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Abstract. The distribution engendered by successive splitting of one point vortex are considered. The
process of splitting a vortex in three using a reverse three-point vortex collapse course is analysed in great
details and shown to be dissipative. A simple process of successive splitting is then defined and the resulting
vorticity distribution and vortex populations are analysed.
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1 Introduction

One of the striking features of two-dimensional turbulent
flows is the presence of the inverse energy cascade, which
results in the emergence of coherent vortices, dominat-
ing the flow dynamics [1,2,3,4,5]. In order to tackle these
problems, point vortices have been used with some suc-
cess to approximate the dynamics of finite-sized vortices
[6,7,8], as for instance in punctuated Hamiltonian mod-
els [5,9]. In these models, the advection of well-separated
vortices is approximated via Hamiltonian point-vortex dy-
namics; to account for the change in the vortex popula-
tion toward smaller number of bigger vortices, dissipative
merging processes are included for vortices which have
approached each other closer than a certain critical dis-
tance. In fact it has been shown that high-dimensional
point vortex systems have both the features of extremely
high-dimensional as well as low-dimensional systems [10];
moreover, the merging processes observed in decaying two-
dimensional turbulence results from the interaction of a
few number of close vortices [11] and make the under-
standing of low dimensional vortex dynamics an essential
ingredient of the whole picture [12].

Ever since the pioneering work of Onsager on two di-
mensional turbulence [13], an statistical approach to tur-
bulence using point vortices has been developed. These
vortex systems display negative temperature, correspond-
ing to states where same-sign vortices bound to form larger
vortices [14,13], but special care in the definition of the
thermodynamic limit has to be done[15]. In the same spirit,
work has been done as well in order to specify stationary
flows resulting from point vortices [16,17,18] as well as ki-
netic theories derived (see for instance [19] and references
therein).

Regarding the dynamical aspect, point vortex seen as
exact solutions of the Euler equation are still debated,
indeed finite time singularities such as three vortex col-
lapse can arise [20,21,22], and can been seen as the con-
sequences of an ill posed problem. In this paper we take
a different perspective on the existence of this finite time
singularity. Indeed we think of it as a potential source of
vorticity and vortices and in this perspective investigate
the consequences of such possibility. One of the perspec-
tive is to offer the possibility of a statistical mechanics
approach with a varying number of vortices. To be more
precise, in this paper our main goal is to lay the ground
for further statistical studies. We consider a simple mech-
anism of generating distributions of vortices and vortex
strength resulting from the successive splitting according
to a reverse collapse course of one point vortex. We shall
refer to this result as the offsprings of a point vortex. The
paper is organised as follows, first we recall briefly the no-
tion of point vortices, and how they naturally appear as a
solution of Euler equation. We then consider the process
of splitting of one vortex in three, introduce the relevant
parameters and analyse briefly preliminary consequences,
namely exhibit that the splitting process is a dissipative
one. Finally we define simple rules for successive splitting,
compute the offsprings of a point vortex with these rules
and perform some analysis.

2 Basic equations

Point vortices are singular solutions of some bidimensional
physical systems described by a conservation equation of
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what we shall call a generalised vorticity Ω given by

∂Ω

∂t
+ {Ω,ψ} = 0 , (1)

where {·, ·} denotes the usual Poisson bracket, and ψ is
a stream function. The actual relation Ω = F (ψ) may
depend on the considered physical system. For instance
for the Euler equation it is simply given by Ω = −∇2ψ.
When Ω = −∇2ψ + ψ/ρ2s where ψ is, in this context,
related to the electric potential (in suitable units) in a
plasma, ρs is the hybrid Larmor radius. Point vortices are
defined by a vorticity distribution given by a superposition
of Dirac functions,

Ω(r, t) =
1

2π

N
∑

i=1

kiδ (r− ri(t)) , (2)

where r = (x, y) is a vector in the plane of the flow, ki is
the strength of vortex i (circulation), N is the total num-
ber of vortices, and ri(t) is the vortex position at time t.
Using this expression of the vorticity and solving the Pois-
son equation, in the Euler case, or the Helmholtz equation
in the more general case, one obtains the current function
associated to the point vortices. By Helmholtz theorem,
the motion of the vortices is determined by the value of
the velocity field created by the other vortices at the posi-
tion of the vortex. The point vortex motion is Hamiltonian
and given by

kiẏi = −∂H
∂xi

:, ẋi =
∂H

∂(kiyi)
:, (i = 1, · · · , N) (3)

where the Hamiltonian H is given by

H =
1

2π

∑

i>j

kikjU(|ri − rj |) (4)

with for an unbounded plane U(x) = − log(x) in the Euler
case, and U(x) = K0(x) in the more general case (when
ρs → ∞ the modified Bessel function tends to the loga-
rithm). The Hamiltonian (4) exhibits clearly that a system
of point vortices is invariant by translation and rotation,
which implies both the conservation of the centre of vor-
ticity and the total angular momentum, the motion of
three vortices is integrable, while for four or more vortices
Hamiltonian chaos come into play. When the distance be-
tween the vortices is smaller than the typical interaction
length (ρs) the behaviour of the two systems is similar, in
the opposite case, the K0 interaction decreases exponen-
tially and the vortices are almost free. In the following,
analytical computations will be made using the logarith-
mic interaction, which corresponds to the Euler flow, and
we can expect the results to be qualitatively valid for the
Bessel interaction as long as the vortices are not “too far”
from each other.

Let us now focus on a situation with only three vor-
tices. In this restricted situation, it is easier to tackle the
motion of the vortices by studying in fact their relative
motion. Namely the three vortices form a triangle, and the

relative motion describes the deformation of this triangle
[20,23,24,25,22]. The invariance by translation of (4), al-
lows us a free choice of the origin of the plane, which we
choose to be the centre of vorticity (when it exists). The
other constants of motion written in a frame independent
form become,

{

H = − 1
2π [k1k2 lnR3 + k1k3 lnR2 + k3k2 lnR1]

K = k1k2R
2
3 + k1k3R

2
2 + k3k2R

2
1 ,

(5)

where Ri = |rj − rk|, with i 6= j 6= k. In fact it has been
known for a long time that the motion of vortices can lead
to singular solutions and finite time singularities, the most
striking one occurring for with a system of three vortices
resulting in the collapse of the vortices in a finite time
[20,21,22] or by time reversal, to an infinite expansion of
the triangle formed by the vortices. The collapse or infinite
expansion of the three point vortices are obtained when
the following conditions are satisfied

K = 0 (6)

∑

i

1

ki
= 0 , (7)

the harmonic mean of the vortex strengths (7) and the
total angular momentum in its frame free form (6), are
both equal to zero. [24,26].

In this paper we shall use this specific singularity and
consider vorticity distribution arising from successive split-
ting of a point vortex according to the collapse conditions.
Note that other type of singularities involving more vor-
tices are effectively possible, however for the sake of sim-
plicity, we restrict ourselves to reverse three-vortex col-
lapse rules. In what follows we shall refer to the successive
splitting process as the point vortex offsprings.

3 Splitting of a Point Vortex

3.1 Splitting rules

In order to be consistent with the physical properties of
vortex collapse, we successively divide vortices according
to the collapses rules and keep the total vorticity constant.
The splitting rules from one generation n of a vortex i of
strength ki,n to the next generation n+ 1 read

3
∑

i=1

ki,n+1 = ki,n (8)

3
∑

i=1

1

ki,n+1
= 0 . (9)

These equations are equivalent to

3
∑

i=1

ki,n+1 = ki,n (10)

3
∑

i=1

k2i,n+1 = k2i,n , (11)
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the ki,n+1 lie on the circle at the intersection of the sphere
of radius |ki,n| defined by Eq. (11) and the plane defined
by Eq. (10). We therefore discuss the splitting in terms
of the vector kn+1 = (k1,n+1, k2,n+1, k3,n+1). The tip of
the vector lies on a circle, hence we parametrise it with an
angle θn as:

kn+1 = kn

(

a+

√

2

3
(cos θn u+ sin θn v)

)

, (12)

where a = (1, 1, 1)/3, and for instance u = (1,−1, 0)/
√
2

and v =
√
3 a ∧ u. Given these rules and the fact that

k3,n(θ + 2/3π) = k1,n, k3,n(θ − 2/3π) = k2,n, θn can be
restricted to the segment [0, 2π/3].

3.2 Is the splitting always possible

We imagine that we are dealing with a system with many
vortices (2n+ 1 after n splittings) and consider the split-
ting of one point vortex according to the rules (6) and
(7) in this system. The total number of vortices changes,
see Fig 1 for an illustration of the process. Regarding the
energy we have

δHn = Hn+1 −Hn = − 1

4π
lnΛn , (13)

= − 1

4π
[k1k2 lnR3 + k1k3 lnR2 + k3k2 lnR1 , ](14)

where for instance the vortex kN = k1 + k2 + k3 was split
in three. In order to be dynamically compatible, we first
neglect the influence of the other vortices (which are con-
sidered far enough to not interfere locally), but still we
need to make sure that there is at least one triangle satis-
fying the conditions and define the value of δHn associated
with the splitting. For that purpose after the splitting we
name 2 and 3 the vortices whose strengths have the same
sign with |k2| < |k3|, exponentiating Eq. (13) gives

Rk1k2

3 Rk1k3

2 Rk2k3

1 = Λn , (15)

then we divide by one noticing that R

∑

kikj

1 = 1, and
obtain

(

R3

R1

)k1k2
(

R2

R1

)k1k3

= Λn . (16)

Since the collapse is scale free (self-similar), we choose R1

as our length units, note r2 = R2/R1, r3 = R3/R1 and
arrive at

r2 = Λ1/k3k1

n r
−k2/k3

3 . (17)

The condition (6) becomes once rescaled

k1k2r
2
3 + k1k3r

2
2 + k3k2 = 0 , (18)

combining this last expression with (7) we have

k2(r
2
3 − 1) + k3(r

2
2 − 1) = 0 , (19)

1

2

3

4

5

6

k

k1
k2 k3

Fig. 1. Simple 6th order vortex lineage

and noting α = k2/k3(< 1), we finally obtain

αr
2(1+α)
3 + Λ2/k1k3

n = (1 + α)r2α3 . (20)

Λn being positive, αX1+α − (1 + α)Xα shows that r23 ∈
]0 ; 1 + 1/α[ and that 0 < Λ

2/k1k2

n ≤ 1. The equality Λn =
1 being reached for r3 = 1 which implies an equilateral
triangle. This last configuration has to be excluded as it
is dynamically a fix point, i.e the triangle does not expand
or shrink hence can not be a starting point for a vortex
splitting. So , since k1k3 < 0, this means that Λn > 1 and
that δHn = − 1

4π lnΛn < 0. The splitting of a vortex in
three is a dissipative process.

We now enforce that the solution is a triangle, using
the rescaled variables this means that

1 = r22 + r23 − 2r3r2 cosϕ , (21)

which implies (using Eq. (19))

cosϕ =
r23(1 − α) + α

2r3
√

1 + α− αr23
. (22)

The right hand side of Eq. (22) is always positive, so
−π/2 < ϕ < π/2. The minimum is obtained for r23 =
α(1 + α)/(1 + α2) and equal to α1/2/(1 + α), which is al-
ways smaller than one. There is therefore always a range
of possibilities available for r3 and thus splitting is always
possible. Note that for a given value of r3 the two mirror-
ing shapes of the triangle are possible, one giving rise to
expansion (splitting) the other one to collapse.

4 Vorticity distributions

We are now interested in the vorticity distribution we
obtain from such process. For this purpose we compute
different trees originating from one vortex of strength k =
1 as depicted in Fig. 1. The distributions are computed
by successive vortex splitting. After each division, a vor-
tex is chosen randomly among the global population and
is split according to the reverse collapse rules, the division
is the result of the uniformly random choice of an angle θn
(see Eq. (12)). Other possible rules made by assigning dif-
ferent probabilities on vortices will be explored in future
work. Results of the obtained distributions are depicted in
Fig. 2. We shall notice that the chosen rules gives rise to
a large spectrum of vorticities (see the logarithmic scale
in Fig.2). We notice as well that as the number of divi-
sion increases the distribution spreads and the location of
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Fig. 2. Probability density function (PDF) of the abso-
lutes values of vortex strengths after respectively (from
right to left) 103, 5 103, 104, 2 104, 5 104, 105 vortex splits.
The PDF have been averaged over 64 trees, for the large
values and up to 512 trees for the smallest ones. The shape
appears as self-similar.
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Fig. 3. Variation of energy versus number of created vor-
tices. The curve has been averaged over 100 trees. Split-
tings have been performed up to N = 65537 vortices start-
ing from one vortex of strength k0 = 1. One can notice
a small logarithmic decay of energy versus the number of
vortices, of the type δE ≈ −λ log10(N) with λ ≈ 5.910−3.

its maximum is slowly moving towards smaller values of
the vorticity, moreover, the evolution of the distribution
appears to have some kind of self-similar behaviour. In
the same spirit the variation of energy as a function of
generated vortices can be monitored. Results are shown
in Fig. 3 and show a slow logarithmic decay of the total
energy.

In order to analyse this in more details we need to
characterise the lineage (see Fig. 1) after a given number
of splitting. We will note the total number of splittings
that occurred n. These successive divisions generate a tree
(the phase space of the process) with 3n leaves at the
extremities. Each division results in the choice of an angle
θi. Now let us consider a particular “lineage” of order n,
it gives rise to a family of N = 2n + 1 vortices. At each
step of the division process (from n to n + 1) we choose
any already existing vortex and split it with the rules (12).
The trajectory in phase space corresponds to a connected
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Fig. 4. Probability density function (PDF) of the occu-
pation of each generation M after respectively (from left
to right) 103, 5103, 104, 2104, 5104, 105 vortex splits. The
PDF have been computed using the mean field equations
(23). The shape appears as self-similar and is reminiscent
of what is observed in Fig. 2.

graph with 2n+ 1 leaves starting from the top of the tree
and of total length 3n+1. The number of possible graphs
on the tree after n splittings is: (2n+1)!/(2nn!). To move
further on, and due to the large amount of possible graphs,
we consider the global occupation Mi of the level i (see
Fig. 1). We note Mi(n) the average number of leaves at
level i at time n. Then we have

Mi(n+ 1) =Mi(n) + 3
Mi−1(n)

2n+ 1
− Mi(n)

2n+ 1
, (23)

with initial conditions M0(0) = 1, Mn>0(0) = 0. It is easy
to integrate numerically this equation in order to have an
idea of the solution. We find that the form

Mi(n) = ai
(log(2n+ 1))

i−1

√
2n+ 1

(24)

is solution, with ai = 3ai−1/(2(i− 1)), i.e.

ai =

(

3

2

)i−1
a1

(i − 1)!
. (25)

This can be checked easily by induction, we assume that
Mi−1 is of this form, and then we can solve Eq. (23) for
Mi in the continuous time limit in which it becomes

dMi

dn
= 3

Mi−1

2n+ 1
− Mi

2n+ 1
. (26)

In this way we obtain that at a fixed level i, the occu-
pancy Mi first increases with time, then decreases, with a
maximum at n∗(i) ∼ exp(2i). At fixed time n on the other
hand, Mi(n) has a maximum at i∗ ∼ 3 log(2n + 1)/2. A
numerical integration of the global populations given by
Eq. (23) is displayed in Fig. 4. One can notice similarities
with the distributions of vorticity although the distribu-
tions are more peaked. In order to test as well our anal-
ysis, the location of the maximum of the distribution is
displayed in Fig. 5 and a good agreement with the loga-
rithmic law is found.
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Fig. 5. Maximum i∗ versus number of vortices N . i∗ is
obtained from the distributions displayed in Fig. 4. A lin-
ear scaling is observed as expected, with a measured slope
of ∼ 3.1, “close to the expected value 3/2× ln 10 ≈ 3.45”
.

Let us now compute the distribution of vorticity ρ(k, n)
assuming we know the occupancyMi(n). Hence let us con-
sider a vortex living in the generation i. It has been the
result of i splitting. Since the splitting rules (12) have no
preferred order (as mentioned earlier they permute if we
add 2π/3 to the random angle), we assume that the ob-
tained vortex is always the third vortex hence its absolute
vorticity k will end up being

k =
1

3i

i
∏

j=1

(1− 2 sin θj) , (27)

and consequently its logarithm is

log |k| =
i
∑

j=1

log |1− 2 sin θj | − i log 3 , (28)

with θj being uniformly distributed random variables in
[0 2π[. We can then gather the probability distribution of
vortex strengths at generation i, which we note ρi(k). And
thus the vorticity distribution after N division writes

ρ(k, n) =
∑

i

ρi(k)ρ(Mi, n) , (29)

with ρ(Mi, n) =Mi/(2n+ 1).
In order to check these results, we compute ρ(k, n)

using Eq.(29) and compare the results to those displayed
in Fig. 2. In fact, given the shape of the occupancyMi(n),
we can compute ρ(k, n) using only a “few” distributions
ρi(k). For instance in Fig. 6 we computed the ρi(k) taking
into account in the tree the vortices only up to generation
i = 40. We notice as well a very similar behaviour as the
one displayed in Fig. 2.

5 Conclusion

This paper is a first attempt at analysing the distribu-
tion of vorticities originating from one point vortex using
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Fig. 6. Probability density function (PDF) of the abso-
lutes values of vortex strengths after respectively (from
right to left) 103, 5 103, 104, 2 104, 5 104, 105 vortex splits.
The PDF have been computed using Eq.(29), where we
took into account only up to generation i = 40. The results
appear to be coherent with what is displayed in Fig. 2.

a dynamically compatible process, namely a reverse col-
lapse route with the conservation of total vorticity. The
splitting process has been analysed in great details and
shown to be dissipative. Afterwards a simple process con-
sisting of randomly successive splittings is proposed and
the resulting distributions have been analysed. Analyti-
cal computation of the proposed process have been made,
resulting for instance in the computation of the vorticity
distribution after n consecutive splitting of vortices and
show very good agreement with the numerical simulation
of the process. This paper is a first step for further work.
One could for instance modify the splitting rules in or-
der to obtain a conservative process, but also could try
to pick vortices and how the splitting is done, with a non
uniform probabilities, such as a Gibbsian one and analyse
the resulting distributions. In other words, we could per-
form statistical physics of point vortices allowing a varying
number of vortices according to the collapse rules, and see
if this possibility changes the equilibrium features. Last
but not least, it will be important to compare the ob-
tained distribution with real data and see if the proposed
mechanism or its variants could describe results obtained
on two-dimensional physical flows. For instance, one has
to notice that if we have started with a positive vortex,
the reverse collapse course induces naturally the creation
of negative vortices, thus the engendered distributions will
consist of both positive and negative vortices. Work is cur-
rently under way to analyse these different possibilities.
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