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AbstratThis paper deals with prodution sheduling involving energy onstraints, typi-ally eletrial energy. We start by an industrial ase-study for whih we propose atwo-step integer/onstraint programming method. From the industrial problem wederive a generi problem, the Energy Sheduling Problem (EnSP). We propose anextension of spei� resoure onstraint propagation tehniques to e�iently prunethe searh spae for EnSP solving. We also present a branhing sheme to solve theproblem via tree searh. Finally, omputational results are provided.Keywords: Prodution sheduling, energy onstraints, onstraint propagation, ener-geti reasoning
1 IntrodutionContext of the study Sine the last two deades, hard ombinatorial problems, mainlyin sheduling, have been the target of many approahes ombining Operations Researhand Arti�ial Intelligene tehniques [13℄. These approahes are generally foused on1



onstraint satisfation as a general paradigm for representing and solving e�iently suhproblems [23℄. At the heart of these approahes, a panel of onsisteny enforing teh-niques is used to dramatially prune the searh spae. Therefore, propagation tehniquesdediated to resoure and time onstrained sheduling problems, viewed as speial in-stanes of Constraint Satisfation Problems (CSPs), have been developed to speed up thesearh for a feasible shedule or to detet early an inonsisteny. For instane the ener-geti reasoning [8℄, the ornerstone of the present study, has enabled the joint integrationof both resoure and time onstraints in order to prevent the ombinatoris of solvingon�its between ativities in ompetition for limited resoures.Furthermore, it is still of interest to searh for propagating novel types of onstraintsaording to real-world problems. The new environmental onstraints, but also the in-rease of the energy ost, should prompt us to onsider as a ruial and promising issue tolook into the problems of emissions, wastes, and power onsumption optimization in pro-dution sheduling [24℄. Real-time (proessor) sheduling theory has often addressed en-ergy onstraints. Indeed, energy onsumption management is a ritial issue in omputersystems, networks and embedded systems where many (on-line) algorithmi problems areraised and well studied [14℄. However, omplexity is a major di�ulty for the integrationof energy onstraints to prodution sheduling and the literature on the subjet is rathersparse. For example, prodution sheduling for steel manufaturing has been studied, butfew papers fous on energy ost [17℄. This generally leads to the development of heuris-tis. For example, [4℄ propose a hierarhial approah for sheduling a steel plant subjetto a global limitation on the power supplied to the furnaes. [12℄ use a deompositionapproah to solve a steel manufaturing sheduling problem with multiple produts. Fi-nally, to the best of our knowledge, partiular studies foused on onstraint propagationtehniques for energy onsiderations have been unexplored.Problem statement As we will see later, the prodution problem under study is de-�ned as a new problem alled the energy sheduling problem (EnSP). The EnSP is ageneralization of the umulative sheduling problem (CuSP) itself an extension of theparallel mahine sheduling problem (PMSP). In a PMSP, a task j has to be proessed onone mahine among a set of m mahines. The CuSP is an extension of the PMSP whereeah task needs a subset k < m (k 6= 1) of mahines. Furthermore, the industrial prob-lem we study in this paper involves furnaes that an be modeled by parallel mahines.Parallel mahine sheduling has been widely studied [6℄, espeially beause it appears asa relaxation of more omplex shop or projet sheduling problems, like the hybrid �owshop sheduling problem or the resoure-onstrained projet sheduling problem. Several2



methods have been proposed to solve this problem. In [5℄, a olumn generation strategy isproposed. [18℄ propose a linear program and an e�ient heuristi for large-size instanesfor the resolution of priority onstraints and family setup times problem. [22℄ solve theproblem with a tree searh method. [16℄ ompare two di�erent branhing sshemes andseveral tree searh strategies for the problem with heads and tails for makespan mini-mization. In [1℄, a onstraint programming-based approah is proposed to minimize theweighted number of late jobs. In [21℄, a hybrid Integer/Constraint Programming approahis proposed to solve a minimum-ost assignment problem. Among the variants presentedin the latter, the most e�etive strategy is to ombine a tight and ompat, but approx-imate, mixed integer linear programming (MILP) formulation with a global onstrainttesting single mahine feasibility. Many variants or extensions of the CuSP have beenonsidered, for whih feasibility tests and adjustment rules have been issued, based forexample on the energeti reasoning [8℄.Paper objetives & organization The objetive of this paper is twofold. First, wepresent in Setion 2 an industrial ase-study involving energy onstraints and objetiveslinked to eletri power onsumption, and a two-step onstraint programming and mixed-integer linear programming framework to solve it, as well as a �rst set of omputationalexperiments. Seond, in Setion 3, we fous on the energy part of the industrial problem,issueing a generi problem, the Energy Sheduling Problem (EnSP). To enhane the pre-vious approah, we propose a formal desription for the propagation of energy onstraintsbased on an extension of the energeti reasoning. In Setion 4, we present dominanerules and pratial assumptions in order to redue the searh spae, a branhing shemeto solve the problem via tree searh, as well as omputational results. Setion 5 highlightsthe onlusions of the paper and proposes some future researh diretions.2 A two-step approah for the industrial problemIn this setion, we present an industrial ase-study where energy onstraints have a greatimportane in sheduling. A two-step approah was developped to solve the problem.2.1 Industrial ase-studyThe addressed problem omes from a pipe-manufaturing plant. The plant is divided inthree main departments: foundry, drawing mill, and pipe-tubing. In these departments,3



melting and heating proesses use a huge quantity of energy: eletriity, natural gas, andsteam. Eletriity expenses aount for more than half the annual energy osts for theplant. The eletriity bill is based on the ost of the energy onsumed and on penaltiesfor power overrun, in referene to a subsribed maximal power.The study fouses on the foundry where metal is melted in indution furnaes and thenast in individual billets. Non-regular power onsumption peaks our and ause higheletriity bills. To ope with this problem, equipments suh as power utters and relaysan be installed at small ost to avoid peaks, but they ause prodution shutdowns that arenot desired. Consequently, prodution sheduling needs to onsider energy onsumptionas a entral element in order to maintain the prodution at the urrent level.The foundry has �ve similar lines of prodution to perform the melting jobs. From asheduling view-point, this faility an easily be reognized as a parallel mahine problem.However, a partiularity of the problem is that melting jobs have variable durations thatdepend on the power given to the furnae, onstrained in a range [Pmin, Pmax] by physialand operational onsiderations. Melting of job i ends when an amount Ei of energy hasbeen supplied. Prodution sheduling determines the assignment and sequening of thejobs on the furnaes, and the starting/�nishing dates of these jobs that allow to supplythe required energy while respeting the power limits and the time windows. The goal isto minimize the energy bill, with energy and overrun osts evaluated periodially, every�fteen minutes.We proposed a two-step Constraint Programming / Mixed Integer Linear Program-ming approah to solve this problem, onsidering additional onstraints that may in�u-ene the energy onsumption, as human resoure availability for loading and unloadingthe furnaes. This approah is desribed in the following. Further details an be foundin [11℄.2.2 Overview of the solving methodAs mentioned in Setion 2.1, we want to shedule melting jobs whose duration dependson the power given to the furnae. Atually, a job is omposed of three sequential parts:loading, heating, and unloading (see Fig. 1). The durations of loading and unloading areknown (dl and du), but heating duration depends on the following onditions:
• melting duration depends on the power given to the furnae, in a range [Pmin, Pmax];
• when melting is omplete, the temperature must be hold in the furnae until anoperator is ready to unload it. 4



Figure 1: Job desription and orresponding operator's tasks.The goal is to minimize the ost of the shedule, depending on the energy onsumedand on penalties when the overall power in the foundry exeeds a given subsribed value.Various mixed integer linear models have been developed for this problem. First, adisrete time model has been proposed [25℄, but the huge number of binary variables madeit impossible to hold realisti problems. A ontinuous time model allowed the redutionof the number of binary variables [9℄, but the resolution was still very long. Finally, adeomposition of the problem led to muh more aeptable omputation times [11℄. Themain priniple of the two-step approah is shown in Fig. 2.
Figure 2: Two-step approah.During the �rst step, sequening of jobs on the furnaes is performed with �xed jobdurations, i.e., we onsider that the power given to the furnae is known for eah job.Sine it may happen that no feasible solution exists onsidering the time windows, duedate violation is admitted and the objetive is to minimize the maximum tardiness. Henethe problem resorts to a parallel mahine problem with mahine availability, release dates,and tardiness riterion. The result of this step is the assignment and sequening of job ion furnae f .During the seond step, the jobs are sheduled, i.e., operation starting and �nishingdates are �xed, while the power setting of eah furnae during eah interval determines5



the duration of eah job. Job assignement and sequening are inherited from Step 1 so
assign(i, f) and seq(i1, i2) are onsidered as data at Step 2. The objetive funtion isthe energy and overrun ost minimization with an additional term to penalize due dateviolations.Then we lose the loop by using at Step 1 the new job durations given by Step 2. Theproess is interrupted if the objetive funtion of Step 2 is not better than the one of theprevious iteration, and if the tardiness is not improved. Although this two-step approahmay not give the optimal solution, experimentation gives very good results with a highlyredued proessing time.2.3 Sheduling modelStep 1 orresponds to solving an almost standard parallel mahine sheduling problem.We propose a onstraint programming approah to takle this problem. A ommerialonstraint programming modeling language and solver (IBM ILOG OPL 6.3/CP Opti-mizer 2.3) is used. The OPL language provides high level primitives to model shedulingomponents.Job loading, melting and unloading, and operators unavailabilities are de�ned as tasks(type interval in OPL) speifying for eah of them the time windows and the duration.Furthermore, optional tasks are assoiated to eah loading, melting, and unloading tasksto model the furnae assignment problem, so that there exists an optional task per load-ing, melting, and unloading operation and andidate furnae. For the �rst iteration, weonsider that the furnae power is set to Pmax to �x the initial melting durations to theirminimal values.One written in OPL, the parallel mahine problem an be solved by the IBM ILOGCP Optimizer, a ommerial onstraint programming solver embedding preedene andresoure onstraint propagation tehniques and an e�ient self-adapting large neighbor-hood searh method dediated to sheduling problems [15℄. A time limit is set and thebest solution found within the time limit is returned.2.4 Energy modelIn the seond stage of the proposed heuristi, an MILP model is used to set preise jobposition and power supply while keeping the job sequenes found in the �rst stage. Jobpositions are given by melting starting and �nishing times, represented as ontinuous6



variables. The sheduling onstraints of this ontinuous model are:
sti − dli ≥ reli (1)

fti ≥ sti + Ei/Pmax (2)
fti ≤ sti + Ei/Pmin (3)

sti2 − dli2 ≥ fti1 + dui1 −M(1−seq(i1, i2)) (4)where (1) loates the loading start time after the release date, (2) and (3) set the boundsof melting duration, and job sequening is given by (4) aording to the binary values seqfrom Step 1.The time horizon is divided into intervals of uniform duration D = 15 min. Theseintervals are used to determine the overall energy onsumption and power requirementon eah interval. Binary variables are used to identify the intervals in whih energy issupplied to the furnae for a given job. During the melting of job i, an amount of energy
emi,u is supplied at an interval u. It is the integration of the power given to the furnaeover the melting duration dmi,u in this interval. Our model uses energy and durationas variables, but it is not neessary to represent expliitly the power, onsidered as aonstant over the melting duration for eah interval (see Fig. 3).

Figure 3: Energy supply by interval: melting and holding.Melting duration dmi,u, for intervals u where melting ours, is between 0 and D.Melting is performed without interruption and the sum of the melting durations of a jobis equal to fti− sti, the duration of the melting operation. For eah interval, the amount7



of energy provided to a job (5) depends on the melting duration and the supplied powerin [Pmin, Pmax]. The melting ends when the required energy quantity Ei is reahed (6).
Pmin.dmi,u ≤ emi,u ≤ Pmax.dmi,u (5)

∑

u

emi,u = Ei (6)Constraints to de�ne the holding energy, aounting for operators unavailability, arede�ned in a similar way. For a given interval, the energy onsumption is the sum ofmelting and holding energy on every job. The mean power is equal to this energy dividedby interval durationD. It is ompared to the subsribed power P to detet power overruns.The objetive funtion is the sum of the energy and power overrun osts for all theinstanes. The due dates an be violated but tardiness is highly penalized in order to seekfor a feasible �nal solution. Hene the heuristi does not stop if, for a given iteration, theMILP problem has no solution that satis�es the due dates.2.5 Experimental results2.5.1 Solution steps on an illustrative instaneTable 1 shows the solution steps for an illustrative problem instane of 36 jobs on 6furnaes (further details are given in [11℄). Full MILP approah (ontinuous-time model)and two-step approah results are ompared. All the tests have been performed on aSUN Sun�re server with four Quad-Core AMD Opteron(tm) 2.5 GHz proessors. ParallelCPLEX 12.1 is used to solve the MILP problems. A 30 s time limit is set for Step 1 ofthe approah.The tables give the maximum tardiness (Tmax), the sum of power overruns (Over.)and of holding durations (Hold), and the omputation time.Table 1: Illustrative instane solved with MILP and two-step approahes.
Tmax Over. Hold TimeMILP 0 0 53.8 1206.8
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Two-step Tmax Over. Hold TimeStep 1 30 - - 0.11Step 2 30 0 25.7 15.48Step 1 30 - - 0.11Step 2 0 0 53.8 6.44Step 1 0 - - 0.09Step 2 0 0 53.8 5.22The MILP model is solved to optimality in more than 20 minutes. Compared to thissolving time, the two-step approah is very fast. At the �rst step, the method gives asolution with tardiness, due to the initial values. The assignment and sequening variablesare sent to Step 2, and a �rst solution is given. The objetive value is high beause ofthe huge penalty given to tardiness. At the seond iteration, a solution with tardinessis found again by the CP solver at Step 1, but Step 2 then gives a solution with only aholding duration greater than 0. Note that it is the optimal solution. A third iteration isperformed. As nothing is improved, the proess ends. The overall solving duration is lessthan 30 seonds, and no iteration time limit has been reahed.2.5.2 Results on randomly generated problem instanesA set of 100 problem instanes with 36 jobs and 6 furnaes were generated, inspired bythe industrial ase-study. Among these, 47 were found feasible by solving to optimalitythe full MILP ontinuous-time model. Table 2 summarizes the results of full MILP andtwo-step approahes for the 47 feasible instanes. MILP solving time stays high so thatusing this model would be di�ult in a situation with hundreds of jobs. Some instaneshave overrun or holding durations in their optimal solution.Table 2: Comparison of the approahes: mean values on 47 feasible instanes.
Tmax Over. Hold Time Iter. Optim.MILP 0 38.2 4.0 5397 - 100%Two-step 0.13 38.2 4.6 8.7 1.1 97.8%The two-step approah is very fast, with a mean solving time less than 10 seonds.Only one instane among 47 has not been solved to optimality. Most of the instaneshave been solved in one iteration. 9



2.5.3 ImprovementsThe OPL modeling language gives the opportunity to de�ne a job duration as a range.Thus, the melting interval variables an be de�ned as a range [Ej/Pmax, Ej/Pmin],letting the solver determine the adequate duration. To this aim, the objetive funtion ofStep 1 is modi�ed in order to penalize melting operations with a duration lose to theirminimum value, beause it means that the furnae is set to a high power and it ouldlead to an overrun. Experimentations showed that the modi�ed objetive funtion is notrepresentative enough of the problem to give the right assignment and sequening results.This laims for a real energy handling in the onstraint programming step. Therefore, wepresent in the next setion an extension for the Energy Sheduling Problem (EnSP) ofthe energeti reasoning, an approah to solve the CuSP in onstraint programming.3 Energeti reasoning3.1 The sheduling problem under energy onstraintsIn the following, we introdue the energy sheduling problem (EnSP). We �rst present therelated umulative sheduling problem (CuSP). Then we present the EnSP. Finally weshow how we an model our industrial appliation sheduling problem as an assoiationof an EnSP and a CuSP.3.1.1 The umulative sheduling problemThe CuSP is an extension of the lassial parallel mahine problem, also alled the multi-proessor task problem and denoted by P |reli, duei; sizei|− in the well-known three �eldsheduling notation [7℄. An instane of the CuSP an be de�ned as follows: a set of nativities A = {1, 2, . . . , n} is to be proessed without interruption on a given resoureof apaity P . To eah ativity i are assoiated its resoure requirement (size) pi, itsrelease date reli, its deadline duei, and its duration di (note that apaity and resourerequirements are assumed to be onstant over the planning horizon). A standard parallelmahine problem an be modeled as a CuSP where ativities require only one resoureunit.The CuSP an be stated as follows. Ativity i start time (sti) and �nish time (fti =

sti + di) have to belong to the time window [reli, duei]. Ativities an be simultaneouslyproessed aording to the satisfation of the umulative onstraint: ∑
i∈A pit ≤ P , for10



every time point t, where pit = pi if sti ≤ t < fti and pit = 0 otherwise.3.1.2 The energy sheduling problemThe energy sheduling problem (EnSP) takes as input a set of n ativitiesA = {1, 2, . . . , n}having to be proessed without interruption using an energy resoure of apaity (i.e.,available power) P . Instead of being de�ned through its duration di and resoure demand
pi, eah ativity is de�ned through its required energy Ei and its minimum and maximumresoure requirements Pmin

i and Pmax
i suh that the alloated resoure units (providedpower) has to remain between these two values. Note here that for pratial motivations,we onsider that hanges in the power alloated to an ativity only our at disrete timeperiods of duration δ.The EnSP onsists in �nding a start time sti ≥ reli, a ompletion time fti ≤ duei and apower alloation pit suh that Pmin

i ≤ pit ≤ Pmax
i for t ∈ [sti, fti−1] and pit = 0 otherwise.The global power limitation onstraint is written ∑

i∈A pit ≤ P for any time period t. Weonsider both pit and di = fti − sti as disrete variables. Last, an energy requirementonstraint Ei ≤ δ.
∑fti−1

t=sti
pit holds for eah ativity i, i.e., the energy brought to i must beat least Ei. We remark that enforing equality would yield to possibly infeasible solutionsin the ase where the remaining energy to be brought to an ativity at a given time periodis stritly lower than Pmin

i . Consequently, in aordane with pratial ases, we onsiderthe energy brought to an ativity an be larger than the required one.Consider a problem instane of 3 ativities with P = 5 and δ = 1. Other data aregiven in Table 3. Table 3: Example data
i Ei Pmin

i Pmax
i reli duei1 12 1 5 0 62 12 2 5 2 63 6 2 2 2 5Fig. 4 displays a feasible solution for the problem. One an observe that there is nosolution for whih all the ativities have a retangular shape.
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due3 due1

P = 5

due2rel2Figure 4: Solution of an EnSP.3.1.3 Disussion / Related worksClearly the CuSP annot be used to model the EnSP sine ativities are not neessarilyof retangular shape (see Setion 3). In fat, the EnSP an be de�ned as a relaxation ofthe (ontinuous) CuSP. Indeed, we obtain the CuSP by setting Pmin
i = Pmax

i = pi.However in [2℄, other relaxations of the CuSP are onsidered. The fully elasti relax-ation orresponds to a partiular EnSP where Pmin
i = 0 and Pmax

i = P . Hene althoughthe feasibility tests and adjustment rules proposed for the fully elasti CuSP hold for theEnSP, they may not apture all the struture of the EnSP sine the fully elasti CuSP isitself a relaxation of the EnSP.The partially elasti relaxation restrits elastiity by enforing regularity onstraintsof the hanges involving nominal pi. Namely, we have Pmin
i = 0 and Pmax

i = P as for thefully elasti ase, but for any interval [reli, t] the relation ∑t

τ=reli
piτ ≤ pi.(t− reli) musthold. We do not have suh regularity onstraints in the EnSP, hene the partially elastiCuSP and the EnSP are not omparable in terms of omplexity.Another related extension of the CuSP has been proposed in [19℄, aiming at onsideringan ativity as a sequene of onseutive subtasks suh that the resoure onsumption ofeah subtask is given by a funtion of the subtask duration. In our ase the onsumptionof an ativity at a time period t is a deision variable.Finally, in the disrete time-resoure trade-o� model [20℄, the duration of eah ativityis not predetermined, but hanges as a disrete non-inreasing funtion of the amount ofrenewable resoures assigned to it. This is very similar to the onept of malleable taskfrequently enountered in parallel proessor systems. A malleable task may be exeutedby several proessors simultaneously and the proessing speed of a task is a nonlinearfuntion of the number of proessors alloated to it [3℄. However, in these ases theativities still have a retangular shape. 12
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Figure 5: Consumption of �ve ativities.3.2 Classial energeti reasoning for the CuSPIn the energeti reasoning for sheduling, the idea is to propose a smart way for simulta-neously onsidering time and resoure onstraints in a unique reasoning. In that ontext,the energy is generially de�ned as the produt of a time duration by a resoure quantity.As an illustration, we an say that the problem of sheduling n ativities of duration
di, i=1..n in an amount pi, i=1..n using a given resoure available in a onstant amount Pover a time horizon of duration ∆ is isomorphi to the plaement problem of n retanglesof surfae area pi.di, i = 1, . . . , n, in a retangle of surfae area P.∆.To present the energeti reasoning, one must onsider a working time interval, anavailable energy and a total onsumed energy over this interval.Let [t1, t2] be a referene time interval. Bounds of the interval are arbitrarily hosenbut they also an be �xed to partiular times. Over [t1, t2] and for a resoure of apaity
P , the available energy is de�ned as P.(t2 − t1).We denote by w(i, t1, t2) the onsumption of ativity i (i.e., how long i uses the re-soure) over [t1, t2]. Two ases must be distinguished:1. [sti, fti] ∩ [t1, t2] = ∅ ⇒ w(i, t1, t2) = 0;2. [sti, fti] ∩ [t1, t2] 6= ∅ ⇒ w(i, t1, t2) = pi. (min(fti, t2)−max(sti, t1)).In Fig. 5, striped areas represent the onsumption of eah ativity from 1 to 5 between
t1 and t2.One is usually espeially interested in omputing the lower and upper bounds of theonsumption: for the onsumption of ativity i over interval [t1, t2], we might derive from13



Figure 6: Mandatory onsumption of �ve ativities.above equations the minimum and the maximum onsumptions. The relevant notion forour purpose is obviously the minimum onsumption, also alled the mandatory onsump-tion: when trying to hek whether i before j is feasible, we intend to take into aountthat another ativity k will neessarily onsume the resoure, between sti and ftj , for atleast some time T . Therefore we will not onsider anymore the maximum onsumptionin the remainder of the paper.The mandatory onsumption of an ativity i is denoted by w(i, t1, t2). To ompute it,the ativity has to be shifted to its left and right utmost positions on its time window
[reli, duei], retaining the minimum value of all intersetions between suh positions andthe referene interval. One then gets:
• the left-shifted onsumption:

wL(i, t1, t2) = pi. max{0, min(di, t2 − t1, reli + di − t1)}

• the right-shifted onsumption:
wR(i, t1, t2) = pi. max{0, min(di, t2 − t1, t2 − duei + di)}.The mandatory onsumption of ativity i is then:

w(i, t1, t2) = min{wL(i, t1, t2), wR(i, t1, t2)}

= pi. max {0, min(di, t2 − t1, reli + di − t1, t2 − duei + di)} .On the same basis as example (Fig. 5), Fig. 6 shows the mandory onsumption(stripped areas) of the 5 tasks where a time window is now assoiated with eah of them.From this de�nition, it yields a satis�ability test (global inonsisteny rule) whihinludes total mandatory onsumption over the set of ativities A:14



Property 1 CuSP feasibility test.If ∃ [t1, t2] s.t. ∑
i∈A w(i, t1, t2) > P.(t2 − t1), then no feasible solution exists for theCuSP.In [2℄, the set of relevant intervals [t1, t2] is haraterized and an O(n2) algorithm isprovided to perform the feasibility tests over all these intervals.From this satis�ability test, we an now propose loal onsisteny rules to derive timewindows adjustments for a spei�ed task. Let SL(i, t1, t2) = P.(t2−t1)−

∑
j∈A\{i} w(j, t1, t2)be the maximum available energy (i.e., the slak) for proessing i over [t1, t2].Property 2 CuSP time-bound adjustments.Release date adjustment. If an ativity i veri�es: ∃ [t1, t2] s.t. wL(i, t1, t2) > SL(i, t1, t2),then a valid lower bound of the ompletion time of i an be dedued and then impats itsrelease date as follows:

reli ← max{reli, ⌈t2 − SL(i, t1, t2)/pi⌉}.Deadline adjustment. Symmetrially, if an ativity i veri�es: ∃ [t1, t2] s.t. wR(i, t1, t2) >

SL(i, t1, t2), then a valid upper bound of the start time of i an be dedued and then im-pats its deadline as follows:
duei ← min{duei, ⌊t1 + SL(i, t1, t2)/pi⌋}.In [2℄, an O(n3) algorithm is provided to perform all the time-bound adjustments overthe relevant intervals.3.3 Energeti reasoning for the EnSPA �rst basi feasibility rule is to hek whether there is enough time in eah ativitytime window to bring the energy it requires when the maximum power is alloated to theativity.Namely, this basi feasibility test an be written as follows:Property 3 EnSP basi feasibility test.If, for an ativity i, Pmax

i .(duei − reli) < Ei, the EnSP is infeasible.In what follows we onsider this ondition is ful�lled for eah ativity. To extend theenergeti reasoning, the basi question to answer is: �Given an interval [t1, t2], what is themandatory onsumption e(i, t1, t2) of eah ativity i? �15



Obviously if reli ≥ t2 or duei ≤ t1, e(i, t1, t2) = 0. Let us onsider now that reli < t2and duei > t1. As for the standard energeti reasoning, the mandatory onsumption ofeah ativity i in [t1, t2] is attained either when the ativity starts at its release date orwhen it ends by its due date. When reli < t2, the relevant ases are displayed in Fig. 7.To ompute e(i, t1, t2) we need to ompute the maximum energy e−(i, t1) onsumedby i before t1, as well as the maximum energy e+(i, t2) onsumed by i after t2. We have:
e−(i, t1) = min {Ei, max (0, Pmax

i .(t1 − reli))}

e+(i, t2) = min {Ei, max (0, Pmax

i .(duei − t2))} .It follows that the minimal energy onsumption of i inside [t1, t2] veri�es e(i, t1, t2) ≥ vwhere:
v = min{Ei − e−i (i, t1), Ei − e+

i (i, t2), P
min

i .(t2 − t1)}or equivalently:
v = min{Ei −min(Ei, P

max

i . max(0, t1 − reli, duei − t2)), P
min

i .(t2 − t1)}.Beause of the minimal resoure requirement Pmin
i , we annot have e(i, t1, t2) < Pmin

iif e(i, t1, t2) > 0. Furthermore the required work Ei has to be performed inside the timewindow [reli, duei]. Thus, in the ase where it is neessary to onsume Pmin
i .(t2 − t1)inside the interval, we have to hek whether onsuming the maximal energy outside theinterval is su�ient to bring the required energy Ei. The ase where Pmin

i .(t2 − t1) isnot a su�ient energy amount beause of time window tightness is displayed at the rightbottom of Fig. 7. Hene we set:
e(i, t1, t2) = 0 if v = 0, and
e(i, t1, t2) = max(Pmin

i , v, Ei − e−i (i, t1)− e+

i (i, t2)) otherwise.This yields the following feasibility test:Property 4 EnSP feasibility test.If ∃ [t1, t2] s.t. ∑
i∈A e(i, t1, t2) > P.(t2 − t1), then no feasible solution exists for theEnSP.As for the CuSP, let SL(i, t1, t2) = P.(t2−t1)−

∑
j∈A\{i} e(j, t1, t2) denote the maximumavailable energy (i.e., the slak) for proessing i over [t1, t2]. We obtain time-boundadjustments onsidering the two extreme ases for an ativity i.16
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Consider eL(i, t1, t2) the minimal energy onsumption of i in [t1, t2] when i is leftshifted (i.e., sti = reli). We have eL(i, t1, t2) ≥ x where:
x = min{Ei − e−i (i, t1), P

min

i .(t2 − t1)}or equivalently:
x = min{Ei −min(Ei, P

max

i . max(0, t1 − reli)), P
min

i .(t2 − t1)}and, we have:
eL(i, t1, t2) = 0 if x = 0, and
eL(i, t1, t2) = max(Pmin

i , x, Ei − e−i (i, t1)− e+

i (i, t2)) otherwise.Symmetrially, onsider eR(i, t1, t2) the minimal energy onsumption of i in [t1, t2]when i is right shifted (i.e., fti = duei). We have eL(i, t1, t2) ≥ y where:
y = min{Ei − e+

i (i, t2), P
min

i .(t2 − t1)}or equivalently:
y = min{Ei −min(Ei, P

max

i . max(0, duei − t2)), P
min

i .(t2 − t1)}and, we have:
eR(i, t1, t2) = 0 if y = 0, and
eR(i, t1, t2) = max(Pmin

i , y, Ei − e−i (i, t1)− e+

i (i, t2)) otherwise.We obtain the following time-bound adjustments:Property 5 EnSP time-bound adjustments.Release date adjustment. If an ativity i veri�es: ∃ [t1, t2] s.t. eL(i, t1, t2) > SL(i, t1, t2),then the release date an be updated as follows:
reli ← max{reli, ⌈t2 − SL(i, t1, t2)/P

min

i ⌉}.Deadline adjustment. Symmetrially, if an ativity i veri�es: ∃ [t1, t2] s.t. eR(i, t1, t2) >

SL(i, t1, t2), then the deadline an be updated as follows:
duei ← min{duei, ⌊t1 + SL(i, t1, t2)/P

min

i ⌋}.As the EnSP admits the CuSP as speial ase, it is a priori di�ult to enumerate theintervals to be onsidered. Indeed, from [2℄, we know that a part of the relevant intervals18



for the CuSP is suh that t1 = reli + di and/or t2 = duei − di for some ativity i. Forthe EnSP, exept when Pmin
i = Pmax

i (whih orresponds to the CuSP ase), we have nota �xed ativity duration but a set of possible durations from ⌈Ei/P
max
i ⌉ to ⌈Ei/P

min
i ⌉.For the sake of simpliity we restrit the onsidered intervals to the Cartesian produt

O1 × O2, where O1 = {reli|i ∈ A} and O2 = {duei|i ∈ A}.We an illustrate the adjustments performed in Fig. 4 example. Consider interval
[t1, t2] = [2, 5]. We have e(1, t1, t2) = eL(1, t1, t2) = 2, e(2, t1, t2) = eR(2, t1, t2) = 7 and
e(3, t1, t2) = eL(3, t1, t2) = eR(3, t1, t2) = 6. Note the on�guration displayed in Fig. 4atually orresponds to the minimal onsumption of the three ativities in [t1, t2] = [2, 5].Consider the ase where ativity 1 is right shifted. We have eR(1, t1, t2) = 7 (sameon�guration as the one displayed for ativity 2). Sine e(3, t1, t2) + e(2, t1, t2) = 13the slak for ativity 1 in [t1, t2] is SL(1, t1, t2) = 15 − 13 = 2. Sine eR(1, t1, t2) >

SL(1, t1, t2), the deadline of ativity 1 an be updated aording to Property 5 by setting
due1 ← 2 + 2/1 = 4.4 Solving the EnSP4.1 Dominane rules and pratial assumptions for the EnSPThe following properties are onsidered.Property 6 (Dominane Rule) Ative shedules.Ative shedules are dominant for the EnSP.Consider a solution S to the EnSP suh that there is an ativity i starting at time stiand a time period t < sti suh that there is a feasible solution S ′ setting sti = t withouthanging the shedule of other ativities. The searh spae an be obviously redued tothe set of solutions for whih no suh property holds.Property 7 (Pratial assumption) Power hange.The searh is restrited to shedules for whih, for any ativity i, hanges in thealloated power only our on ativity release dates, or ompletion times.Although we did not prove this assumption is dominant, it makes sense in pratie torestrit the dates where the power alloated to a task is hanged only when somethinghappens, i.e. when a new task is ready for being proessed or when a task ompletes19



4.2 Branhing shemeA simple branhing sheme based on time inrementation an be derived from the dom-inane rules and pratial assumptions presented in Setion 4.1. Eah node orrespondsto a deision time point initially set to t = mini∈A reli. For eah ativity the requiredenergy Ei is progressively dereased and all ativities are sheduled when Ei = 0 for allativities. At eah node, assoiated with a deision time t, ativities are partioned intothe following subsets. The started ativities are suh that the deision to start the ativityhas been taken at some anestor node (at a time point t′ < t) but no deision has beentaken yet for the urrent deision point and Ei > 0. The ompleted ativities are suhthat fti ≤ t and Ei = 0. The available ativities are suh that reli ≤ t but no startdeision has been taken yet for these ativities. The proessed ativities are suh that thedeision to proess the ativity at time t with some resoure amount p has already beentaken and Ei > 0. The unavailable ativities verify reli > t and Ei > 0. The postponedativities are those seleted for being sheduled later (see branhing sheme below).At eah node an ativity either started or available is seleted for being inluded in theproessed set (or in the postponed set for the available ativities). The ativity i∗ with thesmallest due date is seleted �rst and, in ase of ties, the ativity with the most remainingenergy (Ei∗) is seleted. Let Q and R denote the set of started and proessed ativities,respetively. If i∗ ∈ Q, pi∗ = P −
∑

j∈Q\{i∗} Pmin
j −

∑
j∈R pjt denotes the available powerfor i at time t. If i∗ 6∈ Q, the available power for i∗ is pi∗ = P −

∑
j∈Q Pmin

j −
∑

j∈R pjt.If pi∗ > Pmin
i∗ , a part of i an be sheduled at time t. A hild node is generated for

p ∈ [Pmin
i∗ , min(pi∗ , P

max
i∗ )] orresponding to an alloation of power pi∗t = p to i∗ at time t.An additional hild node, only for available ativities, orresponds to postponing ativity

i∗ to a deision point t′ > t suh that t′ is either equal to the minimum between thesmallest possible ompletion time of an ativity of R and the smallest release date ofunavailable ativities, stritly greater than t. This time point is unknown at this stepsine set R is under onstrution, therefore the ativities are just marked as postponedwithout any other update.If no ativity an be seleted for being sheduled at t, we have di�erent reasons. Ifall ativities are in the ompleted set, the searh sueeds. If all ativities are eitherproessed, postponed, unavailable or available but without enough resoure apaity, thesearh must ontinue from the next deision time point set to the smallest release date orompletion time of proessed ativities greater than t. At this time we hek whether thenew deision point is still ompatible with the due date of the available ativities. We alsohek whether there remains unpostponed ativities. Otherwise, the shedule is learly20



not semi-ative.If one due date annot be satis�ed or if the shedule is no more semi-ative, a failureours and the node is pruned. Otherwise, deision time point is updated. The proessedativities are transferred either to the ompleted set or to the started set. The postponedativities are moved to the available set. The unavailable ativities suh that reli ≤ t aremoved to the available set. The ativity seletion proess starts again and the proess isiterated until an ativity is seleted for being proessed, or a failure ours.We illustrate the branhing proess on the Fig. 4 problem instane. The developpednodes are displayed in Fig. 8. For the root node where t = 0, ativity 1 is in the availableset while ativities 2 and 3 are in the unavailable set. We branh to the seond node(Fig. 8.a) by seleting ativity 1 for being sheduled at maximal power. Ativity 1 isinluded in the proessed set. At time t = 0 no other ativity is available. Time t is setof the next deision point t = 2. Ativities 2 and 3 are inluded in the available set andativity 1 is transferred into the started set. The third node (Fig. 8.b) selets ativity
3 with power p = 2 as the ativity with the smallest due date for being inserted in theproessed set. Ativities 1 and 2 an both be proessed at time 2 and have the same duedate but ativity 2 has the most remaining work. So the fourth node (Fig. 8.) selets
2 for being proessed at time t = 2 with the maximal available power taking aount ofproessed and started ativities p = 2. For the �fth node (Fig. 8.d), ativity 1 an now beproessed at time t = 2 with its minimal power p = 1. No ativity is available anymore attime t = 2, so we proeed to the next time point orresponding with the ompletion timeof ativity 1 at time t = 4 and ativities 2 and 3 are now both in the started set while 1 isput into the ompleted set. For the sixth node (Fig. 8.e), ativity 3 is still seleted withpower p = 2 as it has the smallest due date. Then, the seventh node (Fig. 8.f) seletsativity 2 with the maximal available power p = 3. Sine all ativities are in the proessedset, the time point is inreased to the ompletion time t = 5 of ativity 3 and ativity 2is inluded in the started set. For the eigth node (Fig. 8.g), ativity 2 is seleted with themaximal power p = 5 and ompleted at time t = 6. For this example no baktraking hasbeen neessary.4.3 Computational experimentsIn this setion, we illustrate on randomly generated problem instanes the interest of theproposed energeti reasoning tehniques.Using the same branhing sheme, we ompare the energeti reqsoning feasibility on-21
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ditions and adjustments with the fully elasti ones [2℄.Reall that the fully elasti relaxation of the EnSP (or the CuSP) onsiders that, atany time, tasks an be alloted any resoure amount beteen 0 and P , provided the totalresoure amount is equal to Ei. Baptiste [2℄ proved that this relaxation is equivalent tothe well-known preemptive one mahine problem with release dates and due dates, andproposed feasibility onditions and adjustments based on this property. Clearly, the fullyelasti tehnique yields weaker relaxations but, given a limited CPU time, the question isto known whether the stronger adjustments brought by energeti reasoning ompensateor not the additional omputation requirements. We have oded the algorithms in C++and the results have been obtained on an Intel Code 2 Duo proessor.Instanes have been generated aording to the following framework. The resoureavailability is set to P = 10. For eah task, the required energy Ei has been generatedin U [1, 2.5 ∗ P ]. The minimum power Pmin
i is randomly generated in U [0, 0.25 ∗Ei] whilethe maximum power Pmax

i follows distribution U [Pmin
i , 2 ∗ Pmin

i ]. Release dates reli aregenerated in U [0, O.5∗n], due dates are generated in U [reli+⌈Ei/P
max
i ⌉, reli+⌈Ei/P

min
i ⌉+

n]. We present the results on a �rst set of 20 instanes with 20 tasks eah. Then, to testhow methods sale, we give the results on 9 instanes with 25 tasks and 10 instanes with30 tasks.In Table 4, we provide the results of two tree searh methods on the 20 task instanes,the �rst one with energeti reasoning feasibility tests and time-bound adjustments ap-plied at eah node, and the seond one with fully leasti feasibility tests and time-boundadjustments applied at eah node. The obtained result (Solution found, No solution orTime out), the CPU time in seonds, and the number of nodes in the searh tree areprovided for eah pair instane / method. CPU time has been limited to 400s.The result show that the energeti reasoning-based method solves (�nds a solution orproves infeasibility) 12 instanes out of 20 while the fully elasti-based method solves 11instanes. The fat that only a little more than half of the instanes are solved underlinesthe di�ulty of the problem. On one instane (ENSP20_12) the enegeti reasoning wasable to prove infeasibility a the root node, while the fully-elasti method reahes thetime limit. On the easy instanes (less than 115 nodes) the fully-elasti and the energyreasoning-based methods obtain the same number of nodes but the fully elasti method isfaster (although these instanes are solved by both methods in muh less than one seond).However on the hard instanes (more than 10000 nodes), the energeti reasoning-basedmethod obtains signi�antly smaller CP times (almost ten times faster for ENSP20_17).23



Table 4: Compared results on EnSP instanes with 20 tasksEnergeti reasoning Fully elastiInstane Solution Time (s) #Nodes Solution Time (s) #NodesEnSP20_1 Solution Found 35 0.012 Solution Found 35 0.005EnSP20_2 Solution Found 43 0.008 Solution Found 43 0.004EnSP20_3 Solution Found 46 0.015 Solution Found 46 0.003EnSP20_4 Solution Found 113 0.012 Solution Found 113 0.004EnSP20_5 Solution Found 10153 0.194 Solution Found 394297 5.199ENSP20_6 Solution Found 47 0.008 Solution Found 47 0.003ENSP20_7 Time out - - Time out - -ENSP20_8 Solution Found 32718 0.527 Solution Found 97015 1.347ENSP20_9 Time out - - Time out - -ENSP20_10 Time out - - Time out - -ENSP20_11 No solution 1 0.001 No solution 1 0.002ENSP20_12 No solution 1 0.003 Time out - -ENSP20_13 Time out - - Time out - -ENSP20_14 Time out - - Time out - -ENSP20_15 Time out - - Time out - -ENSP20_16 Solution Found 47 0.006 Solution Found 47 0.003ENSP20_17 Solution Found 701031 15.053 Solution Found 9952721 124.689ENSP20_18 Time out - - Time out - -ENSP20_19 No solution 1 0.002 No solution 1 0.001ENSP20_20 Time out - - Time out - -
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Table 5 presents the results on the 25 and 30 task instanes. These results orroboratethe ones obtained for the 20 task instanes, exept that a larger number of unsolvedinstanes is obtained. There is also an instane (ENSP25_4) proved infeasible at the rootnode by energeti reasoning while the fully elasti rules dedues nothing. The requiredCPU time for �nding a solution is higly redued by using energy reasoning on instaneENSP25_7.Table 5: Compared results on EnSP instanes with 25 and 30 tasksEnergeti reasoning Fully elastiInstane Solution Time (s) #Nodes Solution Time (s) #NodesEnSP25_1 Time out - - Time out - -EnSP25_2 Time out - - Time out - -EnSP25_3 Time out - - Time out - -EnSP25_4 No solution 1 0.002 Time out - -EnSP25_5 Solution Found 42 0.011 Solution Found 42 0.003ENSP25_6 Solution Found 43 0.013 Solution Found 43 0.003ENSP25_7 Solution Found 606928 13.907 Solution Found 3573285 58.076ENSP25_8 Time out - - Time out - -ENSP25_9 Time out - - Time out - -ENSP30_1 Time out - - Time out - -ENSP30_2 No solution 1 0.003 Time out - -ENSP30_3 Time out - - Time out - -ENSP30_4 Time out - - Time out - -ENSP30_5 Time out - - Time out - -ENSP30_6 Solution Found 36 0.014 Solution Found 47 0.005ENSP30_7 Time out - - Time out - -ENSP30_8 Time out - - Time out - -ENSP30_9 Time out - - Time out - -ENSP30_10 Solution Found 41 0.022 Solution Found 41 0.005In onlusion, despite the problem di�ulty, the results show generally the superiorityof the approah inorporating energeti reasoning, both for the number of nodes and theCPU time.
25



5 Conlusion � Future workWe presented the energy sheduling problem (EnSP), an extension of the umulativesheduling problem to represent energy requirements of ativities. We showed this modelis well-adapted to a parallel mahine sheduling industrial ontext with eletri powerlimitations. We proposed a two-step Integer/Constraint programming approah to solvethe industrial problem. This approah exhibited the need for a further re�nement inonsidering spei�ally the energy onstraints. We proposed an extension of the standardenergeti reasoning sheme for the EnSP that was not overed by previous works on thissubjet. Finally we draw the sheme of a tree searh method based on dominane rulesand pratial assumptions. Computational experiments illustrate the interest of energetireasoning.Further work will onsist in extending the omputational experiene in order to on-solidate the way to parameterize the appliation of energeti reasoning in a solving pro-edure. One of our objetives would then be to integrate the proposed energy onstraintpropagation reasoning in the industrial problem solving method.Referenes[1℄ Ph. Baptiste, A. Jouglet, C. Le Pape, and W. Nuijten. A onstraint-based approahto minimize the weighted number of late jobs on parallel mahines. UTC TehnialReport 2000/288, 288, 2000.[2℄ Ph. Baptiste, C. Le Pape, and W. Nuijten. Satis�ability tests and time-bound adjust-ments for umulative sheduling problems. Annals of Operations Researh, 92:305�333, 1999.[3℄ J. Blazewiz, M. Mahowiak, J. Weglarz, M.Y. Kovalyov, and D. Trystram. Shedul-ing malleable tasks on parallel proessors to minimize the makespan. In �Modelsand Algorithms for Planning and Sheduling Problems�, Ph. Baptiste, J. Carlier, A.Munier, A.S. Shulz (Eds), Annals of Operations Researh, 129(1-4):65�80, 2004.[4℄ E.-K. Boukas, A. Haurie, and F. Soumis. Hierarhial approah to steel produtionsheduling under a global energy onstraint. Annals of Operations Researh, 26:289�311, 1990.
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