N

N

An improving dynamic programming algorithm to solve
the shortest path problem with time windows

Nora Touati Moungla, Lucas Létocart, Anass Nagih

» To cite this version:

Nora Touati Moungla, Lucas Létocart, Anass Nagih. An improving dynamic programming algorithm
to solve the shortest path problem with time windows. International Symposium on Combinatorial
Optimization, Mar 2010, Tunisia. pp.931-938. hal-00522297

HAL Id: hal-00522297
https://hal.science/hal-00522297
Submitted on 30 Sep 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00522297
https://hal.archives-ouvertes.fr

An improving dynamic programming algorithm to solve
the shortest path problem with time windows

N. Touati Moungla?, L. Létocart, A. Nagih®

*LIX, Ecole polytechnique, 91128 Palaiseau Cedex, France.
YLIPN, UMR 7030 CNRS, Institut Galilée - Université Paris 13, 99 avenue
Jean-Baptiste Clément 93430 Villetaneuse, France.
¢LITA, Université Paul Verlaine, Ile du Saulcy 57045 Metz Cedex 1, France.

Abstract

An efficient use of dynamic programming requires a substantial reduction
of the number of labels. We propose in this paper an efficient way of reducing
the number of labels saved and dominance computing time. Our approach
is validated by experiments on shortest path problem with time windows
instances.

Keywords: Dynamic programming; Shortest path problem with time
windows.

1. Introduction

Dynamic Programming (DP) (1) is a well-established method to solve
shortest path problems. In the classical shortest path problem, the Ford-
Bellman algorithm assigns a single label to each node representing the cost
which is gradually improved. An extension of this approach was proposed in
(2) in the shortest path problem with ressource constraints context. For the
shortest path problem with time windows, the routes must be compared in
terms of arrival times at the nodes as well as costs: at each node ¢ a label
(arrival time at node i, cost of the route) is defined. Several labels have to
be stored at node i to calculate the labels of other nodes according to the
following optimality principle: If X; is a minimum cost route from among
all the routes from s to j arriving at j at time 7} or before, and if (¢, j) is its
terminal arc, then the sub-route Xj; is a minimum cost route from among
all routes from s to 7 arriving at ¢ at time 7}; — t;; or before, where ¢;; is the
travel time of arc (i, 7).

Preprint submitted to Electronic Notes on Discrete Mathematics February 10, 2010

This procedure can leads to the computation of a large number of labels
at each node of the graph. Dominance rules are then used to compare sub-
routes arriving at a same location for discarding some of them. Dynamic
programming algorithms (2; 3) rely on labels extension and a dominance
procedure (4). In label setting algorithms, nodes are treated once and labels
associated to a treated node are kept until the end of the resolution process.
In label correcting approaches, nodes are repeatedly treated and their labels
extended to all feasible directions.

The dominance procedure applied on each new label requires in the worst
case, the exploration of all efficient labels of the current node. Since the
number of labels increases exponentialy as a function of the problem’s size,
dominance computing time increases too. We propose in this work a new
variant of the dynamic programming algorithm for accelerating the domi-
nance procedure by reducing the number of labels saved and by identifying
efficiently dominated labels.

We present in section 2 the Shortest Path Problem with Time Windows
(SPPTW) and describe in section 3 its resolution by the dynamic program-
ming algorithm. We present in section 4 a new variant of this method called
dynamic programming with blocs. We validate in section 5 this new approach
by experiments on shortest path problem with time windows instances. In
section 6 we conclude.

2. Problem description

Consider a connected graph G = (N, A), where N is the set of nodes and
A is the set of arcs. With each arc (i, j) € A is associated a real number cost
¢;; and a non negative integer duration ¢;;. Each node i € N is characterized
by a given time window [a;, b;] within which the node may be visited. The
SPPTW consists in finding the least cost route between two nodes 's” and 't/
in the graph while visiting each node in the specified time window, it can be
formulated as follows:

min Z(i,j)GA Cijxij
Zjev Lsj = Zjev T =1 '
djevTij — 2y i =0, Vi€ N\ {s,t}

(

(SPPTW) x5 € {0,1}, v(i,j) € A
l‘”(ﬂ -+ tz‘j — ,I']) S O, V(l,]) c .A

Tje[ajabj]? VJGN

L T; €N, VieN

where x;;, (i,7) € A is the flow binary variable and T;,i € N is the
visiting time of node 1.

3. Dynamic programming algorithm

We associate to each I-th path X!, from the source s to the node j, a
(time, cost) label denoted by E; = (T},le-), corresponding respectively to
the duration and the cost of X ij. This label is computed iteratively along
the path Xéj = (vo, v1, ..., v,), where vy = s and v, = j as follows:

Ty = Qyyy Cypy =0
Ty, = max{ay,, Tp,_ 11, .} 1= 1,.,¢q
Cyp, =Ch_, +Cp_ vy 1=1,...,q.

A label Ejl is feasible ift T, <b,,, Vi =1,...,q. Dominance rules are used
to identify and discard useless labels.

Definition 1. Let be X, and XZ; two different feasible paths from s to j
and Ej = (T},C}), E? = (T7,C?) the associated labels respectively. Then,
E} dominates E; iff (T7,C7) > (T}, C}) and (T7,C3) # (T},C}). If Ej is
not dominated by another label, it is called efficient.. The complete set of
efficient labels characterize the Pareto optimal frontier (Figure 1).

pareto optimal frontier

efficient labels

X1 dominated labels
. .
X2,
X3
I I I I I
El T2 T3 [4 T5 bj t

J .
T x4-1
.
X5

Figure 1: Pareto optimal frontier at node j

We denote by & = {Ej, E7, ..., E/} the set of efficient labels computed,
and Ef“ a new label at node j € N'. We present on Algorithm 1, the main
steps of the dominance procedure applied on E;’ +

Algorithm 1 Dominance operations applied on a new label in a dynamic
programming procedure
next «— true, r « 1.
repeat
if E;’H = E7 then &; = &; U {Ef“}, next = false.
if E§’+1 > E7 then next « false.
if E?"' < B then & = &\ {Ef}, r —r+1.
elser —r+1
until ((next = false) or (r > p))
if next then &; = & U {EV"'}

The treatment of a great number of labels increases the computation time
of the dominance procedure. We present in the next section an improvement
method which the main goal is the reduction of the number of labels saved
and the number of labels compared in the dominance procedure.

4. Dynamic programming with blocs

The principle of this method is the computation of spaces which contain
only efficient labels. We associate to each node ¢ a set of blocs, each bloc is

defined by a triplet BF = (j;il?low)’ ﬂl‘zupp), Cﬁupp)) where TZ"Z corresponds to

the lower bound on time, T3, define the upper bound on time, and Ci’“(upp)

represents the upper bound on cost of the bloc indexed by k. We suppose
that the blocs are not lower bounded by the cost.

low)

4.1. Initialization

Let be i the treated node, the set of blocs is initialized by the bloc BY =
(a;, b;, +00) (figure 2). The bloc BY contains only feasible and efficient labels.
Let be E} = (C},T}') a new label computed at node i € N (Figure 3).
Initially, none efficient label is saved at node i, E} is then efficient.

The new label E} allows to characterize the new bloc B} = (T}, b;,C})

(Figure 3), the bloc BY is then updated BY = (a;, T}, +00).
4.2. Fxpansion and dominance

Proposition 1. Let be E}, ..., E! the set of efficient labels computed at node i
and B; = {B}, ..., B} the associated blocs.. We consider E; = (Cy,T;) a new

4

1_ (ol 7l
El = (¢}, T}) Bl = (r}, ol

Thotee) Bl = (T} 6,00

Figure 2: Initialization Figure 3: Label expansion

label computed at node i € N. If the label E; belongs to a bloc BY ,p =0, ...,1
(i-e.. Tippy < Ti < T, and T; < CY,), then:

i(upp i(upp

1. E; is a feasible label.

2. FE; is an efficient label.

3. The labels dominated by E; are EP™, ..., EX which satisfy C; < CP*', .., C; <
C? respectively.

proof 1.

1. Each bloc in B; U BY belongs to the initialized bloc BY defined in section
4.1. All labels belonging to these blocs are then feasible.

2. (a) If E; belongs to a bloc BY p € {1,...,1}. Suppose that E; is domi-

nated by the label ET,r € {1,...,1}. Knowing that blocs (labels) are

ordered by I}%Ow) increased, we deduce that the label E] belongs to

a bloc in the set {BY, ..., B""'}.. On one hand we have CT < C;
(E! dominates E;) and C; < C? (E; belongs to the bloc BY), so
Cr < C?, on another hand T < T?, hence the contradiction (the
labels ET and EY are efficient).

(b) If E; belongs to the bloc BY. Knowing that it exists none label in
the bloc BY, all efficient labels of node i have durations greater
than T;, so the label E; is efficient.

3. IfE; € BY, p=0,...,1, then T, > T""" > TP7>... > a;, we conclude
that none label in the set {E}, ..., E'™'} can be dominated by F;. The
labels which can be dominated by E; belong to the set {E"™, ... E'},
more precisely, the labels dominated by E; are Ef’“, ey EY where C; <
CPH ., Cy < CY respectively.

4.8. An illustrative example

Figure 4 presents an illustration of the dynamic programming with blocs
on an example where [= 6. Let be E] = (T, CT) a new label computed at
node i. Suppose that ET belongs to the bloc B?, it is feasible and efficient.
Labels dominated by E! belong to the set {E}, E?, ES} and satisfy C7 <
C? q € {4,5,6},i.e B This label and the associated bloc B} are discarded,
the bloc Bf = (T, T7,C]) is saved and the bloc B} is updated (B} =

(7. T, C7)).

HEAETE R

4 _(pd 5 o4
B = (1}, 18, c})
1 5 5 16 o5
i B%‘, (TiﬁwTiﬁcéi)
2y B = (TP, b;,07)

Figure 4: Hlustrative example of expansion and dominance procedures

We denote by B; = {B;-), E}, ,E;} the set of blocs computed at node
j € N, and Ef“ a new label at node j. We present on Algorithm 2, the

. . . 1.
main steps of the dominance procedure applied on Ef 1 in our new procedure.

5. Experimentations

The results reported on Table 1 concern the resolution of the first pricing
problem (SPPTW) in a column generation process for the resolution of the
vehicle routing problem with time windows on acyclic graphs. The capacity
constraints are relaxed. We consider 4 Solomon test instances (C'101-25 (25
costumers), C'101.50 (50 costumers), C'101 (100 costumers) and C'1_2_1 (200
costumers)) and 40 randomly generated instances. 10 instances are generated

Algorithm 2 Dominance operations applied on a new label in the dynamic
programming with blocs procedure

if E?™! belong to a bloc B; € B; then & = & U {EV*'}.
if Ef“ # I then the bloc B? is updated (section 4.3).
next «— true.
r <« s+ 1.

repeat

if C?"! <= E7 then & = &\ {E/}, B; =B\ {B]},r —r+1.

else next = false.
until ((next = false) or (r > p))
B; =B; U {Bf“} (BfJrl is the bloc computed throw EfH (section 4.3)).

for each size: G_100 (100 costumers), G_120 (120 costumers), G140 (140
costumers) and G_160 (160 costumers), all results reported for each randomly
generated class size are average values over 10 test instances. All instances
are solved by the label correcting algorithm 1.

Solomon C101-25 C'101.50

instances resolT nbLab nbLabDom resolT nbLab nbLabDom
DP_LC 0,17 343 680 3,37 1673 2 695
DP _Blocs 0.04” 79 4 0,2” 204 15
Solomon 101 12221

instances resolT nbLab nbLabDom resolT nbLab nbLabDom
DP_LC 72,07 5941 10 510 | 2 526,07 39 922 1 946 876
DP _Blocs 3,27 491 68 87,07 1 036 11 425
Generated G_100 G_-120

instances resolT nbLab nbLabDom resolT nbLab nbLabDom
DP_LC 186,07 200 586 21 700 018 426,07 335 421 116 011 504
DP_Blocs 18,9” 14 446 98 912 24,17 92 325 123 413
Generated G_140 G_160

instances resolT nbLab nbLabDom resolT nbLab nbLabDom
DP_LC 462,07 454 729 21 220 354 138,07 105 478 11 836 750
DP_Blocs 27,07 17 366 94 812 17,17 57 758 115 377

resolT: resolution time.
nbLab: number of labels treated (labels on which the dominance procedure is applied).
nbLabDom: number of labels compared in the dominance procedure.

Table 1: Dynamic programming with blocs

Dynamic programming with blocs (DP_Blocs) decrease the number of la-
bels treated by 79% compared to the label correcting algorithm (DP_LC),
this is due to the reduction of the space search of new efficient labels us-
ing the blocs. DP_Blocs permits also to reducing efficiently the number of
labels compared in the dominance procedure (more than 99%) compared to
DP_LC. These results are predictable, as showed in proposition 2, dominance
procedure is applied on a restricted number of labels. These results show the
efficiency of the DP_Blocs which permits of decreasing the resolution time of

the DP_LC method by 88%.

6. Conclusion

Traditionally used dominance rules in dynamic programming consists,
after the expansion of a label, to verify if the new label is feasible and not
dominated (in the opposite case, it is ignored) by comparing it with all
efficient labels already computed. This procedure can be time consuming
when the number of labels is large.

We propose in this paper an improving technique which objective is the
reduction of the number of labels saved and the computation time of the
dominance procedure. In the proposed approach feasibility and dominance
tests are included in one, which consists to check if the treated label belongs
to a bloc. In the case where the label belongs to a bloc, this method permits
a direct access to dominated labels.

Experimentations on SPPTW instances reveal that this method reduces
significantly the number of labels saved and the computation time of the
dominance procedure.

[1] R. Bellman, Dynamic programming, Princeton university press, NJ, USA,
1957.

[2] M. Desrochers, An algorithm for the shortest path problem with resource
constraints, Technical Report G-88-27, GERAD, 1988.

[3] S. Irnich and G. Desaulniers, Shortest path problems with resource con-
straints, In: Desaulniers et al. (eds), Column generation, Chap. 2. Springer,
Berlin, 2005.

[4] M. Desrochers, F. Soumis, 1988. A generalized permanent labelling algo-
rithm for the shortest path problem with time windows. INFOR 3, 191-212.

