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A REDUCED BASIS FOR OPTION PRICING ∗

RAMA CONT †, NICOLAS LANTOS ‡, AND OLIVIER PIRONNEAU §

Abstract. We introduce a reduced basis method for the efficient numerical solution of partial integro-differential
equations which arise in option pricing theory. Our method uses a basis of functions constructed from a sequence of
Black-Scholes solutions with different volatilities. We show that this choice of basis leads to a sparse representation
of option pricing functions, yielding an approximation whose precision is exponential in the number of basis func-
tions. A Galerkin method using this basis for solving the pricing PDE is presented. Numerical tests based on the
CEV diffusion model and the Merton jump diffusion model show that the method has better numerical performance
relative to commonly used finite-difference and finite-element methods. We also compare our method with a numer-
ical Proper Orthogonal Decomposition (POD). Finally, we show that this approach may be used advantageously for
the calibration of local volatility functions.

Key words. Option pricing, PDE, PIDE, integro-differential equation, jump-diffusion, Merton model, Galerkin
method, reduced basis.

AMS subject classifications. 37M25, 65N99

1. Introduction. Option pricing problems can be formulated in terms of a partial dif-
ferential (PDE) or integro-differential equation (PIDE) or inequality [1]. In a pricing model
where the underlying asset follows a Markov process with infinitesimal generator L, the (dis-
counted) value u(t, S) as a function of the date t and the underlying asset price S solves
Kolmogorov’s backward equation

∂tu(t, S) + Lu(t, S) = 0 (1.1)

with appropriate boundary conditions which describe the payoff of the option. In the case of
the Black-Scholes model, this pricing equation reduces to the Black-Scholes partial differ-
ential equation whose analytical solution leads to the famous Black-Scholes formula. When
the random evolution of the underlying asset is driven by a Lévy process or more generally
a time inhomogeneous jump-diffusion process, the operator L is an integro-differential op-
erator, expressed as the sum of a second-order differential operator and an integral operator,
and (1.1) becomes a partial integro-differential equation [7]. More generally, even when the
evolution of underlying asset price is not Markovian, call options may be priced in terms of a
forward PDE [9] or PIDE [2] involving integro-differential operators of the same type.

Except in the Black-Scholes model with constant volatility, solutions to such pricing
equations are not known analytically in general and require numerical methods. A variety
of techniques have been proposed to solve pricing equations. In special cases with constant
coefficients, Fourier transform methods [5, 11] may be applied efficiently. More generally,
finite difference and finite element methods have been used to solve the pricing P(I)DE [1, 7].
In models with jumps, the non local integral term leads to dense matrices after discretization
[7] and efficient numerical methods are required for pricing of complex contracts and for
calibration of model parameters.

Various techniques have been introduced to speed up the numerical solution of such pric-
ing equations. In particular, for PIDEs with non-local terms, propositions include combining
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Fourier methods with finite-difference approximations [3], splitting the operator into a dif-
ferential and integral part and using an implicit-explicit time stepping [7] or compressing the
operator using a wavelet basis representation [12].

A general idea, which underlies many numerical methods, is to project the solution of
the pricing equation on a sequence of basis functions. In such projection methods, the choice
of the basis functions is important for the numerical performance of such projection methods.
In most existing approaches, the basis functions are chosen for analytical convenience –finite
elements, wavelets– but may have little to do with the nature of the problem and may not take
into account the shape of the solution or the specific boundary conditions which intervene
in the pricing problem. In other cases, a basis is computed numerically for the problem
at hand: this is the essence of the POD (Proper Orthogonal Decomposition) method [14,
16]. An important property of projection methods is whether the solution may be efficiently
represented using a small number of basis functions, leading to small linear systems: this is
the so-called sparse representation property.

In this work we propose a projection method which is adapted to the numerical solution
of pricing equations such as (1.1). Our key idea is to construct a family of basis functions
which is well suited for the pricing problem in the sense that solutions of the pricing equations
will admit a sparse representation in this basis. Our construction is based on the observation
that pricing functions, at a fixed date, are well approximated by a convex combination of (a
few) Black-Scholes functions uσi with different volatilities σi (see e.g. [4]). Since the pricing
function u verifies (1.1), its evolution over a small time interval δt may be approximated as

u(., (k + 1)δt)− u(., kδt) = −δtLu(., kδt) (1.2)

So, intuitively, the time increment of the pricing function may be approximated by functions
of the form Luσi , where uσi are Black-Scholes pricing formulas. This suggests that functions
of the form Luσi , where σi is an appropriately chosen sequence of volatility values, may be
used to construct a sparse representation of solutions of the pricing equation (1.1). This
intuition turns out to be correct: we will show that the images under the pricing operator
of Black-Scholes pricing functions uσi span a space of smooth functions decaying at infinity
and that this space contains the solution of (1.1) (up to a translation) when a certain symmetry
condition is verified (see Section 4). In the general case, we will show that one can complete
this basis by adding twice as many functions constructed by a similar method.

We will explain this construction in more detail in Section 3 and show that it leads in-
deed, in many cases, to a sparse representation of pricing functions where less than 20 basis
elements already yield an excellent precision for pricing purposes. In fact, we will show for
the examples studied that the error decays exponentially with the number of basis functions.
We then introduce a Galerkin method for solving the pricing equation (1.1) by projection on
this reduced basis. By contrast with finite element or wavelet methods which lead to large,
sparse matrices, our reduced basis method will lead to a numerical scheme involving small
(less than 20 × 20) but full matrices. In addition, Black-Scholes pricing functions verifying
the same boundary conditions as the solutions we want to approximate, such a representa-
tion will verify the right asymptotic properties at the boundaries: this approach gets rid of
“numerical boundary conditions” or boundary adjustments at no further computational cost.

1.1. Outline. The paper is organized as follows. Section 2 introduces the problem and
gives examples of PDEs and PIDEs in option pricing. In Section 3 we define the basis func-
tions and show that they lead to a sparse representation for solutions of the pricing equation
in the case of a diffusion model with general time- and price-dependent volatility and in a
jump diffusion model with Gaussian jumps. The theoretical properties of the basis are stud-
ied in Section 4. In Section 5 we present a numerical scheme based on this reduced basis:
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we discuss the numerical implementation and compare the results with a standard POD. The
results in Section 5 show that the our reduced basis method

• is superior, in terms of precision per number of basis elements, with respect to stan-
dard numerically constructed reduced order models, and

• is 2 to 10 times faster than finite difference or finite element methods for pricing
PDEs or PIDEs.

In particular, numerical tests in commonly used models show that using as few as 10 to 20
basis functions allows to reach a precision similar to that of finite difference methods typically
used with 100 time steps and 200 mesh points in price. Section 6 shows an application of this
method to the calibration of local volatility functions.

2. Partial integro-differential equations in option pricing. Many option pricing prob-
lems require efficient methods for solving a time dependent Partial Integro-Differential Equa-
tion (PIDE) of the following type

∂tw + Lw = f, w(T ) = φ (2.1)

where L is an integro-differential operator of Lévy type [6, 7, 12]. When the jumps in the
underlying asset are driven by a Lévy process, the operator L is the sum of a convection-
diffusion operator Lσ and an integral operator LJ representing the effect of jumps:

Lσw(S, t) = −1
2
σ2(S, t)S2∂SSw(S, t)− (r − d)S∂Sw(S, t) + rw(S, t)

LJw(S, t) = −
∫

R

[
w(Sez, t)− w(S, t)− S(ez − 1)∂Sw(S, t)

]
J(z)dz (2.2)

Popular models such as the variance Gamma model, the Merton model and the tempered
stable model are obtained using various parametrizations for the Lévy kernel J(z); for an
overview of these and other models with jumps, see [6].

2.1. Change of variable. We introduce the following changes of variable:

τ := T − t, the time to maturity.

y := e(r−d)(T−t) S

K
, the forward moneyness

x := ln y (i.e. S = Kex−(r−d)τ ), the log forward moneyness (LFM), (2.3)

PROPOSITION 2.1. Let C ∈ C1,2(R × [0, T ],R+) be a solution of (2.1) with f = 0.
Define

v(y, τ) :=
erτ

K
C(yKe−(r−d)τ , T − τ),

u(x, τ) := v(ex, τ) =
erτ

K
C(Kex−(r−d)τ , T − τ);

then

∂τv + Lσv + LJv = 0 in R+ × (0, T ), v(y, 0) = v0(y) := φ(Ky)
∂τu+ Lσu+ LJu = 0 in R× (0, T ), u(x, 0) = u0(x) := φ(Kex)

where

Lσv(y, τ) = −1
2
σ2y2∂yyv
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LJv(y, τ) =
∫

R
v(yez)J(z)dz − v(y)

∫
R
J(z)dz − y∂yv(y)

∫
R
(ez − 1)J(z)dz

in the forward moneyness variables and

Lσu(x, τ) = 1
2σ

2∂xu− 1
2σ

2∂xxu

LJu(x, τ) =
∫

R
u(x+ z)J(z)dz − u(x)

∫
R
J(z)dz − ∂xu(x)

∫
R

(ez − 1)J(z)dz

in the log-forward moneyness variables.

2.2. Reduction to homogeneous initial conditions . In order to obtain a good asymp-
totic behaviour at infinity, we choose a constant volatility Σ and introduce

π(x, τ) := u(x, τ)− uΣ(x, τ), (2.4)

where uΣ is the Black-Scholes pricing function, solution of the problem

∂τu(x, τ) + LΣu(x, τ) = 0, u(x, 0) = u0(x) (2.5)

The equation for π has now a source term:{
∂τπ(x, τ) + Lσπ(x, τ) + LJπ(x, τ) = f(x, τ)
π(x, 0) = 0,

(2.6)

with f(x, τ) := −∂τuΣ(x, τ)− LσuΣ(x, τ)− LJuΣ(x, τ).

2.3. Examples. In this we present three examples of commonly used models, which
will be used in the numerical simulations. These models allow for semi-analytical solutions
for specific options, which can then be used as a benchmark for assessing the accuracy of
numerical schemes. However, the technique described in this paper are applicable to arbitrary
jump-diffusion models, well beyond these examples.

2.3.1. Diffusion Models. The Black-Scholes model corresponds to σ constant andLJ =
0. It has been extended to σ function of S and t. We shall refer to these as diffusion models.
An example is the Constant Elasticity Variance (CEV) diffusion model, introduced by Cox
[8], in which the volatility function σ in (2.5) is given by:

σCEV (x, τ) := α
(
Kex−(r−d)τ

)β
, for some α > 0, β ≤ 0 (2.7)

The option pricing problem for π under the CEV diffusion model is then (2.6) with σCEV in
Lσ and LJ = 0; hence

f(x, τ) = −∂τuΣ(x, τ)− 1
2
σ2
CEV (x, τ)∂xuΣ(x, τ) +

1
2
σ2
CEV (x, τ)∂xxuΣ(x, τ).

2.3.2. Merton model. In Merton’s jump-diffusion model [13] the jump kernel J is
given by a Gaussian kernel

J(z) = JM (z) := λ
δ
√

2π
e−

(z−µ)2

2δ2 (2.8)

and the volatility function is assumed to be constant σ(x, τ) = σM .
We obtain the associated problem for π under Merton’s jump-diffusion model :{

∂τπ(x, τ) + LσMπ(x, τ) + LJMπ(x, τ) = f(x, τ)
π(x, 0) = 0,

(2.9)

with f(x, τ) = −∂τuΣ(x, τ)− LσMuΣ(x, τ)− LJMuΣ(x, τ).
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3. A sparse representation for pricing functions. Projection methods, such as the
Galerkin method, express the solution of the pricing equation in terms of a linear combination
of certain basis functions. The choice of the basis functions is important for the numerical
performance of such projection methods. In most existing approaches, the basis functions are
chosen for analytical convenience but may have little to do with the nature of the problem
and do not take into account the shape of the solution or the specific boundary conditions
which intervene in the pricing problem. An important property of such a basis is whether the
solution may be efficiently represented using a small number of basis functions: this is the
so-called sparse representation property. In this section we construct a family of functions
which is adapted to the pricing problem in the sense that solutions of the pricing equations
will admit a sparse representation in this basis.

Solutions of the Black-Scholes equation with constant volatility have the following sym-
metry: u

(
1
y , τ
)

= 1
yu(y, τ). It thus seems natural to work first with time and price dependent

volatilities which yield similarly symmetric solutions. As we shall see, volatility functions
which satisfy the following symmetry condition will play a special role:

σ(y, τ) = σ

(
1
y
, τ

)
∀y, τ. (3.1)

For any volatility function σ : R× [0, T ] 7→ R+, we can decompose σ2 into a symmetric part
and an antisymmetric part:

σ2(y, τ) =
σ2(y, τ) + σ2

(
1
y , τ
)

2︸ ︷︷ ︸
σ2
S

+
σ2(y, τ)− σ2

(
1
y , τ
)

2
(3.2)

The corresponding Black-Scholes operator can be similarly decomposed as

Lσ = LσS −
σ2(y, τ)− σ2

(
1
y , τ
)

2
∂yy︸ ︷︷ ︸

LσA

(3.3)

3.1. Definition of basis functions. For a diffusion problem we introduce the following
sequence of functions:

ωi(x) = ωSi (x) := LσS [uσi ](x, T ) ∀i = 1, . . . , n
ωi+n(x)= ωAi (x) := LσA[uσi ](x, T ) ∀i = 1, . . . , n (3.4)

where uσi is the Black-Scholes solution with constant volatility σi, i.e. the solution of (2.5)
with Σ = σi . To handle the case of models with jumps, we furthermore define

ωi(x) = ωSi (x) := LσM [uσi ](x, T ) ∀i = 1, . . . , n

ωi+n(x) = ωJi (x) := LJ [uσi ](x, T ) ∀i = 1, . . . , n
(3.5)

with the same notations. Note that the basis functions independent of time.
We denote by I the number of basis functions. In general I = 2n, except if (3.1) holds

in which case I = n as explained below.
REMARK 1. As we shall see, it is not necessary to work with the decomposition (3.2)-

(3.3). If LσA = 0 then any symmetric σ will do in Lσ , including a constant σ0 /∈ {σi, i ≥ 1}.
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Similarly if LσA 6= 0 then ωAi may be defined with Lσ instead of LσA. This gives the following
alternative basis in the case of CEV with σ defined by (2.7):

ωi(x) = ωBSi (x) := Lσ0 [uσi ](x, T ) ∀i = 1, . . . , n
ωi+n(x)= ωσi (x) := Lσ[uσi ](x, T ) ∀i = 1, . . . , n. (3.6)

3.1.1. Evaluation of basis functions. With the notation vi = σi
√
T , ∀i = 1, . . . , n a

straightforward computation leads to:

ωSi (x) = −σ
2
S(x,T )
2vi

1√
2π
e
− 1

2

(
x
vi
−vi2

)2

ωAi (x) = −σ
2(x,T )−σ2( 1

x ,T)
4vi

1√
2π
e
− 1

2

(
x
vi
−vi2

)2

.

The computation of ωJi (x) requires evaluating a convolution term
∫

R u(x + z)J(z)dz : effi-
cient algorithm using fast Fourier transforms are available when the characteristic function of
the log-price is known [5, 11].

PROPOSITION 3.1. In the Merton model, we have the following expression for ωJi (x)
basis function

ωJi (x) = λ

(
ex+µ+

δ2

2 N (d1)−N (d2)− uσi(x, T )−
[
eµ+

δ2

2 − 1
]
∂xuσi(x, T )

)

where d1 =
x+µ+δ2+

v2
i

2√
δ2+v2

i

, d2 =
x+µ−

v2
i

2√
δ2+v2

i

,

with N (y) := 1√
2π

∫ y

−∞
e−

t2

2 dt. (3.7)

The proof is given in appendix A.

3.1.2. Examples. In this section we plot the basis functions associated to call options
in various models: Black-Scholes with constant volatility (B-S), the Constant Elasticity of
Variance (CEV) diffusion model and the Merton jump-diffusion model. In these examples
uσi is the Black-Scholes formula for a call option with strike K = 42, where σi spans the
following range of volatilities:

{σi}i=1..5 = 0.070, 0.124, 0.221, 0.393, 0.7 (3.8)

The spot price is S0 = 40, the continuous risk-free interest rate is 10% and the dividend yield
is 2%. We choose σ0 = 0.15. For CEV diffusion model we use β = −0.3 and α = σ0K

−β .
Merton parameters for the Lévy density function are λ = 0.4, µ = 0.5 and δ = 0.6 and
σM = σ0. Note that µ 6= δ2

2 (see Proposition 4.6).
The B-S basis (respectively CEV and Merton) functions are plotted in Fig. 3.1 (respec-

tively in Fig. 3.2 and in Fig. 3.3).
The basis functions decay exponentially to zero at infinity.

3.2. Sparse representation property. In the CEV diffusion model and the Merton
jump-diffusion model the pricing function for call options has a semi-analytical solution
see [17, 13]. We can thus test whether this exact solution is well represented by a linear
combination of a few basis functions, and whether this representation is accurate enough for
applications by projecting this exact solution π(x, τ) on the basis {ωi}i=1,..,I .
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FIG. 3.1. Plots of ωBSi for a call option with the 5 σi defined in (3.8) versus x, the Log Forward Moneyness
(LFM) variable.
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FIG. 3.2. Plots of ωCEVi for a call option with the 5 σi defined in (3.8) versus x, the Log Forward Moneyness
(LFM) variable.

To numerically compute this projection, we build the Gram matrix for the L2-scalar
product and solve the associated linear system with GMRES; we have also tested SVD (using
svdcmp.c of Numerical Recipes in C [15] and a least square solver using SVD, dgelss.c
of LAPACK); While GMRES is usually faster, it is actually safer to use SVD so as to avoid
a loss of precision for high values of I . Nevertheless, the results displayed here are obtained
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FIG. 3.3. Plots of ωJi for a call option with the 5 σi defined in (3.8) versus x, the Log Forward Moneyness
(LFM) variable.

with GMRES.
We define Ω the finite computational domain for numerical integration and Ωε is a small

domain around spot price where errors are computed. Ωε is defined as [spot.e−σm
√
T , spot.eσm

√
T ]

for σm = 0.15 in the CEV case and σm =
√
σ2 + λ(µ2 + δ2) = 0.5162 in the Merton

model.
To study the accuracy of the projection we plot for both models the L2 relative pricing

error:

εp(τ) =
∫
Ωε

[πI(x,τ)−π(x,τ)]2dx∫
Ωε

[π(x,τ)]2dx
(3.9)

expressed in percentage (%), as function of n. The σi are distributed in the segment [Σmin,Σ]
according to the inverse of the square root (see Proposition 4.1. For the CEV model, we
choose Σmin = 0.03 and Σ = 0.3. The results obtained are shown in Fig. 3.4.

For Merton model, 2n basis functions are defined as in (3.5) with σ = σ0, Σmin = 0.07
and Σ = 0.7 are arbitrary chosen. The results are shown in Fig. 3.5.

In both cases the basis is observed to yield a sparse representation: the accuracy grows
rapidly with the size of the basis n, allowing to retain a small number of basis functions in
practice.

4. Basis property. We now proceed to show that the family of functions constructed
above is indeed sufficient to represent any solution of the pricing equation (2.1).

4.1. The basis for diffusion operator.

4.1.1. Convergence. We choose to work with calls and with the formulation using the
forward moneyness y and time-to-maturity τ . The basis functions are solutions at time τ = T
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FIG. 3.4. The projection error εp(T ) (see equation 3.9) expressed in % and plotted in log scale for a call
option under CEV volatility model w.r.t. the size of the basis n = I/2. The error is computed on Ωε = [28.6, 56].
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FIG. 3.5. The projection error εp(T ) (see equation 3.9) expressed in % and plotted in log scale for a call
option under Merton model w.r.t. the size of the basis n = I/2. The error is computed on Ωε = [12.6, 127].
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of

∂τv −
σ2y2

2
∂yyv = 0, in R× [0, T ], v(y, 0) = (y − 1)+

for some σ. Using the well known analytical solution of the Black-Scholes equation with
constant volatility σi:

v : = erτ

K Call(S,K, σi, t, T )

= erτ

K

[
SN

(
ln y
σi
√
τ

+ σi
√
τ

2

)
−Ke−r(T−t)N

(
ln y
σi
√
τ
− σi

√
τ

2

)]
= 1

2

(
y
[
1− erf

(
− ln y

σi
√

2τ
− σi

√
τ

2
√

2

)]
− 1−erf

(
ln y

σi
√

2τ
− σi

√
τ

2
√

2

))
Therefore

Lσv := −σ
2(y, T )y2

2
∂yyv

= − σ2(y,T )√
2π2σi

√
τ
e
− 1

2

[
ln2 y
σ2
i τ
−ln y+

σ2
i τ
4

]
= C0 σ

2(y, T )
√
ye
− ln2 y

2σ2
i τ

(4.1)

where C0 = − e
−

1
8σ

2
i τ√

2π2σi
√
τ

does not depend on y.

REMARK 2. Notice that σ−2(y, T )y−1/2Lσv is an even function of ln y. Accordingly,
functions which do not have this symmetry cannot be written as a linear combination of
Lσvσi .

PROPOSITION 4.1. Consider the set of constant volatilities σi = i−1/2c, i = 1, 2, 3...
for some real c > 0. Let vi be the Black-Scholes Call at time T with constant volatility σi and
let ωi = Lσvi; Then {ωi} is a basis for the set of continuous functions f : R+ → R which
decay exponentially fast at +∞ and are such that

f

(
1
y

)
= f(y)

σ2(y, T )

yσ2
(

1
y , T

) ∀y > 0.

Proof. : According to (4.1), ωi is proportional to
√
yσ2(y, T )e−i

(ln y)2

2c2T . Let z = y
y+1

and set

ϕ(z) = exp(− 1
2c2T (ln

z

1− z
)2), z ∈ [

1
2
, 1].

Consider the algebra generated by {ϕ(z)i}i=1,2..; by the Stone-Weiestrass theorem it is a
basis for the continuous functions on [ 1

2 , 1] which are zero at 1
2 and 1, because z → ϕ(z)

is a separating function on [ 1
2 , 1] (i.e. ϕ(z) 6= ϕ(z′) for all z 6= z′ ∈ ( 1

2 , 1)). Given a
function y → f(y); its corresponding function z → f( z

1−z ) can be written on the basis
ϕi(z), therefore:

f(y) =
∑
i=1,2..

fiϕ(
y

1 + y
), ∀y ∈ [1,+∞)
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If f has a symmetry about y = 1 the decomposition can be extended to y ∈ [0, 1]. Hence if
g(x) is even in ln y ( i.e. g(− ln y) = g(ln y)), we decompose g(ln y) := f(y)σ−2(y, T )/

√
y

on the basis ωi; this corresponds to the following restriction on f :

yf

(
1
y

)
= f(y) (4.2)

PROPOSITION 4.2. If σ(y, τ) = σ
(

1
y , τ
)

and f(y, τ) = yf
(

1
y , τ
)

for all y > 0 then
the solution of

∂τv −
σ2(y, τ)y2

2
∂yyv = f, v(y, 0) = 0, in R+ × [0, T ] (4.3)

is invariant under the transformation v(y)→ y v
(

1
y

)
.

Proof. : Let us prove that yv
(

1
y , τ
)

satisfies the PDE when v does. Let w(y, τ) :=

yv
(

1
y , τ
)

. Notice that

∂yyw(y, τ) =
1
y3
∂zzv(z, τ)|z= 1

y
.

Therefore

1
y
∂τw = ∂τv

(
1
y
, τ

)
=
σ2
(

1
y , τ
)

2y2
∂zzv(z, τ)|z= 1

y
=
σ2(y, τ)y2

2
∂yyw(y, τ)

which means thatw verifies also the PDE. Equation (4.2) differentiated at y = 1 gives f(1) =
2f ′(1), therefore if v+ is the unique solution of (4.3) on [1,∞) and v− is constructed from
v+ on [0, 1] by (4.2), then v+′(1) = v−

′(1) and so v± is the unique solution of (4.3)on R+.

Consequently, we have the following result:
THEOREM 4.3. Let uσ be the solution the pricing equation (2.1) without jumps (LJ = 0)

with a non constant volatility σ(S, t) satisfying the symmetry condition

σ(S, t) = σ(
K2

S
e−2(r−d)(T−t), t), ∀y > 0, t ∈ (0, T ) (4.4)

Let Σ, c be real positive numbers and σi = c/
√
i. Let uΣ, uσi be the solutions of the Black-

Scholes equation (2.5) with the corresponding volatilities. Then

uσ(x, τ) = uΣ(x, τ) +
∞∑
i=1

αi(τ)Lσuσi(x, T ) (4.5)

for some time dependent but x-independent αi.
Proof. : The data f and σ have the properties required by Proposition 4.2, so uσ − uΣ

can be decomposed on the basis {wi} .

THEOREM 4.4. Assume that σ satisfies the symmetry property 4.4. Let z = e−
x2

2c2T ; as-
sume that in some interval [xm, xM ] all derivatives ∂izσ and ∂izuσ are bounded, i = 1, . . . , I .
Then the projection error

uΣ(x, τ) +
I∑
i=1

αi(τ)Lσuσi(x, T )− uσ(x, τ) (4.6)
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decays to zero exponentially in I near all x, τ where all derivatives of uσ and uΣ are uni-
formly bounded.

Proof. : Let z = exp(−x2/(2c2T )), (see Proposition (4.1)), fix the time τ and consider
f(z) = (uσ(x, τ)− uΣ(x, τ))e−x/2/σ2, with σ = σ(x, T ).

Then according to (4.1)

f(z) =
∞∑
i=1

αi(τ)zi

Note that by comparison with a Taylor expansion this shows that αi(τ) = f (i)(0)/i!. Ex-
ponential convergence of uI → uσ will hold if f (i)(0) is bounded uniformly in i. This is
difficult to prove directly because z = 0 corresponds to x = ±∞, i.e. S = 0 or +∞. On the
other hand we also know that, for any z0 ∈ (0, 1), if the f (i)(z0) are uniformly bounded

f(z) =
∞∑
i=0

f (i)(z0)
i!

(z − z0)i

This gives another expression for the αi where its exponential decay is clearly seen:

αj =
∞∑
i=j

Cji
f (i)(z0)

i!
(−z0)i−j =

∞∑
p≥0

f (j+p)(z0)
p!j!

(−z0)p ⇒ |αj | ≤
e−z0

j!
max
i
|f (i)(z0)|

This proves exponential convergence of the interpolation error of the exact solution at all
points where all the derivatives of uσ and uΣ are bounded. To prove that the numerical
approximation computed by the Galerkin method, has the same property we use the coercivity
of the bilinear form of the Black-Scholes PDE and recall that in the H1 norm the computed
error is less than the interpolation error, up to a multiplicative constant.

REMARK 3. To prove differentiability with respect to z of uσ the easiest is to write the
PDE in this variable:

∂τv − 2∂z(σ2z2 ln
1
z
∂zv) + βz∂zv = f,

with β = 2z ln
1
z
∂zσ

2 + σ2(

√
ln

1
z
− 1 + 2 ln

1
z

) (4.7)

Variational methods with Sobolev weighted norms (as in [1]) shows that the solution exists
with the regularity of f plus 2 except at z = 0 and z = 1 the Strike). When symmetry does
not hold, the PDE must be studied by different methods on y ∈ (0, 1) and y ∈ (1,∞) and
patched at y = 1. It is very likely that the regularity holds also but since the problem is not
standard; a detailed study will be done separately.

REMARK 4. For the pricing equation (2.1) with non constant volatility with symmetry
and no jump, any symmetric σ can be used to construct the basis, not just Lσ . This justifies
the alternative use of a constant vol σ0 in Remark 1. Once this is done the remaining basis
vector can be any family of independent vectors, either LσCEV uσi or LσAuσi .

4.1.2. Numerical Validation. In this section, we check numerically the importance of
the symmetry condition in the volatility. To this purpose we consider a Gaussian volatility
(GV) model with σ(x, τ) = e−0.1x2

. On a call option , we choose to compare εp(T ), the
relative error introduced in 3.9) for 3 cases: 1) the Black-Scholes model, 2) Gaussian volatility
model which both verify the symmetry condition and 3) the CEV model which doesn’t.
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Time derivatives are discretized by an implicit Euler scheme. Space discretization is
done with the finite element method of order one. To focus on εp(T ) only, we have chosen a
very fine mesh and a very small time step. The numerical solution π, considered as ”exact”,
is projected (πn) on a reduced basis of size I = n defined as

For BS model by ωi(x) = ωBSi := Lσ0 [uσi ](x, T ) ∀i = 1, . . . , n

For GV model by ωi(x) = ωGVi := LσGV [uσi ](x, T ) ∀i = 1, . . . , n

For CEV model by ωi(x) = ωCEVi := LσCEV [uσi ](x, T ) ∀i = 1, . . . , n

and εp(T ) is computed.
We plot in Fig. 4.1 the results versus the number of basis functions. We observe a good

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 5  10  15  20  25  30  35

p(T) for various volatility models w.r.t. n (in %)

n= size of the basis

p(T) for BS 

p(T) for CEV 

p(T) for Gaussian volatility 

FIG. 4.1. Relative errors εp(T ) on Lσ basis only on Ωε = [28.6, 56]. The curve for CEV is to be compared
with Fig .3.4; it shows that when the symmetry condition is not satisfied the ωi(x) = ωCEVi are not sufficient.

convergence behavior for the two symmetric cases and a non decreasing error for the CEV
model which does not fulfill the symmetry condition.

4.2. The basis in a special case of CEV model. For the basis presented in (3.6) we can
prove the following property:

PROPOSITION 4.5. For CEV model, {Lσ0uσi}i ∪ {LσCEV uσi}i is a basis of the space
of C∞ functions which decay exponentially at infinity.

Proof. : As seen earlier Lσ0uσi is proportional to hi := exp(− x2

2σ2
i T

).
With the constants σi chosen so as to make a basis for the even functions of x which

decay exponentially at infinity, let us show that for any β, any fast decaying function at
infinity f can be written as

f(x) = e
x
2

∑
i

(ai + bie
2βx)hi(x) (4.8)
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It will prove the proposition because {LσCEV uσi}i is proportional to e2βxhi(x) for some
appropriate β.

To prove (4.8) let g(x) = f(x)e−
x
2 /(e2βx − e−2βx). As g(x) + g(−x) is even in the x

variable there exist ai such that

g(x) + g(−x) =
∑
i

aihi(x)

Similarly there exist bi such that

e−2βxg(x) + e2βxg(−x) =
∑
i

bihi(x)

By elimination of g(−x) we find

(e2βx − e−2βx)g(x) = e2βx
∑
i

aihi(x)−
∑
i

bihi(x)

In terms of f it gives

(e2βx − e−2βx)f(x)e−
x
2 /(e2βx − e−2βx) =

∑
i

(e2βxai − bi)hi(x)

which proves the result.

4.3. Convergence in a jump-diffusion example. We will now show convergence of
the projection on a specific jump-diffusion model.

To prove that {Lσuσi ∪ LJuσi}i forms a basis of a subspace U of the square integrable
functions which decay exponentially fast at infinity, we shall use the property that if L is
continuous and injective from U to LU and ui is a basis of U then Lui is a basis of LU .

We know from the previous theorem that Lσ(uσi − uΣ) is a basis for the functions u ∈
H2(R), with exponential decay at infinity and such that u(−x) = e−xu(x); therefore, since
(Lσ)−1 is continuous, {uσi − uΣ}i∈I is a basis for the functions of H2(R) with exponential
decay at infinity and which satisfy the same symmetry condition, because Lσ preserves the
condition.

Consequently {LJ(uσi − uΣ)}i∈I is a basis for the space of functions which satisfy a
symmetry condition, which we now proceed to establish.

First we notice that by definition of LJ and by (2.8) we have

J(−z) = e−
2µz
δ2 J(z)

Hence, with z′ = −z and c = λ(e
δ2

2 +µ − 1),

LJu(−x) =
∫

R
u(z − x)J(z)dz − λu(−x)− c∂xu(−x)

= −
∫

R
u(−z′ − x)J(−z′)dz′ − λu(−x)− c∂xu(−x)

= −e−x[
∫

R
e−z

′
u(x+ z′)e−

2µ
δ2
z′J(z′)dz′ + (λ+ c)u(x)− c∂xu(x)] (4.9)

because u(−x) = e−xu(x) implies that ∂xu(−x) = e−x(u(x)− ∂xu(x)).
If µ = − 1

2δ
2 then

LJu(−x) + (λ+
c

2
)u(−x) = −e−x(LJu(x) + (λ+

c

2
)u(x))
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Because this is the complementary condition to u(−x) = e−xu(x), {Lσuσi ∪ LJ(uσi −
uΣ) + (λ+ c

2 )(uσi − uΣ)}i is a basis of the whole space.
Indeed let v be any smooth function decaying exponentially fast at infinity. The following

identity holds

v(x) =
1
2

[v(x) + exv(−x)] +
1
2

[v(x)− exv(−x)] .

It shows that v has been written as a sum of a function verifying the first symmetry condition
plus a function verifying the second symmetry condition.

Now (λ+ c
2 )(uσi−uΣ) can be decomposed on the first set of basis functions, so {Lσuσi∪

LJ(uσi −uΣ)}i is also a basis. Therefore any smooth function v which decays exponentially
fast at infinity can be written on that basis. So we have proved the following:

PROPOSITION 4.6. In a Merton jump-diffusion model with µ = − 1
2δ

2 the pricing func-
tion can be decomposed on {Lσuσi ∪ LJuσi}i.

REMARK 5. The convergence is exponential for the same reason as in the symmetric
case.

REMARK 6. When neither σ nor J satisfy the conditions of the last two theorems,
still we suspect that we have a basis because the two operators have symmetries that are
“complementary”. In fact the numerical simulations show convergence even when the con-
ditions of the above theorem are not verified! Note that we could alternatively use {Lσuσi ∪
e−βxLσuσi}i, for some β > 0 as in the case of CEV, but this may not necessarily lead to a
sparse representation.

5. A Galerkin scheme with a reduced basis.

5.1. Galerkin method. The Galerkin method is a general and robust methodology to
approximate a partial (integro-) differential equation via its variational formulation. It has
already been applied to the PIDE problem (2.6): the reader is refered to [12] and [6] for
more details and existence results. If (·, ·) denotes the L2 scalar product on R, one seeks
π(·, t) ∈ H1(R), (the Sobolev space of order 1), solution of

∂τ (π, ω) + aσ(π, ω) + (LJπ, ω) = (f, ω) , ∀ω ∈ H1(R)

with aσ(π, ω) =
∫ +∞

−∞

[
σ2

2 ∂xπ∂xω +
(
σ∂xσ + σ2

2

)
∂xπ ω

]
(5.1)

A finite number of independent functions ωi ∈ H1(Ω) are chosen to generate a subset
HI ⊂ H1(Ω):

HI = Sp{ωi}i=1,..,I .

and we look for an approximation of πI ∈ HI of π :

πI(x, τ) =
I∑
j=1

αj(τ)ωj(x)

by solving

∂τ (πI , ωi) + aσ(πI , ωi) + (LJπI , ωi) = (f, ωi) , ∀i = 1, .., I (5.2)

In effect this is a linear system of differential equations of the form

Mα̇(τ) +Aα(τ) = F (τ), where α(τ) = {αj(τ)}j=1,...,I

and Ai,j = aσ(ωj , ωi) + (LJωj , ωi) and with Mi,j = (ωj , ωi) , Fi = (f, ωi) .
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An Euler implicit scheme is used to discretize the time derivative:

(M + δτA)αn+1 = Mαn + δτFn (5.3)

5.2. Numerical Results. We use this scheme to price a call option under the CEV dif-
fusion model and the Merton jump-diffusion model. To study the performance of the method,
we use two distinct error metrics, expressed in percentage. The first one is the relative pric-
ing error ε(S). Another appropriate error metric for pricing applications is the relative error
εΣ(S) expressed in term of Black-Scholes (B-S) implied volatility: We define

ε(S) =
|uI(S, 0)− uExact(S, 0)|

|uExact(S, 0)|
and εΣ(S) =

|ΣI(S, 0)− ΣExact(S, 0)|
|ΣExact(S, 0)|

(5.4)

where Σ is the implied volatility computed by the inversion of B-S formula with respect to the
volatility σ. All the parameters for models are those presented in §3.1.2 . The linear system
associated to the Galerkin discretization is solved with a GMRES solver.

5.2.1. CEV model. We first present the numerical results obtained for CEV model. In
Fig. 5.1, we first plot the relative error ε(S) in option price and then in term of implied
volatility (Fig. 5.2 and 5.3). The convergence results are shown in the two tables 5.2.1 and
5.2. We recall that Ωε = [28.6, 56].

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 30  35  40  45  50  55  60

S = underlying variable

(S) = relative error in % n= 5   
n= 9   
n= 17
n= 33

FIG. 5.1. Pointwise relative error ε(S) (defined in 5.4 and expressed in percentage) for a European call option
under CEV’s solution with respect to the underlying variable S ∈ Ωε for different values of n, the number of basis
vectors (recall that the total number of vectors is 2n+ 1). The results are plotted in logscale.
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n I CI(Spot, 0) ε(Spot) ||ε(S)||2 ||ε(S)||∞
5 10 22.584 0.178 % 2.337 % 8.757 %
9 18 11.511 0.036 % 0.078 % 0.254 %

17 34 11.509 0.014 % 0.075 % 0.256 %
33 66 11.509 0.017 % 0.074 % 0.253 %

Exact 11.507
TABLE 5.1

Relative errors ε(S) for a European call option price under CEV model w.r.t. the size of the basis. The L2 and
L∞ errors are computed on Ωε

n I ΣI(Spot, 0) εΣ(Spot) ||εΣ(S)||2 ||εΣ(S)||∞
5 10 0.6703 0.303 % 1.940 % 5.721 %
9 18 0.1515 0.174 % 0.322 % 1.274 %
17 34 0.1514 0.067 % 0.277 % 0.815 %
33 66 0.1514 0.081 % 0.277 % 0.897 %

Exact 0.1513
TABLE 5.2

Relative errors εΣ(S) on implied volatility for a European call option under CEV model w.r.t. the size of the
basis. The L2 and L∞ errors are computed on Ωε

 0.14

 0.145

 0.15

 0.155

 0.16

 30  35  40  45  50  55  60

S = underlying’s variable

(S)  = B-S implied volatility

n= 5   
n= 9   
n= 17
n= 33
Exact 

FIG. 5.2. CEV implied volatility for a European call option w.r.t. the underlying variable S ∈ Ωε for various
size of basis.

The results show that 18 basis functions (i.e. n = 9) are sufficient to reach an acceptable
accuracy under both error metrics. The gain obtained by adding more basis functionals is
small.

5.2.2. Merton model. For this model, we choose to use the least-square solver dgelss.c
of LAPACK. We plot in Fig. 5.4, 5.5 and 5.6 and in tables 5.3 and 5.4 the same indicators as
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FIG. 5.3. Relative Error of CEV implied volatility, εΣ(S) for a European call option w.r.t. the underlying
variable S ∈ Ωε for various size of basis. The results are expressed in percentage and plotted in logscale.

n I Ch(Spot) ε(Spot) ||ε(S)||2 ||ε(S)||∞
5 10 22.584 0.178 % 2.337 % 8.757 %
9 18 22.632 0.033 % 0.065 % 0.120 %
17 34 22.625 0.005 % 0.022 % 0.049 %
33 66 22.624 0.003 % 0.018 % 0.032 %

Exact 22.624
TABLE 5.3

Relative errors ε(S) for a European call option price under Merton model w.r.t. the size of the basis. The L2

and L∞ errors are computed on Ωε

before. We recall Ωε = [12.6, 127]

The results obtained for the Merton model are rather good. The basis is efficient and as
accurate as a standard finite element method on a refined mesh but at a lower computational
cost as the linear system to solve at every time step is much smaller.

5.2.3. Study of the spectrum for Merton model. Here we are interested in the spec-
trum of the matrix C = M + δτA of the Galerkin scheme obtained for 66 basis functions
(see (5.3) with δτ = 0.05).

Figure 5.7 illustrates the exponential decay of the C-matrix eigenvalues (normalized by
the trace of the matrix), a key ingredient in the search for a reduced basis as previously
explained. Note that the reduction of the decay rate that occurs after the fourtieth eigenvalue
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FIG. 5.4. Pointwise relative error ε(S) (defined in 5.4 and expressed in percentage) for a European call option
under Merton solution with respect to the underlying variable S ∈ Ωε. The results are plotted in logscale.

n I Σh(Spot) εΣ(Spot) ||εΣ(S)||2 ||εΣ(S)||∞
5 10 0.6703 0.303 % 1.940 % 5.721 %
9 18 0.6727 0.057 % 0.171 % 0.315 %
17 34 0.6724 0.008 % 0.037 % 0.063 %
33 66 0.6724 0.004 % 0.029 % 0.056 %

Exact 0.6723
TABLE 5.4

Relative errors εΣ(S) on implied volatility for a European call option under Merton model w.r.t. the size of
the basis. The L2 and L∞ errors are computed on Ωε

is surely due to numerical noise.
In Fig. 5.8 we show the relative error of the Galerkin scheme on the eigenvector basis.

We observe that 20 vectors are sufficient to achieve convergence. Moreover the convergence
rate is similar to the one observed with the basis wi, which reinforces confidence in the fact
that this basis is good and further reduction is unnecessary.

5.3. Numerical Complexity and Computing Time. If σ is a function of y and τ , it is
best to express it on an exponential and/or a polynomial basis; for instance,

σ(x, t) = σ0 + σ∞(yk +
1
yk

) +
Q∑
j=1

σj(t)e−αj ln2 y (5.5)

will lead to a symmetric solution and includes a smile-like polynomial behavior at infin-
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FIG. 5.5. Merton implied volatility for a European call option w.r.t. the underlying variable S ∈ Ωε for
various size of basis.
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FIG. 5.6. Relative Error of Merton implied volatility, εΣ(S) for a European call option w.r.t. the underlying
variable S ∈ Ωε for various size of basis. The results are expressed in percentage and plotted in logscale.

ity and zero. Then all integrals can be computed analytically which increases computation
speed. Notice that it is fast and not hard to project on (5.5) any volatility symmetric about
y = 1 and known by a set of point values and find the coefficients σj(t). Let us show that
with such volatilities the reduced basis method is as fast if not faster than the fastest of known
methods to compute a call for a general volatility σ, namely the finite difference methods.
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FIG. 5.7. Eigenvalues of the matrix C normalized by its trace, in log-scale
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FIG. 5.8. Relative error in several norms of ε(S, T ) in logscale : evolution with the number of eigenvectors in
the basis and comparison with the same numbers of wi vectors in place of eigenvectors.
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If (5.5) is used, then the Q+ 2 matrices are computed once and for all at the cost of O((Q+
2)I2) operations. The linear systems have a rather low condition number (10−7 for I = 8)
but they can be solved accurately by LU factorization if I < 15 beyond which GMRES or
SVD must be used. The right hand sides are computed at a cost of O(I Q) operations at each
time step.

Finally if M is the number of time steps the total number of operations is dominated
by the computation of the right hand sides and the resolution of the linear systems C =
(Q I + I3) M . Typically M ∼ I and Q < I so C ∼ I4. Compare this with a time-implicit
finite difference method with M ′ time steps and N ∼ M ′ mesh points for which the com-
plexity is at best NM ′ ∼ N2. Hence the reduced basis method will be competitive when
I <
√
N .

These tests confirm that this method is indeed much faster than the best finite difference/finite
element solution of the PDE. Parameters are adjusted so that the precision is 0.5% or less.
For instance, an implicit Euler in time finite difference scheme with M’=100 time steps and
200 S-mesh points where the linear system at each iteration is solved by a Gauss factoriza-
tion – required because σ is time dependent – takes 0.0014” (measured by computing 1000
computations and divide the resulting CPU time by 1000 ).
On a reduced basis of 10 vectors with implicit time-stepping, the computation takes 0.00018”
for Q = 1. For non-symmetric volatilities I must be doubled but the reduced basis method
is still ahead. For jump diffusion PIDE the method is even more competitive because a finite
difference scheme usually requiresO(M N2) operations, because of the integrals on the right
hand sides. With Merton’s model and I = 17 for the same precision, a mesh size of 160 and
200 time steps are needed and the reduced basis method is 6 times faster.

These numbers correspond to computations done on an Intel Core duo 1.86 GHz using only
one of the two cores.

6. Application to model calibration. The fact that one can write any call Cσ , solution
of the pricing equation (2.1) for a general volatility σ(S, t), as

Cσ(S, t) = CΣ(S, t) +
I∑
i=1

αi(t)(Cσi(S, 0)− CΣ(S, 0)) (6.1)

has interesting consequences for calibration.
In general one observes at t = 0 some calls {uj}Jj=1 all based on the same asset S; these

have strikes Kj and maturity Tj .
In applications one wishes to choose the function σ(., .) to reproduce these call option

prices. The call option, as a function of maturity T and strike K, verifies Dupire’s equation
[9]:

∂Tuσ −
σ2

2
∂KKuσ + r∂Kuσ = 0, uσ(K, 0) = (S −K)+ (6.2)

The structure of this equation is very similar to the backward equation studied above, with
a sign change. We may thus use our reduced basis approach for solving it. The calibration
problem is an inverse problem for the Dupire equation (6.2). A frequently used method is to
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formulate it in terms of an output least squares optimization problem:

σ = arg minσ

J∑
j=1

|uσ(Kj , Tj)− uj |2 (6.3)

When a decomposition similar to (6.1) but with K,T as variables, then (6.3) is a sum of
independent problems at each time Tj : for each T ′ one solves

α(T ′)= arg min
α

∑
j:Tj=T ′

|u(Kj , T
′;α)− uj |2 :

u(Kj , T
′;α) = uΣ(Kj , T

′) +
I∑
i=1

αi [uσi(Kj , TM )− uΣ(Kj , TM )] (6.4)

where TM = maxTj is the reference time chosen to build the basis. The volatility surface is
recovered from Dupire’s equation and uσ(K,T ) = u(K,T ;α); the derivatives with respect
to K are computed analytically.

The method is tested on the data shown in Table 6.1 . The rate r is constant: r = 0.03.
The spot price is 1418.3. In this example there are 6 times T ′. The basis is made of
Black-Scholes calls with volatility 0.3/

√
i, i=2..9. The Black-Scholes solution used for the

translation corresponds to Σ = 0.3. At each T ′ a set of 8 αi is computed by solving (6.4) by
a conjugate gradient method with a maximum of 300 iterations. We found the optimization
more efficient if αi is replaced by 10 sinαi; this prevents large values. Results are shown in
Figure 6.1.

The method is even faster than fitting an implied volatility, but it gives the local volatility
only at the times corresponding to the maturity of an observation. The method seems stable
and accurate. Restrictions on α such as α ∈ (0, 1) can be applied for more stability but it
may deteriorate the accuracy.

7. Conclusion. We have presented a reduced basis method for solving partial integro-
differential equations which arise in option pricing. Our basis functions are constructed in
term of solutions to the Black-Scholes equation; their analytical tractability allows for effi-
cient numerical computations and their qualitative properties match those of the solutions in
more complex models, yielding correct asymptotic behavior without further effort.

Convergence has been proved for general scalar diffusion models and for special cases
of jump diffusion models, with exponential convergence for models verifying a symmetry
condition. The numerical tests confirm the accuracy and the efficiency of this reduced basis in
the sense that it performs better than, for instance, numerical construction of a reduced basis
by SVD techniques. Less than twenty basis functions are usually sufficient to efficiently solve
the problems. The method is much faster than finite difference schemes for the Black-Scholes
PDE or PIDE. For large number of basis functions, the resulting linear systems may be ill
conditioned; fortunately, precision levels sufficient for applications in finance are attained
well before this threshold is reached. A deeper analysis would require a posteriori estimates
to fix the number of basis functions.
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available from http://www.optioncity.net, 2001
[12] ANA-MARIA MATACHE, TOBIAS VON PETERSDOFF AND CHRISTOPH SCHWAB, Fast deterministic pricing
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Appendix A: proof of Proposition 3.1. With the log forward moneyness variable x, the

probability density function under the Black-Scholes model is: ρτ (x) = 1√
2πσ
√
τ
e
− 1

2σ2τ

(
x+

σ2τ
2

)2

and we introduce v = σ
√
τ

ωJ(x) := LJ [uσ](x, v) =
∫

R
[uσ(x+ z, v)− uσ(x, v)− (ez − 1)∂xuσ(x, v)]J(z)dz

=
∫

R
uσ(x+ z, v)J(z)dz − λuσ(x, v)− λ(e

δ2

2 +µ − 1)∂xuσ(x, v)

We note γ = x+ z + s and X = x− σ2τ
2∫

R
uσ(x+ z, v)J(z)dz =

∫
R

∫
R

(
ex+z+s − 1

)+
ρτ (s)dsk(z)dz

=
∫

R
(eγ − 1)+

[∫
R
ρτ (γ − (x+ z))k(z)dz

]
dγ

= λ√
2(δ2+v2)π

∫ ∞
0

(eγ − 1) e
− 1

2[δ2+v2] [γ−X−µ]2

dγ

= λ

[
ex+µ+

δ2

2 N

(
x+µ+δ2+

v2

2√
δ2+v2

)
− I

(
x+µ− v

2

2√
δ2+v2

)]
Appendix B: Study of the spectrum of Lσ . By definition, wi, scaled so as to have a L2

norm equal to 1, is:

wi =
exp(− 1

4 ( xvi − vi)
2)√

2
√

2πvi
, with vi =

√
σ2
i T

2
because

∫
R
e−

y2

2 dy = 2
√

2π

When vi = i−
1
2 with some algebra one finds that

(wi, wj) =
√

vivj
2(v2

i + v2
j )

exp(−1
4

(v2
i − v2

j )2

v2
i + v2

j

) =

√ √
ij√

2(i+ j)
exp(−1

4
(i− j)2

ij(i+ j)
)

We need to establish similar expressions for (∂xwi, wj) and (∂xwi, ∂xwj).

(∂xwi, wj) =
√

vivj
2(v2

i + v2
j )

exp(−1
4

(v2
i − v2

j )2

v2
i + v2

j

)
v2
j − v2

i

2(v2
i + v2

j )
= (wi, wj)

i− j
2(i+ j)

(∂xwi, ∂xwj) =
√

vivj
16π(v2

i + v2
j )

exp(−1
4

(v2
i − v2

j )2

v2
i + v2

j

)

a2

vivj
[
∫

R
y2e−

y2

4 dy + (2a− v2
i

a
)(2a−

v2
j

a
)
∫

R
e−

y2

4 dy]

= (wi, wj)
vivj

v2
i + v2

j

(2−
(v2
i − v2

j )2

v2
i + v2

j

)

= (wi, wj)
√
ij

i+ j
(2− (i− j)2

ij(i+ j)
)

The variational form of the problem leads to the linear system for the vector α(t):

Bα̇+
σ2

2
Aα = Bf̃
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where Bij = (wi, wj), Aij = (∂xwi, ∂xwj) + (wi, ∂xwj) and f̃i is the component on wi of
the right hand side, i.e. f(x, t) =

∑
f̃i(t)wi(x).

The following tables display the first eigenvalues of A,B and A with respect to B for
different values of n, the number of σ-basis functions.

Notice the rapid decay of the eigenvalues of A and the rapid growth of those of B.



2.8874

0.5872

0.05843

0.002407

0.00003339





5.6688

1.1587

0.2167

0.02506

0.001685

0.00007929

0.000002448

0.00000005106

0.0000000008225

−0.0000000002322





8.4913

1.6717

0.3736

0.06279

0.006536

0.00052435

0.00003150

0.0000015210

0.00000005600

0.000000001366

−0.0000000009870

−0.0000000001615





11.3288

2.1722

0.5175

0.1076

0.01421

0.001498

0.0001236

0.000008636

0.0000004925

0.00000002433

−0.000000001522

0.000000001300



First 12 eigenvalues of the matrix A = ((Lσwi, wj)) for n = 5, 10, 15, 20 when σ2T = 2


0.000003812
0.0003502
0.01271
0.2203
3.3020





−0.0000000007761
−6.630× 10−11

0.000000003418
0.0000001979
0.000007586
0.0002038
0.003919
0.05291
0.4838
6.530





0.0000000001159
0.0000000005094
0.0000000009339
0.000000003368
0.0000001086
0.000002650
0.00005220
0.0008265
0.01037
0.09952
0.7257
9.7701


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Last 12 eigenvalues of the matrix B = ((wi, wj)) for n = 5, 10, 15



9.1544 + 0.9648 i

9.1544− 0.9648 i

0.8117

4.1003

2.2851





16.4818 + 3.1441 i

16.4818− 3.1441 i

9.7760 + 1.665 i

9.7760− 1.6652 i

5.2870 + 0.7487 i

5.2870− 0.7487 i

3.53077

0.7664 + 0.1090 i

0.7664− 0.1090 i

1.7905





20.6981 + 4.2722 i

20.6981− 4.2722 i

12.8389 + 3.2087 i

12.8389− 3.2087 i

0.7675

0.5482

1.5402

7.9943 + 1.9323 i

7.9943− 1.9323 i

1.7395

2.6983

4.1079 + .3209 i


First 12 eigenvalues of B−1A = ((wi, wj))−1((Lσwi, wj)) for n = 5, 10, 15, σ2T = 2

These computations where done with the following Maple9 program:
n:=5;
M:=matrix(n,n,(i,j)->sqrt(sqrt(i*j)/(i+j))*exp(-(i-j)ˆ2/(4*i*j*(i+j))));
I:=matrix(n,n,(i,j)->sqrt(sqrt(i*j)/(i+j))*exp(-(i-j)ˆ2/(4*i*j*(i+j)))*

((i-j)/(i+j)/2 + sqrt(i*j)*(2-(i-j)ˆ2/((i+j)*i*j))/(i+j)));
evalf(Eigenvals(I,M,vects));print(vects);vects:=’vects’;
evalf(Eigenvals(I,vects));print(vects);vects:=’vects’;
evalf(Eigenvals(M,vects));print(vects);vects:=’vects’;


