), (F1, F2, FS), (F1,W2,WS), (W1, F2,WS)} (cf. Eq. 21, 22, and 23). The corresponding

BPAs in Table IV are then modified accordingly. Final resultsafter marginalization onXS are given in table VII.

md({(F1,W2,WS)}) = (1− µ1).m({(F1,W2,WS)}) (21)

md({(W1, F2,WS)}) = (1− µ1).m({(W1, F2,WS)}) (22)

md({(W1,W2,WS), (F1, F2, FS), (F1,W2,WS), (W1, F2,WS)}) = (23)

m({(W1,W2,WS), (F1, F2, FS), (F1,W2,WS), (W1, F2,WS)})+µ1.m({(W1, F2,WS)})+µ1.m({(F1,W2,WS)})

E. Comparison between approaches

To illustrate the three approaches, the BPAs of componentsA and B defined in Table V (Case II) are used.

The BPAs and reliability of systemS are then computed as a function of dependency factorsγ1, δ1, andµ1 (cf.

Figure 2). In the three cases, as would be expected, the reliability of system S decreases as factorsγ1, δ1, andµ1

increase. The explicit approach models CCFs, because the virtual componentM allows us to model any condition

or event that affects several components, inducing their simultaneous failure. In the case of several CCFs, The

number of components is higher than in the implicit approach(each typei of CCFs will be modeled by a virtual

componentMi). Furthermore, the discounting approach means that the BPAs of components can be revised during

system operation. For example, if in a functioning system, uncertainty concerning a given component’s state is

increased as a result of some external event, a discounting operation can be performed on the associated BPAs by

m∗({Wi}) = t.m({Wi}), m∗({Fi}) = t.m({Fi}) andm∗(Ω) = (1−t)+t.m(Ω) whereΩ = {Wi, Fi} (0 ≤ t ≤ 1).
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Fig. 2: Implicit, explicit and discounting approaches: Reliability of systemS as a function of dependency factors
γ1, δ1, andµ1

Components mXi ({Fi}) mXi ({Wi}) mXi({Fi,Wi})
CP1 0.15 0.82 0.03
CP2 0.06 0.88 0.06
CP3 0.15 0.85 0
GM1 0.1 0.89 0.01
GM2 0.2 0.74 0.06

TABLE VIII: Case study: BPAs of components

V. CASE STUDY

The complexity within a railway system lies not in any particular technical aspect, although these are complicated,

but in the interactions and relationships between the different components. Particularly, there are a number of

subsystems which present complicated dependencies.

Let us consider a system composed of a computer with 3 power supplies and two operated subsystems for self-

diagnosis of failures [43]. The first subsystem (cf. Figure 3) is composed of two redundant global memories (GM1

andGM2) in series with a 2 out of 3 control processors (CP1, CP2 andCP3). The second operated subsystem is

composed of one global memory (GM1) in series with a 1 out of 3 (CP1, CP2 andCP3) control processors. This

kind of system is often used for a safety-critical signalingsystem such as automatic train stop. It is supposed that

only if both subsystems fail, then the total system fails dangerously. Subsystems have two failure modes: the first

due to the use of subsystems and the second due to the failure of power supplies. The power supplies configuration

is not static. It’s a function of the solicitation of the operated subsystems, and may have a 1 out of 3 or a 2 out of

3 configurations. That’s why it is too difficult to model the power supplies in the RBD of the whole system. The

study is only concerned by CCFs induced by power supplies. Since the two subsystems share a common power

supply, it may happen a failure of power supplies which induces the common mode failures of both subsystems.

Reliability experts give BPAs of failure components (cf. Table VIII). The objective is to evaluate the whole system’s

reliability as a function of the BPA of the CCFs. The case study illustrates the case when CCFs are induced by

power supplies.

First, the Typed State Influence Diagram (TSID) of system (cf. Figure 3) is presented in order to identify the

whole system states as a function of the components states. The BPAs of subsystemsA andB are computed, and

it is assumed thatm(CCFs) = χ (0 ≤ χ ≤ 1). The three approaches defined above are used to evaluate the

system’s reliability as a function of the presence of CCFs considering thatχ = γ1 = δ1 = µ1 and δ2 = 1 − δ1.

This means that in the case study there is no epistemic uncertainty regarding the presence of CCFs. The epistemic

uncertainty concerns only the system components’ failure data. The probabilistic approach is based on the use

of log-normal PDFs (see section III.E) and the beta model [12] defined in @FAULT TREE + which assumes
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Fig. 3: RBDs of subsystemsA andB and TSID of the whole system

TBM approaches Probabilistic approach
χ Explicit approach Implicit approach Discounting approachConfidence Interval (99%)

RS k RS k RS k RS

0 [0.9964, 0.9978] 0 [0.9964, 0.9978] 0 [0.9964, 0.9978] 0 [0.9964, 0.9979]
0.1 [0.9964, 0.9977] 0.0098 [0.9964, 0.9977] 0.0117 [0.9847, 0.9978] 0 [0.9958, 0.9974]
0.2 [0.9963, 0.9975] 0.0196 [0.9963, 0.9976] 0.0234 [0.9730, 0.9978] 0 [0.9950, 0.9970]
0.3 [0.9963, 0.9974] 0.0294 [0.9963, 0.9975] 0.0351 [0.9614, 0.9978] 0 [0.9942, 0.9965]
0.4 [0.9962, 0.9972] 0.0392 [0.9963, 0.9973] 0.0468 [0.9497, 0.9978] 0 [0.9933, 0.9960]
0.5 [0.9962, 0.9970] 0.0490 [0.9962, 0.9972] 0.0584 [0.9380, 0.9978] 0 [0.9924, 0.9954]
0.6 [0.9962, 0.9968] 0.0588 [0.9962, 0.9970] 0.0701 [0.9263, 0.9978] 0 [0.9914, 0.9948]
0.7 [0.9961, 0.9967] 0.0686 [0.9962, 0.9969] 0.0818 [0.9146, 0.9978] 0 [0.9903, 0.9941]
0.8 [0.9961, 0.9965] 0.0784 [0.9961, 0.9967] 0.0935 [0.9029, 0.9978] 0 [0.9892, 0.9934]
0.9 [0.9960, 0.9963] 0.0882 [0.9961, 0.9966] 0.1052 [0.8912, 0.9978] 0 [0.9880, 0.9927]
1 [0.9959, 0.9961] 0.0980 [0.9960, 0.9964] 0.1169 [0.8795, 0.9978] 0 [0.9868, 0.9920]

TABLE IX: Case study: system’s reliability and conflict factors

to add a proportionβ due CCFs to the failures probabilities of components, i.e for each componenti we have

PT (i) = PI(i) + PCCF (i) andPCCF (i) = β.PI(i) wherePT (i), PI(i), andPCCF (i) are respectively the total

failure probability, the independent failure probability, and the failure probability due to CCFs of componenti.

In this case, the factorβ is equal toχ. Results show that CCFs tend to decrease significantly the overall system

reliability in all the cases (cf. Table IX). Compared to explicit and implicit approaches, discounting and probabilistic

approaches introduce more uncertainty regarding system reliability. Note that the fairly low values of the conflict

factors provide ana posteriori justification of the use of Dempster’s rule in this work.

VI. CONCLUSIONS AND FUTURE WORK

The TBM theory has recently attracted the attention of the reliability engineering community. This paper presents

an original approach for taking account of failure dependencies in reliability evaluations, given both epistemic



SPECIAL ISSUE: UNCERTAINTY IN ENGINEERING RISK AND RELIABILITY, JOURNAL OF RISK AND RELIABILITY 17

and aleatory uncertainties. First, the proposed TBM reliability model was applied to evaluate the reliability of

series, parallel, series-parallel, parallel-series and bridge systems in the presence of both epistemic and aleatory

uncertainties. The TBM model was then incorporated into implicit, explicit and discounting methods for handling

failure dependencies in reliability evaluations. Finally, the model was applied to take into account CCFs in evaluating

the reliability of a system composed of a computer with dual-operated subsystems for the self-diagnosis of failures.

Future research tasks include the application of the TBM reliability model in FT analysis. Other failure dependency

models (beta factor, load-sharing, etc.) will also be included in future work.
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