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Abstra
tThis paper deals with produ
tion s
heduling involving energy 
onstraints, typi-
ally ele
tri
al energy. We start by an industrial 
ase-study for whi
h we propose atwo-step integer/
onstraint programming method. From the industrial problem wederive a generi
 problem, the Energy S
heduling Problem (EnSP). We propose anextension of spe
i�
 resour
e 
onstraint propagation te
hniques to e�
iently prunethe sear
h spa
e for EnSP solving. We also present a bran
hing s
heme to solve theproblem via tree sear
h. Finally, 
omputational results are provided.Keywords: Produ
tion s
heduling, energy 
onstraints, 
onstraint propagation, ener-geti
 reasoning
1 Introdu
tionContext of the study Sin
e the last two de
ades, hard 
ombinatorial problems, mainlyin s
heduling, have been the target of many approa
hes 
ombining Operations Resear
hand Arti�
ial Intelligen
e te
hniques [13℄. These approa
hes are generally fo
used on1




onstraint satisfa
tion as a general paradigm for representing and solving e�
iently su
hproblems [23℄. At the heart of these approa
hes, a panel of 
onsisten
y enfor
ing te
h-niques is used to dramati
ally prune the sear
h spa
e. Therefore, propagation te
hniquesdedi
ated to resour
e and time 
onstrained s
heduling problems, viewed as spe
ial in-stan
es of Constraint Satisfa
tion Problems (CSPs), have been developed to speed up thesear
h for a feasible s
hedule or to dete
t early an in
onsisten
y. For instan
e the ener-geti
 reasoning [8℄, the 
ornerstone of the present study, has enabled the joint integrationof both resour
e and time 
onstraints in order to prevent the 
ombinatori
s of solving
on�i
ts between a
tivities in 
ompetition for limited resour
es.Furthermore, it is still of interest to sear
h for propagating novel types of 
onstraintsa

ording to real-world problems. The new environmental 
onstraints, but also the in-
rease of the energy 
ost, should prompt us to 
onsider as a 
ru
ial and promising issue tolook into the problems of emissions, wastes, and power 
onsumption optimization in pro-du
tion s
heduling [24℄. Real-time (pro
essor) s
heduling theory has often addressed en-ergy 
onstraints. Indeed, energy 
onsumption management is a 
riti
al issue in 
omputersystems, networks and embedded systems where many (on-line) algorithmi
 problems areraised and well studied [14℄. However, 
omplexity is a major di�
ulty for the integrationof energy 
onstraints to produ
tion s
heduling and the literature on the subje
t is rathersparse. For example, produ
tion s
heduling for steel manufa
turing has been studied, butfew papers fo
us on energy 
ost [17℄. This generally leads to the development of heuris-ti
s. For example, [4℄ propose a hierar
hi
al approa
h for s
heduling a steel plant subje
tto a global limitation on the power supplied to the furna
es. [12℄ use a de
ompositionapproa
h to solve a steel manufa
turing s
heduling problem with multiple produ
ts. Fi-nally, to the best of our knowledge, parti
ular studies fo
used on 
onstraint propagationte
hniques for energy 
onsiderations have been unexplored.Problem statement As we will see later, the produ
tion problem under study is de-�ned as a new problem 
alled the energy s
heduling problem (EnSP). The EnSP is ageneralization of the 
umulative s
heduling problem (CuSP) itself an extension of theparallel ma
hine sheduling problem (PMSP). In a PMSP, a task j has to be pro
essed onone ma
hine among a set of m ma
hines. The CuSP is an extension of the PMSP whereea
h task needs a subset k < m (k 6= 1) of ma
hines. Furthermore, the industrial prob-lem we study in this paper involves furna
es that 
an be modeled by parallel ma
hines.Parallel ma
hine s
heduling has been widely studied [6℄, espe
ially be
ause it appears asa relaxation of more 
omplex shop or proje
t s
heduling problems, like the hybrid �owshop s
heduling problem or the resour
e-
onstrained proje
t s
heduling problem. Several2



methods have been proposed to solve this problem. In [5℄, a 
olumn generation strategy isproposed. [18℄ propose a linear program and an e�
ient heuristi
 for large-size instan
esfor the resolution of priority 
onstraints and family setup times problem. [22℄ solve theproblem with a tree sear
h method. [16℄ 
ompare two di�erent bran
hing ss
hemes andseveral tree sear
h strategies for the problem with heads and tails for makespan mini-mization. In [1℄, a 
onstraint programming-based approa
h is proposed to minimize theweighted number of late jobs. In [21℄, a hybrid Integer/Constraint Programming approa
his proposed to solve a minimum-
ost assignment problem. Among the variants presentedin the latter, the most e�e
tive strategy is to 
ombine a tight and 
ompa
t, but approx-imate, mixed integer linear programming (MILP) formulation with a global 
onstrainttesting single ma
hine feasibility. Many variants or extensions of the CuSP have been
onsidered, for whi
h feasibility tests and adjustment rules have been issued, based forexample on the energeti
 reasoning [8℄.Paper obje
tives & organization The obje
tive of this paper is twofold. First, wepresent in Se
tion 2 an industrial 
ase-study involving energy 
onstraints and obje
tiveslinked to ele
tri
 power 
onsumption, and a two-step 
onstraint programming and mixed-integer linear programming framework to solve it, as well as a �rst set of 
omputationalexperiments. Se
ond, in Se
tion 3, we fo
us on the energy part of the industrial problem,issueing a generi
 problem, the Energy S
heduling Problem (EnSP). To enhan
e the pre-vious approa
h, we propose a formal des
ription for the propagation of energy 
onstraintsbased on an extension of the energeti
 reasoning. In Se
tion 4, we present dominan
erules and pra
ti
al assumptions in order to redu
e the sear
h spa
e, a bran
hing s
hemeto solve the problem via tree sear
h, as well as 
omputational results. Se
tion 5 highlightsthe 
on
lusions of the paper and proposes some future resear
h dire
tions.2 A two-step approa
h for the industrial problemIn this se
tion, we present an industrial 
ase-study where energy 
onstraints have a greatimportan
e in s
heduling. A two-step approa
h was developped to solve the problem.2.1 Industrial 
ase-studyThe addressed problem 
omes from a pipe-manufa
turing plant. The plant is divided inthree main departments: foundry, drawing mill, and pipe-tubing. In these departments,3



melting and heating pro
esses use a huge quantity of energy: ele
tri
ity, natural gas, andsteam. Ele
tri
ity expenses a

ount for more than half the annual energy 
osts for theplant. The ele
tri
ity bill is based on the 
ost of the energy 
onsumed and on penaltiesfor power overrun, in referen
e to a subs
ribed maximal power.The study fo
uses on the foundry where metal is melted in indu
tion furna
es and then
ast in individual billets. Non-regular power 
onsumption peaks o

ur and 
ause highele
tri
ity bills. To 
ope with this problem, equipments su
h as power 
utters and relays
an be installed at small 
ost to avoid peaks, but they 
ause produ
tion shutdowns that arenot desired. Consequently, produ
tion s
heduling needs to 
onsider energy 
onsumptionas a 
entral element in order to maintain the produ
tion at the 
urrent level.The foundry has �ve similar lines of produ
tion to perform the melting jobs. From as
heduling view-point, this fa
ility 
an easily be re
ognized as a parallel ma
hine problem.However, a parti
ularity of the problem is that melting jobs have variable durations thatdepend on the power given to the furna
e, 
onstrained in a range [Pmin, Pmax] by physi
aland operational 
onsiderations. Melting of job i ends when an amount Ei of energy hasbeen supplied. Produ
tion s
heduling determines the assignment and sequen
ing of thejobs on the furna
es, and the starting/�nishing dates of these jobs that allow to supplythe required energy while respe
ting the power limits and the time windows. The goal isto minimize the energy bill, with energy and overrun 
osts evaluated periodi
ally, every�fteen minutes.We proposed a two-step Constraint Programming / Mixed Integer Linear Program-ming approa
h to solve this problem, 
onsidering additional 
onstraints that may in�u-en
e the energy 
onsumption, as human resour
e availability for loading and unloadingthe furna
es. This approa
h is des
ribed in the following. Further details 
an be foundin [11℄.2.2 Overview of the solving methodAs mentioned in Se
tion 2.1, we want to s
hedule melting jobs whose duration dependson the power given to the furna
e. A
tually, a job is 
omposed of three sequential parts:loading, heating, and unloading (see Fig. 1). The durations of loading and unloading areknown (dl and du), but heating duration depends on the following 
onditions:
• melting duration depends on the power given to the furna
e, in a range [Pmin, Pmax];
• when melting is 
omplete, the temperature must be hold in the furna
e until anoperator is ready to unload it. 4



Figure 1: Job des
ription and 
orresponding operator's tasks.The goal is to minimize the 
ost of the s
hedule, depending on the energy 
onsumedand on penalties when the overall power in the foundry ex
eeds a given subs
ribed value.Various mixed integer linear models have been developed for this problem. First, adis
rete time model has been proposed [25℄, but the huge number of binary variables madeit impossible to hold realisti
 problems. A 
ontinuous time model allowed the redu
tionof the number of binary variables [9℄, but the resolution was still very long. Finally, ade
omposition of the problem led to mu
h more a

eptable 
omputation times [11℄. Themain prin
iple of the two-step approa
h is shown in Fig. 2.
Figure 2: Two-step approa
h.During the �rst step, sequen
ing of jobs on the furna
es is performed with �xed jobdurations, i.e., we 
onsider that the power given to the furna
e is known for ea
h job.Sin
e it may happen that no feasible solution exists 
onsidering the time windows, duedate violation is admitted and the obje
tive is to minimize the maximum tardiness. Hen
ethe problem resorts to a parallel ma
hine problem with ma
hine availability, release dates,and tardiness 
riterion. The result of this step is the assignment and sequen
ing of job ion furna
e f .During the se
ond step, the jobs are s
heduled, i.e., operation starting and �nishingdates are �xed, while the power setting of ea
h furna
e during ea
h interval determines5



the duration of ea
h job. Job assignement and sequen
ing are inherited from Step 1 so
assign(i, f) and seq(i1, i2) are 
onsidered as data at Step 2. The obje
tive fun
tion isthe energy and overrun 
ost minimization with an additional term to penalize due dateviolations.Then we 
lose the loop by using at Step 1 the new job durations given by Step 2. Thepro
ess is interrupted if the obje
tive fun
tion of Step 2 is not better than the one of theprevious iteration, and if the tardiness is not improved. Although this two-step approa
hmay not give the optimal solution, experimentation gives very good results with a highlyredu
ed pro
essing time.2.3 S
heduling modelStep 1 
orresponds to solving an almost standard parallel ma
hine s
heduling problem.We propose a 
onstraint programming approa
h to ta
kle this problem. A 
ommer
ial
onstraint programming modeling language and solver (IBM ILOG OPL 6.3/CP Opti-mizer 2.3) is used. The OPL language provides high level primitives to model s
heduling
omponents.Job loading, melting and unloading, and operators unavailabilities are de�ned as tasks(type interval in OPL) spe
ifying for ea
h of them the time windows and the duration.Furthermore, optional tasks are asso
iated to ea
h loading, melting, and unloading tasksto model the furna
e assignment problem, so that there exists an optional task per load-ing, melting, and unloading operation and 
andidate furna
e. For the �rst iteration, we
onsider that the furna
e power is set to Pmax to �x the initial melting durations to theirminimal values.On
e written in OPL, the parallel ma
hine problem 
an be solved by the IBM ILOGCP Optimizer, a 
ommer
ial 
onstraint programming solver embedding pre
eden
e andresour
e 
onstraint propagation te
hniques and an e�
ient self-adapting large neighbor-hood sear
h method dedi
ated to s
heduling problems [15℄. A time limit is set and thebest solution found within the time limit is returned.2.4 Energy modelIn the se
ond stage of the proposed heuristi
, an MILP model is used to set pre
ise jobposition and power supply while keeping the job sequen
es found in the �rst stage. Jobpositions are given by melting starting and �nishing times, represented as 
ontinuous6



variables. The s
heduling 
onstraints of this 
ontinuous model are:
sti − dli ≥ reli (1)

fti ≥ sti + Ei/Pmax (2)
fti ≤ sti + Ei/Pmin (3)

sti2 − dli2 ≥ fti1 + dui1 −M(1−seq(i1, i2)) (4)where (1) lo
ates the loading start time after the release date, (2) and (3) set the boundsof melting duration, and job sequen
ing is given by (4) a

ording to the binary values seqfrom Step 1.The time horizon is divided into intervals of uniform duration D = 15 min. Theseintervals are used to determine the overall energy 
onsumption and power requirementon ea
h interval. Binary variables are used to identify the intervals in whi
h energy issupplied to the furna
e for a given job. During the melting of job i, an amount of energy
emi,u is supplied at an interval u. It is the integration of the power given to the furna
eover the melting duration dmi,u in this interval. Our model uses energy and durationas variables, but it is not ne
essary to represent expli
itly the power, 
onsidered as a
onstant over the melting duration for ea
h interval (see Fig. 3).

Figure 3: Energy supply by interval: melting and holding.Melting duration dmi,u, for intervals u where melting o

urs, is between 0 and D.Melting is performed without interruption and the sum of the melting durations of a jobis equal to fti− sti, the duration of the melting operation. For ea
h interval, the amount7



of energy provided to a job (5) depends on the melting duration and the supplied powerin [Pmin, Pmax]. The melting ends when the required energy quantity Ei is rea
hed (6).
Pmin.dmi,u ≤ emi,u ≤ Pmax.dmi,u (5)

∑

u

emi,u = Ei (6)Constraints to de�ne the holding energy, a

ounting for operators unavailability, arede�ned in a similar way. For a given interval, the energy 
onsumption is the sum ofmelting and holding energy on every job. The mean power is equal to this energy dividedby interval durationD. It is 
ompared to the subs
ribed power P to dete
t power overruns.The obje
tive fun
tion is the sum of the energy and power overrun 
osts for all theinstan
es. The due dates 
an be violated but tardiness is highly penalized in order to seekfor a feasible �nal solution. Hen
e the heuristi
 does not stop if, for a given iteration, theMILP problem has no solution that satis�es the due dates.2.5 Experimental results2.5.1 Solution steps on an illustrative instan
eTable 1 shows the solution steps for an illustrative problem instan
e of 36 jobs on 6furna
es (further details are given in [11℄). Full MILP approa
h (
ontinuous-time model)and two-step approa
h results are 
ompared. All the tests have been performed on aSUN Sun�re server with four Quad-Core AMD Opteron(tm) 2.5 GHz pro
essors. ParallelCPLEX 12.1 is used to solve the MILP problems. A 30 s time limit is set for Step 1 ofthe approa
h.The tables give the maximum tardiness (Tmax), the sum of power overruns (Over.)and of holding durations (Hold), and the 
omputation time.Table 1: Illustrative instan
e solved with MILP and two-step approa
hes.
Tmax Over. Hold TimeMILP 0 0 53.8 1206.8

8



Two-step Tmax Over. Hold TimeStep 1 30 - - 0.11Step 2 30 0 25.7 15.48Step 1 30 - - 0.11Step 2 0 0 53.8 6.44Step 1 0 - - 0.09Step 2 0 0 53.8 5.22The MILP model is solved to optimality in more than 20 minutes. Compared to thissolving time, the two-step approa
h is very fast. At the �rst step, the method gives asolution with tardiness, due to the initial values. The assignment and sequen
ing variablesare sent to Step 2, and a �rst solution is given. The obje
tive value is high be
ause ofthe huge penalty given to tardiness. At the se
ond iteration, a solution with tardinessis found again by the CP solver at Step 1, but Step 2 then gives a solution with only aholding duration greater than 0. Note that it is the optimal solution. A third iteration isperformed. As nothing is improved, the pro
ess ends. The overall solving duration is lessthan 30 se
onds, and no iteration time limit has been rea
hed.2.5.2 Results on randomly generated problem instan
esA set of 100 problem instan
es with 36 jobs and 6 furna
es were generated, inspired bythe industrial 
ase-study. Among these, 47 were found feasible by solving to optimalitythe full MILP 
ontinuous-time model. Table 2 summarizes the results of full MILP andtwo-step approa
hes for the 47 feasible instan
es. MILP solving time stays high so thatusing this model would be di�
ult in a situation with hundreds of jobs. Some instan
eshave overrun or holding durations in their optimal solution.Table 2: Comparison of the approa
hes: mean values on 47 feasible instan
es.
Tmax Over. Hold Time Iter. Optim.MILP 0 38.2 4.0 5397 - 100%Two-step 0.13 38.2 4.6 8.7 1.1 97.8%The two-step approa
h is very fast, with a mean solving time less than 10 se
onds.Only one instan
e among 47 has not been solved to optimality. Most of the instan
eshave been solved in one iteration. 9



2.5.3 ImprovementsThe OPL modeling language gives the opportunity to de�ne a job duration as a range.Thus, the melting interval variables 
an be de�ned as a range [Ej/Pmax, Ej/Pmin],letting the solver determine the adequate duration. To this aim, the obje
tive fun
tion ofStep 1 is modi�ed in order to penalize melting operations with a duration 
lose to theirminimum value, be
ause it means that the furna
e is set to a high power and it 
ouldlead to an overrun. Experimentations showed that the modi�ed obje
tive fun
tion is notrepresentative enough of the problem to give the right assignment and sequen
ing results.This 
laims for a real energy handling in the 
onstraint programming step. Therefore, wepresent in the next se
tion an extension for the Energy S
heduling Problem (EnSP) ofthe energeti
 reasoning, an approa
h to solve the CuSP in 
onstraint programming.3 Energeti
 reasoning3.1 The s
heduling problem under energy 
onstraintsIn the following, we introdu
e the energy s
heduling problem (EnSP). We �rst present therelated 
umulative s
heduling problem (CuSP). Then we present the EnSP. Finally weshow how we 
an model our industrial appli
ation s
heduling problem as an asso
iationof an EnSP and a CuSP.3.1.1 The 
umulative s
heduling problemThe CuSP is an extension of the 
lassi
al parallel ma
hine problem, also 
alled the multi-pro
essor task problem and denoted by P |reli, duei; sizei|− in the well-known three �elds
heduling notation [7℄. An instan
e of the CuSP 
an be de�ned as follows: a set of na
tivities A = {1, 2, . . . , n} is to be pro
essed without interruption on a given resour
eof 
apa
ity P . To ea
h a
tivity i are asso
iated its resour
e requirement (size) pi, itsrelease date reli, its deadline duei, and its duration di (note that 
apa
ity and resour
erequirements are assumed to be 
onstant over the planning horizon). A standard parallelma
hine problem 
an be modeled as a CuSP where a
tivities require only one resour
eunit.The CuSP 
an be stated as follows. A
tivity i start time (sti) and �nish time (fti =

sti + di) have to belong to the time window [reli, duei]. A
tivities 
an be simultaneouslypro
essed a

ording to the satisfa
tion of the 
umulative 
onstraint: ∑
i∈A pit ≤ P , for10



every time point t, where pit = pi if sti ≤ t < fti and pit = 0 otherwise.3.1.2 The energy s
heduling problemThe energy s
heduling problem (EnSP) takes as input a set of n a
tivitiesA = {1, 2, . . . , n}having to be pro
essed without interruption using an energy resour
e of 
apa
ity (i.e.,available power) P . Instead of being de�ned through its duration di and resour
e demand
pi, ea
h a
tivity is de�ned through its required energy Ei and its minimum and maximumresour
e requirements Pmin

i and Pmax
i su
h that the allo
ated resour
e units (providedpower) has to remain between these two values. Note here that for pra
ti
al motivations,we 
onsider that 
hanges in the power allo
ated to an a
tivity only o

ur at dis
rete timeperiods of duration δ.The EnSP 
onsists in �nding a start time sti ≥ reli, a 
ompletion time fti ≤ duei and apower allo
ation pit su
h that Pmin

i ≤ pit ≤ Pmax
i for t ∈ [sti, fti−1] and pit = 0 otherwise.The global power limitation 
onstraint is written ∑

i∈A pit ≤ P for any time period t. We
onsider both pit and di = fti − sti as dis
rete variables. Last, an energy requirement
onstraint Ei ≤ δ.
∑fti−1

t=sti
pit holds for ea
h a
tivity i, i.e., the energy brought to i must beat least Ei. We remark that enfor
ing equality would yield to possibly infeasible solutionsin the 
ase where the remaining energy to be brought to an a
tivity at a given time periodis stri
tly lower than Pmin

i . Consequently, in a

ordan
e with pra
ti
al 
ases, we 
onsiderthe energy brought to an a
tivity 
an be larger than the required one.Consider a problem instan
e of 3 a
tivities with P = 5 and δ = 1. Other data aregiven in Table 3. Table 3: Example data
i Ei Pmin

i Pmax
i reli duei1 12 1 5 0 62 12 2 5 2 63 6 2 2 2 5Fig. 4 displays a feasible solution for the problem. One 
an observe that there is nosolution for whi
h all the a
tivities have a re
tangular shape.

11



rel1 rel3

1
2

3

t

due3 due1

P = 5

due2rel2Figure 4: Solution of an EnSP.3.1.3 Dis
ussion / Related worksClearly the CuSP 
annot be used to model the EnSP sin
e a
tivities are not ne
essarilyof re
tangular shape (see Se
tion 3). In fa
t, the EnSP 
an be de�ned as a relaxation ofthe (
ontinuous) CuSP. Indeed, we obtain the CuSP by setting Pmin
i = Pmax

i = pi.However in [2℄, other relaxations of the CuSP are 
onsidered. The fully elasti
 relax-ation 
orresponds to a parti
ular EnSP where Pmin
i = 0 and Pmax

i = P . Hen
e althoughthe feasibility tests and adjustment rules proposed for the fully elasti
 CuSP hold for theEnSP, they may not 
apture all the stru
ture of the EnSP sin
e the fully elasti
 CuSP isitself a relaxation of the EnSP.The partially elasti
 relaxation restri
ts elasti
ity by enfor
ing regularity 
onstraintsof the 
hanges involving nominal pi. Namely, we have Pmin
i = 0 and Pmax

i = P as for thefully elasti
 
ase, but for any interval [reli, t] the relation ∑t

τ=reli
piτ ≤ pi.(t− reli) musthold. We do not have su
h regularity 
onstraints in the EnSP, hen
e the partially elasti
CuSP and the EnSP are not 
omparable in terms of 
omplexity.Another related extension of the CuSP has been proposed in [19℄, aiming at 
onsideringan a
tivity as a sequen
e of 
onse
utive subtasks su
h that the resour
e 
onsumption ofea
h subtask is given by a fun
tion of the subtask duration. In our 
ase the 
onsumptionof an a
tivity at a time period t is a de
ision variable.Finally, in the dis
rete time-resour
e trade-o� model [20℄, the duration of ea
h a
tivityis not predetermined, but 
hanges as a dis
rete non-in
reasing fun
tion of the amount ofrenewable resour
es assigned to it. This is very similar to the 
on
ept of malleable taskfrequently en
ountered in parallel pro
essor systems. A malleable task may be exe
utedby several pro
essors simultaneously and the pro
essing speed of a task is a nonlinearfun
tion of the number of pro
essors allo
ated to it [3℄. However, in these 
ases thea
tivities still have a re
tangular shape. 12
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Figure 5: Consumption of �ve a
tivities.3.2 Classi
al energeti
 reasoning for the CuSPIn the energeti
 reasoning for s
heduling, the idea is to propose a smart way for simulta-neously 
onsidering time and resour
e 
onstraints in a unique reasoning. In that 
ontext,the energy is generi
ally de�ned as the produ
t of a time duration by a resour
e quantity.As an illustration, we 
an say that the problem of s
heduling n a
tivities of duration
di, i=1..n in an amount pi, i=1..n using a given resour
e available in a 
onstant amount Pover a time horizon of duration ∆ is isomorphi
 to the pla
ement problem of n re
tanglesof surfa
e area pi.di, i = 1, . . . , n, in a re
tangle of surfa
e area P.∆.To present the energeti
 reasoning, one must 
onsider a working time interval, anavailable energy and a total 
onsumed energy over this interval.Let [t1, t2] be a referen
e time interval. Bounds of the interval are arbitrarily 
hosenbut they also 
an be �xed to parti
ular times. Over [t1, t2] and for a resour
e of 
apa
ity
P , the available energy is de�ned as P.(t2 − t1).We denote by w(i, t1, t2) the 
onsumption of a
tivity i (i.e., how long i uses the re-sour
e) over [t1, t2]. Two 
ases must be distinguished:1. [sti, fti] ∩ [t1, t2] = ∅ ⇒ w(i, t1, t2) = 0;2. [sti, fti] ∩ [t1, t2] 6= ∅ ⇒ w(i, t1, t2) = pi. (min(fti, t2)−max(sti, t1)).In Fig. 5, striped areas represent the 
onsumption of ea
h a
tivity from 1 to 5 between
t1 and t2.One is usually espe
ially interested in 
omputing the lower and upper bounds of the
onsumption: for the 
onsumption of a
tivity i over interval [t1, t2], we might derive from13



Figure 6: Mandatory 
onsumption of �ve a
tivities.above equations the minimum and the maximum 
onsumptions. The relevant notion forour purpose is obviously the minimum 
onsumption, also 
alled the mandatory 
onsump-tion: when trying to 
he
k whether i before j is feasible, we intend to take into a

ountthat another a
tivity k will ne
essarily 
onsume the resour
e, between sti and ftj , for atleast some time T . Therefore we will not 
onsider anymore the maximum 
onsumptionin the remainder of the paper.The mandatory 
onsumption of an a
tivity i is denoted by w(i, t1, t2). To 
ompute it,the a
tivity has to be shifted to its left and right utmost positions on its time window
[reli, duei], retaining the minimum value of all interse
tions between su
h positions andthe referen
e interval. One then gets:
• the left-shifted 
onsumption:

wL(i, t1, t2) = pi. max{0, min(di, t2 − t1, reli + di − t1)}

• the right-shifted 
onsumption:
wR(i, t1, t2) = pi. max{0, min(di, t2 − t1, t2 − duei + di)}.The mandatory 
onsumption of a
tivity i is then:

w(i, t1, t2) = min{wL(i, t1, t2), wR(i, t1, t2)}

= pi. max {0, min(di, t2 − t1, reli + di − t1, t2 − duei + di)} .On the same basis as example (Fig. 5), Fig. 6 shows the mandory 
onsumption(stripped areas) of the 5 tasks where a time window is now asso
iated with ea
h of them.From this de�nition, it yields a satis�ability test (global in
onsisten
y rule) whi
hin
ludes total mandatory 
onsumption over the set of a
tivities A:14



Property 1 CuSP feasibility test.If ∃ [t1, t2] s.t. ∑
i∈A w(i, t1, t2) > P.(t2 − t1), then no feasible solution exists for theCuSP.In [2℄, the set of relevant intervals [t1, t2] is 
hara
terized and an O(n2) algorithm isprovided to perform the feasibility tests over all these intervals.From this satis�ability test, we 
an now propose lo
al 
onsisten
y rules to derive timewindows adjustments for a spe
i�ed task. Let SL(i, t1, t2) = P.(t2−t1)−

∑
j∈A\{i} w(j, t1, t2)be the maximum available energy (i.e., the sla
k) for pro
essing i over [t1, t2].Property 2 CuSP time-bound adjustments.Release date adjustment. If an a
tivity i veri�es: ∃ [t1, t2] s.t. wL(i, t1, t2) > SL(i, t1, t2),then a valid lower bound of the 
ompletion time of i 
an be dedu
ed and then impa
ts itsrelease date as follows:

reli ← max{reli, ⌈t2 − SL(i, t1, t2)/pi⌉}.Deadline adjustment. Symmetri
ally, if an a
tivity i veri�es: ∃ [t1, t2] s.t. wR(i, t1, t2) >

SL(i, t1, t2), then a valid upper bound of the start time of i 
an be dedu
ed and then im-pa
ts its deadline as follows:
duei ← min{duei, ⌊t1 + SL(i, t1, t2)/pi⌋}.In [2℄, an O(n3) algorithm is provided to perform all the time-bound adjustments overthe relevant intervals.3.3 Energeti
 reasoning for the EnSPA �rst basi
 feasibility rule is to 
he
k whether there is enough time in ea
h a
tivitytime window to bring the energy it requires when the maximum power is allo
ated to thea
tivity.Namely, this basi
 feasibility test 
an be written as follows:Property 3 EnSP basi
 feasibility test.If, for an a
tivity i, Pmax

i .(duei − reli) < Ei, the EnSP is infeasible.In what follows we 
onsider this 
ondition is ful�lled for ea
h a
tivity. To extend theenergeti
 reasoning, the basi
 question to answer is: �Given an interval [t1, t2], what is themandatory 
onsumption e(i, t1, t2) of ea
h a
tivity i? �15



Obviously if reli ≥ t2 or duei ≤ t1, e(i, t1, t2) = 0. Let us 
onsider now that reli < t2and duei > t1. As for the standard energeti
 reasoning, the mandatory 
onsumption ofea
h a
tivity i in [t1, t2] is attained either when the a
tivity starts at its release date orwhen it ends by its due date. When reli < t2, the relevant 
ases are displayed in Fig. 7.To 
ompute e(i, t1, t2) we need to 
ompute the maximum energy e−(i, t1) 
onsumedby i before t1, as well as the maximum energy e+(i, t2) 
onsumed by i after t2. We have:
e−(i, t1) = min {Ei, max (0, Pmax

i .(t1 − reli))}

e+(i, t2) = min {Ei, max (0, Pmax

i .(duei − t2))} .It follows that the minimal energy 
onsumption of i inside [t1, t2] veri�es e(i, t1, t2) ≥ vwhere:
v = min{Ei − e−i (i, t1), Ei − e+

i (i, t2), P
min

i .(t2 − t1)}or equivalently:
v = min{Ei −min(Ei, P

max

i . max(0, t1 − reli, duei − t2)), P
min

i .(t2 − t1)}.Be
ause of the minimal resour
e requirement Pmin
i , we 
annot have e(i, t1, t2) < Pmin

iif e(i, t1, t2) > 0. Furthermore the required work Ei has to be performed inside the timewindow [reli, duei]. Thus, in the 
ase where it is ne
essary to 
onsume Pmin
i .(t2 − t1)inside the interval, we have to 
he
k whether 
onsuming the maximal energy outside theinterval is su�
ient to bring the required energy Ei. The 
ase where Pmin

i .(t2 − t1) isnot a su�
ient energy amount be
ause of time window tightness is displayed at the rightbottom of Fig. 7. Hen
e we set:
e(i, t1, t2) = 0 if v = 0, and
e(i, t1, t2) = max(Pmin

i , v, Ei − e−i (i, t1)− e+

i (i, t2)) otherwise.This yields the following feasibility test:Property 4 EnSP feasibility test.If ∃ [t1, t2] s.t. ∑
i∈A e(i, t1, t2) > P.(t2 − t1), then no feasible solution exists for theEnSP.As for the CuSP, let SL(i, t1, t2) = P.(t2−t1)−

∑
j∈A\{i} e(j, t1, t2) denote the maximumavailable energy (i.e., the sla
k) for pro
essing i over [t1, t2]. We obtain time-boundadjustments 
onsidering the two extreme 
ases for an a
tivity i.16
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Consider eL(i, t1, t2) the minimal energy 
onsumption of i in [t1, t2] when i is leftshifted (i.e., sti = reli). We have eL(i, t1, t2) ≥ x where:
x = min{Ei − e−i (i, t1), P

min

i .(t2 − t1)}or equivalently:
x = min{Ei −min(Ei, P

max

i . max(0, t1 − reli)), P
min

i .(t2 − t1)}and, we have:
eL(i, t1, t2) = 0 if x = 0, and
eL(i, t1, t2) = max(Pmin

i , x, Ei − e−i (i, t1)− e+

i (i, t2)) otherwise.Symmetri
ally, 
onsider eR(i, t1, t2) the minimal energy 
onsumption of i in [t1, t2]when i is right shifted (i.e., fti = duei). We have eL(i, t1, t2) ≥ y where:
y = min{Ei − e+

i (i, t2), P
min

i .(t2 − t1)}or equivalently:
y = min{Ei −min(Ei, P

max

i . max(0, duei − t2)), P
min

i .(t2 − t1)}and, we have:
eR(i, t1, t2) = 0 if y = 0, and
eR(i, t1, t2) = max(Pmin

i , y, Ei − e−i (i, t1)− e+

i (i, t2)) otherwise.We obtain the following time-bound adjustments:Property 5 EnSP time-bound adjustments.Release date adjustment. If an a
tivity i veri�es: ∃ [t1, t2] s.t. eL(i, t1, t2) > SL(i, t1, t2),then the release date 
an be updated as follows:
reli ← max{reli, ⌈t2 − SL(i, t1, t2)/P

min

i ⌉}.Deadline adjustment. Symmetri
ally, if an a
tivity i veri�es: ∃ [t1, t2] s.t. eR(i, t1, t2) >

SL(i, t1, t2), then the deadline 
an be updated as follows:
duei ← min{duei, ⌊t1 + SL(i, t1, t2)/P

min

i ⌋}.As the EnSP admits the CuSP as spe
ial 
ase, it is a priori di�
ult to enumerate theintervals to be 
onsidered. Indeed, from [2℄, we know that a part of the relevant intervals18



for the CuSP is su
h that t1 = reli + di and/or t2 = duei − di for some a
tivity i. Forthe EnSP, ex
ept when Pmin
i = Pmax

i (whi
h 
orresponds to the CuSP 
ase), we have nota �xed a
tivity duration but a set of possible durations from ⌈Ei/P
max
i ⌉ to ⌈Ei/P

min
i ⌉.For the sake of simpli
ity we restri
t the 
onsidered intervals to the Cartesian produ
t

O1 × O2, where O1 = {reli|i ∈ A} and O2 = {duei|i ∈ A}.We 
an illustrate the adjustments performed in Fig. 4 example. Consider interval
[t1, t2] = [2, 5]. We have e(1, t1, t2) = eL(1, t1, t2) = 2, e(2, t1, t2) = eR(2, t1, t2) = 7 and
e(3, t1, t2) = eL(3, t1, t2) = eR(3, t1, t2) = 6. Note the 
on�guration displayed in Fig. 4a
tually 
orresponds to the minimal 
onsumption of the three a
tivities in [t1, t2] = [2, 5].Consider the 
ase where a
tivity 1 is right shifted. We have eR(1, t1, t2) = 7 (same
on�guration as the one displayed for a
tivity 2). Sin
e e(3, t1, t2) + e(2, t1, t2) = 13the sla
k for a
tivity 1 in [t1, t2] is SL(1, t1, t2) = 15 − 13 = 2. Sin
e eR(1, t1, t2) >

SL(1, t1, t2), the deadline of a
tivity 1 
an be updated a

ording to Property 5 by setting
due1 ← 2 + 2/1 = 4.4 Solving the EnSP4.1 Dominan
e rules and pra
ti
al assumptions for the EnSPThe following properties are 
onsidered.Property 6 (Dominan
e Rule) A
tive s
hedules.A
tive s
hedules are dominant for the EnSP.Consider a solution S to the EnSP su
h that there is an a
tivity i starting at time stiand a time period t < sti su
h that there is a feasible solution S ′ setting sti = t without
hanging the s
hedule of other a
tivities. The sear
h spa
e 
an be obviously redu
ed tothe set of solutions for whi
h no su
h property holds.Property 7 (Pra
ti
al assumption) Power 
hange.The sear
h is restri
ted to s
hedules for whi
h, for any a
tivity i, 
hanges in theallo
ated power only o

ur on a
tivity release dates, or 
ompletion times.Although we did not prove this assumption is dominant, it makes sense in pra
ti
e torestri
t the dates where the power allo
ated to a task is 
hanged only when somethinghappens, i.e. when a new task is ready for being pro
essed or when a task 
ompletes19



4.2 Bran
hing s
hemeA simple bran
hing s
heme based on time in
rementation 
an be derived from the dom-inan
e rules and pra
ti
al assumptions presented in Se
tion 4.1. Ea
h node 
orrespondsto a de
ision time point initially set to t = mini∈A reli. For ea
h a
tivity the requiredenergy Ei is progressively de
reased and all a
tivities are s
heduled when Ei = 0 for alla
tivities. At ea
h node, asso
iated with a de
ision time t, a
tivities are partioned intothe following subsets. The started a
tivities are su
h that the de
ision to start the a
tivityhas been taken at some an
estor node (at a time point t′ < t) but no de
ision has beentaken yet for the 
urrent de
ision point and Ei > 0. The 
ompleted a
tivities are su
hthat fti ≤ t and Ei = 0. The available a
tivities are su
h that reli ≤ t but no startde
ision has been taken yet for these a
tivities. The pro
essed a
tivities are su
h that thede
ision to pro
ess the a
tivity at time t with some resour
e amount p has already beentaken and Ei > 0. The unavailable a
tivities verify reli > t and Ei > 0. The postponeda
tivities are those sele
ted for being s
heduled later (see bran
hing s
heme below).At ea
h node an a
tivity either started or available is sele
ted for being in
luded in thepro
essed set (or in the postponed set for the available a
tivities). The a
tivity i∗ with thesmallest due date is sele
ted �rst and, in 
ase of ties, the a
tivity with the most remainingenergy (Ei∗) is sele
ted. Let Q and R denote the set of started and pro
essed a
tivities,respe
tively. If i∗ ∈ Q, pi∗ = P −
∑

j∈Q\{i∗} Pmin
j −

∑
j∈R pjt denotes the available powerfor i at time t. If i∗ 6∈ Q, the available power for i∗ is pi∗ = P −

∑
j∈Q Pmin

j −
∑

j∈R pjt.If pi∗ > Pmin
i∗ , a part of i 
an be s
heduled at time t. A 
hild node is generated for

p ∈ [Pmin
i∗ , min(pi∗ , P

max
i∗ )] 
orresponding to an allo
ation of power pi∗t = p to i∗ at time t.An additional 
hild node, only for available a
tivities, 
orresponds to postponing a
tivity

i∗ to a de
ision point t′ > t su
h that t′ is either equal to the minimum between thesmallest possible 
ompletion time of an a
tivity of R and the smallest release date ofunavailable a
tivities, stri
tly greater than t. This time point is unknown at this stepsin
e set R is under 
onstru
tion, therefore the a
tivities are just marked as postponedwithout any other update.If no a
tivity 
an be sele
ted for being s
heduled at t, we have di�erent reasons. Ifall a
tivities are in the 
ompleted set, the sear
h su

eeds. If all a
tivities are eitherpro
essed, postponed, unavailable or available but without enough resour
e 
apa
ity, thesear
h must 
ontinue from the next de
ision time point set to the smallest release date or
ompletion time of pro
essed a
tivities greater than t. At this time we 
he
k whether thenew de
ision point is still 
ompatible with the due date of the available a
tivities. We also
he
k whether there remains unpostponed a
tivities. Otherwise, the s
hedule is 
learly20



not semi-a
tive.If one due date 
annot be satis�ed or if the s
hedule is no more semi-a
tive, a failureo

urs and the node is pruned. Otherwise, de
ision time point is updated. The pro
esseda
tivities are transferred either to the 
ompleted set or to the started set. The postponeda
tivities are moved to the available set. The unavailable a
tivities su
h that reli ≤ t aremoved to the available set. The a
tivity sele
tion pro
ess starts again and the pro
ess isiterated until an a
tivity is sele
ted for being pro
essed, or a failure o

urs.We illustrate the bran
hing pro
ess on the Fig. 4 problem instan
e. The developpednodes are displayed in Fig. 8. For the root node where t = 0, a
tivity 1 is in the availableset while a
tivities 2 and 3 are in the unavailable set. We bran
h to the se
ond node(Fig. 8.a) by sele
ting a
tivity 1 for being s
heduled at maximal power. A
tivity 1 isin
luded in the pro
essed set. At time t = 0 no other a
tivity is available. Time t is setof the next de
ision point t = 2. A
tivities 2 and 3 are in
luded in the available set anda
tivity 1 is transferred into the started set. The third node (Fig. 8.b) sele
ts a
tivity
3 with power p = 2 as the a
tivity with the smallest due date for being inserted in thepro
essed set. A
tivities 1 and 2 
an both be pro
essed at time 2 and have the same duedate but a
tivity 2 has the most remaining work. So the fourth node (Fig. 8.
) sele
ts
2 for being pro
essed at time t = 2 with the maximal available power taking a

ount ofpro
essed and started a
tivities p = 2. For the �fth node (Fig. 8.d), a
tivity 1 
an now bepro
essed at time t = 2 with its minimal power p = 1. No a
tivity is available anymore attime t = 2, so we pro
eed to the next time point 
orresponding with the 
ompletion timeof a
tivity 1 at time t = 4 and a
tivities 2 and 3 are now both in the started set while 1 isput into the 
ompleted set. For the sixth node (Fig. 8.e), a
tivity 3 is still sele
ted withpower p = 2 as it has the smallest due date. Then, the seventh node (Fig. 8.f) sele
tsa
tivity 2 with the maximal available power p = 3. Sin
e all a
tivities are in the pro
essedset, the time point is in
reased to the 
ompletion time t = 5 of a
tivity 3 and a
tivity 2is in
luded in the started set. For the eigth node (Fig. 8.g), a
tivity 2 is sele
ted with themaximal power p = 5 and 
ompleted at time t = 6. For this example no ba
ktra
king hasbeen ne
essary.4.3 Computational experimentsIn this se
tion, we illustrate on randomly generated problem instan
es the interest of theproposed energeti
 reasoning te
hniques.Using the same bran
hing s
heme, we 
ompare the energeti
 reqsoning feasibility 
on-21
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ditions and adjustments with the fully elasti
 ones [2℄.Re
all that the fully elasti
 relaxation of the EnSP (or the CuSP) 
onsiders that, atany time, tasks 
an be alloted any resour
e amount beteen 0 and P , provided the totalresour
e amount is equal to Ei. Baptiste [2℄ proved that this relaxation is equivalent tothe well-known preemptive one ma
hine problem with release dates and due dates, andproposed feasibility 
onditions and adjustments based on this property. Clearly, the fullyelasti
 te
hnique yields weaker relaxations but, given a limited CPU time, the question isto known whether the stronger adjustments brought by energeti
 reasoning 
ompensateor not the additional 
omputation requirements. We have 
oded the algorithms in C++and the results have been obtained on an Intel Code 2 Duo pro
essor.Instan
es have been generated a

ording to the following framework. The resour
eavailability is set to P = 10. For ea
h task, the required energy Ei has been generatedin U [1, 2.5 ∗ P ]. The minimum power Pmin
i is randomly generated in U [0, 0.25 ∗Ei] whilethe maximum power Pmax

i follows distribution U [Pmin
i , 2 ∗ Pmin

i ]. Release dates reli aregenerated in U [0, O.5∗n], due dates are generated in U [reli+⌈Ei/P
max
i ⌉, reli+⌈Ei/P

min
i ⌉+

n]. We present the results on a �rst set of 20 instan
es with 20 tasks ea
h. Then, to testhow methods s
ale, we give the results on 9 instan
es with 25 tasks and 10 instan
es with30 tasks.In Table 4, we provide the results of two tree sear
h methods on the 20 task instan
es,the �rst one with energeti
 reasoning feasibility tests and time-bound adjustments ap-plied at ea
h node, and the se
ond one with fully leasti
 feasibility tests and time-boundadjustments applied at ea
h node. The obtained result (Solution found, No solution orTime out), the CPU time in se
onds, and the number of nodes in the sear
h tree areprovided for ea
h pair instan
e / method. CPU time has been limited to 400s.The result show that the energeti
 reasoning-based method solves (�nds a solution orproves infeasibility) 12 instan
es out of 20 while the fully elasti
-based method solves 11instan
es. The fa
t that only a little more than half of the instan
es are solved underlinesthe di�
ulty of the problem. On one instan
e (ENSP20_12) the enegeti
 reasoning wasable to prove infeasibility a the root node, while the fully-elasti
 method rea
hes thetime limit. On the easy instan
es (less than 115 nodes) the fully-elasti
 and the energyreasoning-based methods obtain the same number of nodes but the fully elasti
 method isfaster (although these instan
es are solved by both methods in mu
h less than one se
ond).However on the hard instan
es (more than 10000 nodes), the energeti
 reasoning-basedmethod obtains signi�
antly smaller CP times (almost ten times faster for ENSP20_17).23



Table 4: Compared results on EnSP instan
es with 20 tasksEnergeti
 reasoning Fully elasti
Instan
e Solution Time (s) #Nodes Solution Time (s) #NodesEnSP20_1 Solution Found 35 0.012 Solution Found 35 0.005EnSP20_2 Solution Found 43 0.008 Solution Found 43 0.004EnSP20_3 Solution Found 46 0.015 Solution Found 46 0.003EnSP20_4 Solution Found 113 0.012 Solution Found 113 0.004EnSP20_5 Solution Found 10153 0.194 Solution Found 394297 5.199ENSP20_6 Solution Found 47 0.008 Solution Found 47 0.003ENSP20_7 Time out - - Time out - -ENSP20_8 Solution Found 32718 0.527 Solution Found 97015 1.347ENSP20_9 Time out - - Time out - -ENSP20_10 Time out - - Time out - -ENSP20_11 No solution 1 0.001 No solution 1 0.002ENSP20_12 No solution 1 0.003 Time out - -ENSP20_13 Time out - - Time out - -ENSP20_14 Time out - - Time out - -ENSP20_15 Time out - - Time out - -ENSP20_16 Solution Found 47 0.006 Solution Found 47 0.003ENSP20_17 Solution Found 701031 15.053 Solution Found 9952721 124.689ENSP20_18 Time out - - Time out - -ENSP20_19 No solution 1 0.002 No solution 1 0.001ENSP20_20 Time out - - Time out - -

24



Table 5 presents the results on the 25 and 30 task instan
es. These results 
orroboratethe ones obtained for the 20 task instan
es, ex
ept that a larger number of unsolvedinstan
es is obtained. There is also an instan
e (ENSP25_4) proved infeasible at the rootnode by energeti
 reasoning while the fully elasti
 rules dedu
es nothing. The requiredCPU time for �nding a solution is higly redu
ed by using energy reasoning on instan
eENSP25_7.Table 5: Compared results on EnSP instan
es with 25 and 30 tasksEnergeti
 reasoning Fully elasti
Instan
e Solution Time (s) #Nodes Solution Time (s) #NodesEnSP25_1 Time out - - Time out - -EnSP25_2 Time out - - Time out - -EnSP25_3 Time out - - Time out - -EnSP25_4 No solution 1 0.002 Time out - -EnSP25_5 Solution Found 42 0.011 Solution Found 42 0.003ENSP25_6 Solution Found 43 0.013 Solution Found 43 0.003ENSP25_7 Solution Found 606928 13.907 Solution Found 3573285 58.076ENSP25_8 Time out - - Time out - -ENSP25_9 Time out - - Time out - -ENSP30_1 Time out - - Time out - -ENSP30_2 No solution 1 0.003 Time out - -ENSP30_3 Time out - - Time out - -ENSP30_4 Time out - - Time out - -ENSP30_5 Time out - - Time out - -ENSP30_6 Solution Found 36 0.014 Solution Found 47 0.005ENSP30_7 Time out - - Time out - -ENSP30_8 Time out - - Time out - -ENSP30_9 Time out - - Time out - -ENSP30_10 Solution Found 41 0.022 Solution Found 41 0.005In 
on
lusion, despite the problem di�
ulty, the results show generally the superiorityof the approa
h in
orporating energeti
 reasoning, both for the number of nodes and theCPU time.
25



5 Con
lusion � Future workWe presented the energy s
heduling problem (EnSP), an extension of the 
umulatives
heduling problem to represent energy requirements of a
tivities. We showed this modelis well-adapted to a parallel ma
hine s
heduling industrial 
ontext with ele
tri
 powerlimitations. We proposed a two-step Integer/Constraint programming approa
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