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Abstract

The aim of this work is to highlight theoretically and experimentally the effect of
cyclic speed fluctuations on the temporal and angular deterministic parts of signals
recorded on rotating machines operating in steady state conditions. The determin-
istic parts of such cyclostationary signals are defined by their periodic components,
or their CS1 part (order 1 of cyclostationarity). It can be assessed by using cyclic av-
eraging, using a time or angle sampling, leading to an estimation of the temporal or
angular deterministic part. If the instantaneous speed of the machine is not purely
periodic, the temporal and angular deterministic parts will be different. These dif-
ferences are firstly theoretically considered, and then experimentally assessed in the
case of a diesel engine.
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Introduction

Acoustic or vibration signals acquired on rotating machines operating in steady-
state conditions are said to be cyclostationary [1]. Cyclostationarity is the
general framework to treat signals exhibiting periodical properties. The de-
terministic part of a cyclostationary signal is commonly defined by its purely
periodic component, i.e. the expected value of the signal during a cycle, also
called CS1 part (first order of cyclostationarity). This part can be estimated
by averaging the signal over a large number of cycles [2]. The random part
of the signal is defined relatively to the deterministic part : it is the residual
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part resulting from the subtraction of the deterministic part from the total
signal. This definition of the deterministic / random decomposition of a cy-
clostationary signal is attractive because of its simplicity. It can however be
ambiguous when dealing with signals acquired on rotating machines running
in steady-state conditions. The determinism of vibration or acoustic signals
acquired on rotating machines is dual : firstly the occurrence of mechanical
events (mechanical shocks, combustions in reciprocating engines...) is guided
by the position of the main shaft of the machine : this is an angular deter-
minism. Secondly, the response of the structure to excitations results from
a convolution product in the time domain : it is a temporal determinism.
This construction of signals in temporal and angular domains brings out the
concept of fuzzy cyclostationarity [3]. The duality of the determinism is not
a problem if the instantaneous speed is purely periodic (or constant). In this
case, a signal purely periodic in angle will be purely periodic in time [3,4]. Dif-
ficulties appear when the instantaneous rotation speed exhibits fluctuations
from cycle to cycle, i.e. if the instantaneous speed is not purely periodic. In this
case, the relation between temporal and angular domains is not deterministic.
Cycle averaging operations, that are necessary to estimate deterministic parts
of signals, will thus lead to different results in time or angle. The deterministic
part of the signal in angle (resp. in time) will exhibit a random part in time
(resp. in angle).
The aim of this paper is to assess theoretically and experimentally the effect
of speed fluctuations on angular and temporal deterministic parts of signals
acquired on rotating machines. Sections 1 and 2 concern respectively the tem-
poral and angular deterministic part. Simple and general considerations about
sources in rotating machines lead to the expression of low pass filters and
damping effects on deterministic parts. The last section is an experimental
illustration in the case of a diesel engine operating at cold idle.
In all the following, ”time signals” or ”angular signals” will stand for signals
sampled with a constant step respectively in time or angle.

1 Extraction of the temporal deterministic part

1.1 synchronous averaging

The temporal deterministic part of a rotating machine signal corresponds to
its expected value during one cycle in the time domain. It can be estimated by
averaging it over a large number of cycles. The main difficulty of this averaging
process is that consecutive cycles do not have the same number of samples
because of cyclic speed variations. In fact, two cycle events separated by a
constant value in angle will be separated by a varying delay in the time domain.
It means that the resulting average does not correspond exactly to a cycle as

2



defined relatively to the angle, but to a time portion of the signal corresponding
approximately to the mean duration of a cycle. However, an angle reference
corresponding to a given position of the main shaft is necessary to align those
time portions before the averaging operation (position-locking in [2]). A given
time portion will thus be defined as the m points preceding the chosen angle
reference together with the p points following it, T = (m+p)/fs corresponding
approximately to a cycle duration (with fs the sampling frequency in Hz).
Because of cyclic speed variations, the temporal deterministic part of a signal
is necessarily defined together with a chosen angle reference. The choice of
different angle references for the synchronization will lead to different results.

1.2 Effects of the synchronization error

Unfortunately, time portions corresponding to successive cycles cannot be ex-
actly synchronized because of the discrete nature of acquired signals. The
chosen angle reference is indeed localized between two time samples. Without
resampling or interpolation techniques, a synchronization error is unavoidable,
and corresponds to the delay between the reference and the nearest sample
of the time portion. This error can be described by a random variable ∆ uni-
formly distributed between −1/(2fs) and 1/(2fs) (assuming the rotation speed
and the sampling frequency are non commensurable). The effect of this error
on the synchronous average can be obtained by considering its expected value.
The Fourier decomposition of the deterministic part of the signal is expressed
as follows

d(t) =
∑
n

Dnej2πfnt, with fn =
n

T
=

n

m + p
fs. (1)

Considering the synchronization error, the expected value of the synchronous
average is given by

d̃(t) = E[d(t + ∆)] =
∑
n

DnE[ej2πfn(t+∆)]

d̃(t) =
∑
n

Dnej2πfntE[ej2πfn∆]

d̃(t) =
∑
n

E[cos(2πfn∆)]Dnej2πfnt (2)

Equation (2) brings out a frequency dependent bias factor, whose value is
easily calculated considering the law of ∆ :

b(f) = E[cos(2πf∆)] =
fs

πf
sin

(
πf

fs

)
(3)
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Fig. 1. Bias factor generated by the synchronization error

It means that the synchronous average will give a biased estimation of the
deterministic part. The bias factor is a function of the ratio f/fs, and varies
between 1 (no bias) for f = 0 and 0.64 for f/fs = 1/2 (Nyquist frequency).
The bias factor is drawn in figure 1.

It can be noted that it is possible to use upsampling procedures to artificially
increase fs. No information is created : the frequency content of the upsampled
signals will remain zero above the original Nyquist frequency. However, it
permits to align more precisely time portions before the averaging process by
decreasing the synchronization error ∆.

1.3 Effects of cyclic speed variations

The dynamic response of the structure and its acoustic radiation are defined
in the time domain. Thus, the temporal synchronous averaging is theoretically
optimal to extract the response of the structure to an impact excitation occur-
ring in the vicinity of the cycle event chosen for the synchronization. However,
the alignment of cycle events occurring at significantly different angles will be
lost, as illustrated in figure 2.

Considering a cycle event occurring at θ (with θ = 0 the synchronization
angle), and a mean speed Ω(1 + ν) between 0 and θ (with ν the speed uncer-
tainty), the time corresponding to θ is given by

t =
θ

Ω(1 + ν)
(4)

In case of a moderated cyclic speed variation (−0.1 < ν < 0.1), 1/(1 + ν) can
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Fig. 2. Misalignment of synchronized consecutive cycles using a time sampling

be approximated by (1− ν) :

t =
θ

Ω
(1− ν) =

θ

Ω
− ν

θ

Ω
=

θ

Ω
+ ∆ (5)

With ∆ = −νθ/Ω the random delay induced by the cyclic speed variations.
The bias error induced by this delay when averaging several cycles is obtained,
as for the previous section, by calculating the expected value of cos(2πf∆)
(see eq. (3)). Here, the difference is that the random delay is not uniformly dis-
tributed. Assuming that the cyclic speed uncertainty ν is a centered gaussian
random variable with a standard deviation σν , ∆ is also a centered gaussian
random variable, with a standard deviation σ∆ = θσν/Ω. The expected value
of the bias factor is finally given by

E[cos 2πf∆] =

+∞∫

−∞
cos(2πft)

1

σ∆

√
2π

e−t2/(2(σ∆)2)dt (6)

The integral in equation (6) is the expression of the Fourier transform of the
gaussian function, which is also a gaussian function :

E[cos 2πf∆] = F
[
e−t2/(2(σ∆)2)

σ∆

√
2π

]
= e−2π2f2(σ∆)2 = e−2π2f2θ2(σν)2/Ω2

(7)

The bias factor is drawn in figure 3 for several values of θ and for the speed
fluctuation observed on a diesel engine at cold idle (see section 3.2). It can
be seen that the bias error behaves as a low-pass filter, with for instance
an attenuation of 20dB at 500 Hz for a cycle event occurring at π after the
synchronization angle (with σν = 4e− 3).
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Fig. 3. Bias factors caused by cyclic speed variations on the synchronous average
for events occurring at an angle θ from the synchronization angle. σν = 4e − 3,
Ω = 850rpm (cold idle)

2 Extraction of the angular deterministic part

2.1 Time to angle correspondence

There are two possibilities to obtain signals sampled respectively to the an-
gle, and both are based on the use of an angular coder coupled to the main
rotating shaft of the studied machine. This system provides a square signal
with a period equal to the angular resolution. The first possibility is to drive
the acquisition system with this clock signal, so as to obtain one sample by
angle step. A difficulty of this method is that the anti-aliasing analogous filters
must be adjusted on a varying sampling frequency. The second possibility is
to record the angle signal, as well as other inputs, equally spaced in time, and
to post process the time to angle transformation [5,3]. This second possibility
has been chosen in this study, because it allows the processing of same sig-
nals sampled either in time or angle. The chosen sampling frequency must be
adjusted in accordance with the angle resolution and the maximum instanta-
neous speed : the first harmonic of the signal of the angular coder must be
lower than half the sampling frequency. A function t(θ) (time in function of
the angle) is easily constructed from the clock signal, with a resolution that
can be made higher than the resolution of the coder by upsampling the in-
stantaneous speed, if needed. Then, signals are resampled in angle using an
interpolation technique. The interpolation algorithm used for angular resam-
pling is the piecewise cubic spline of the MATLAB software [6].
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2.2 Expression of the angular deterministic part in the time domain

The assessment of the angular deterministic part of signals expressed in angle
is much easier than for the temporal deterministic part : it is not necessary
to synchronize signals. It is sufficient to average consecutive signal portions
with a number of samples corresponding to the number of sample in one cycle.
Then, it can be interesting to transform back this angular deterministic part
in the time domain, for instance to compare it with the temporal deterministic
part. This can be done by computing the cyclic average of the instantaneous
rotation speed, the integration of which gives a cyclic average of the function
t(θ), allowing to get back in time by using interpolation techniques.

2.3 Effects of cyclic speed variations

The occurrence of events generating vibration and noise in rotating machines
is defined relatively to the rotation angle of the main shaft. Averaging in
angle is theoretically advised if we are interested in the effective occurrence
of events, for instance for diagnosis purpose or fault detection. Unfortunately,
the response of the structure results from a convolution in the time domain.
Thus, an averaging with respect to angle will bias the deterministic part of
the response of the structure because of cyclic speed variations (see figure 4).
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Fig. 4. Misalignment of synchronized consecutive cycles using an angular sampling

Let us consider the Fourier expansion of the (temporal) response of the struc-
ture to the deterministic part of an excitation occurring at an angle θ = 0.

d(t) =
∑
n

Dnej2πfnt (8)
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The time - angle relation is expressed as in equation (5). The preceding ex-
pansion can thus be written in function of θ :

d(θ) =
∑
n

Dnej2πfn(θ/Ω+∆), (9)

with ∆ = −νθ/Ω.

It is important to note that Ω(1+ν) is the value during a given cycle realization
of the instantaneous rotation speed average between 0 and θ. It is thus a
function of θ, as well as the standard deviation of ν. However, σν will be
considered as constant in the following for the sake of simplicity.
The expected value of the angular cyclic average is thus given by

d̃(θ) = E(d(θ)) =
∑
n

Dnej2πfnθ/ΩE(ej2πfn∆) (10)

The frequency dependent bias factor is identified in equation (10) :

b(θ, f) = E(ej2πf∆) = E[cos(2πf∆)] (11)

This expected value is explicitly written as follows (see eq. (7)):

b(θ, f) = e−2π2f2θ2(σν)2/Ω2

(12)

This attenuation is drawn in figure 5 in function of θ, for different values of
frequency f , and considering Ω and σν constant (this is of course an approxi-
mation, but experimental observations provided in section 3.2 show that this
is realistic at least for reciprocating engines). It results in a kind of virtual
damping, with a damping factor increasing with the speed uncertainty and
the frequency. It is clear that the less the structure is damped, the more this
bias will affect its response when averaging with respect to angle.

3 Experimental comparison between the angular and temporal de-
terminism of diesel engine signals

3.1 experimental setup

The experimental illustration proposed in this paper focuses on a diesel engine
(1.9L, common rail injection, four in-line cylinders) operating at cold idle
(about 850rpm). The engine is mounted on a bench in a semi-anechoic room.
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Fig. 5. Attenuation of the response of the system to an excitation occurring at an
angle θ = 0 caused by the averaging in the angular domain for different frequencies.
σν = 4e− 3

The instantaneous speed of the crankshaft is measured using an angle coder
with a resolution of 0.5 deg. Several signals are recorded using a time sampling
of 102400 Hz :

• 1 : cylinder pressure,
• 2 : accelerometer on a crankshaft bearing cap,
• 3 : acoustic pressure at about 1m from the engine,
• 4 : angle coder.

3.2 Cyclic speed variations of the studied engine

The cyclic speed incertitude is the cause of theoretical differences between
temporal and angular determinisms. It is thus of prime interest to estimate
its magnitude on the studied experimental case. The average speed of the en-
gine running at cold idle is 854rpm. When studying the population of speeds
averaged over a cycle (for 213 cycles), the normalized standard deviation is
equal to 0.26%. But if we look at the population of speeds averaged over a
course (quarters of cycles corresponding to the duration between two consec-
utive TDC), the normalized standard deviation is increased to 0.45%. The
instantaneous cyclic speed averaged over 213 consecutive cycles is drawn in
figure 6, together with the standard deviation. Angular decelerations and ac-
celerations preceding and following combustions are visible, the instantaneous
speed standing between 780 and 890 rpm, (between −8% and +6% of the
nominal speed). The normalized standard deviation is between 0.4 and 0.5 %,
with peaks at about 0.6 % in the vicinity of TDCs. It means that the dis-
persion of the instantaneous speed is of the same order of magnitude as the
dispersion observed on the speeds averaged over a course. The instantaneous
speed uncertainty thus seems principally generated by the uncertainty of the
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Fig. 6. Top : instantaneous cyclic speed averaged over 212 cycles, with confidence
interval at ±2σ in dashed red line. Bottom : normalized standard deviation.

averaged speed of a course, that can be explained by the combination of sev-
eral physical unknowns like the exact fuel quantity injected in the cylinder
or the auto-ignition delay. These observations legitimize assumptions made in
section 2 : the dispertion of the cyclic speed is almost the same for the instan-
taneous speed and for averaged values over angle distances between 0 and π.

3.3 comparison of temporal and angular deterministic parts

Temporal and angular cyclic averages are computed using methods described
in sections 1 and 2. Signals are recorded during 30s on the engine running at
cold idle. Angular cyclic averages are transformed back into the time domain
as described in section 2, to be compared to the time domain results. Angular
and temporal deterministic parts of the microphone signal are drawn in figure
7 in function of time, the 0 corresponding to the TDC in the first cylinder,
the cycle event chosen for the synchronization of the time averaging process.

Angular and temporal deterministic parts are clearly different. Four bursts are
clearly identified, corresponding to the noise generated by the four combus-
tions. For the angular deterministic part, the four bursts seem to have similar
strengths. Concerning the temporal deterministic part, the burst following the
TDC used for the synchronization (in the cylinder #1) is stronger than the
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Fig. 7. Angular (black) and temporal (gray) cyclic averages (1m microphone signal).
Vertical lines materialize TDCs, with the central one standing for the TDC used
for the synchronization used for the time averaging.
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Fig. 8. Time-frequency representations of angular (top) and temporal (bottom)
cyclic averages (1m microphone signal).

preceding and the following ones (respectively cylinders #2 #3). The burst
corresponding to the TDC in cylinder #4 is even lower. These observations
are conform to theoretical expectations found in section 1. Time-frequency
representations of time and angular deterministic parts are drawn in figure 8.
It is clear on the temporal deterministic part that the response of the engine
to combustions #2, 3,and 4 is strongly attenuated over 1kHz, compared to
the angular deterministic part. On the other side, the response to combus-
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tion in cylinder #1 (just after the TDC chosen for the synchronization), is
clearly stronger on the temporal deterministic part, and its duration is longer.
It confirms the results of section 2, forecasting a damping-like attenuation
of the angular deterministic part, with a damping factor increasing with the
frequency.

Quadratic values of temporal and angular deterministic parts of the pressure
in cylinder #1, the bearing cap accelerometer and the microphone signals are
drawn in figure 9, using an integration constant of 2ms. Signals are band-
pass filtered between 0.5 and 12kHz. It can be seen on the cylinder pressure
trace that temporal and angular deterministic parts are similar. The energy
of this signal is indeed concentrated on a very short time corresponding to
the combustion, the effect of cyclic speed fluctuations is thus negligible, the
synchronization event used for the temporal cyclic averaging corresponding
approximately to this combustion. It can be seen on the accelerometer and
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Fig. 9. Instantaneous quadratic values of angular (solid black) and temporal (dashed
gray) cyclic averages for the cylinder pressure (top) accelerometer (center) and mi-
crophone (bottom) signals using a band-pass filter [0.5 12kHz], integration constant
: 2ms .

microphone traces that the temporal deterministic part is a little more ener-
getic during the response to the combustion in the cylinder # 1, and much
less in other cylinders. The studied accelerometer is placed on the bearing
cap between cylinders # 2 and 3, explaining why the energy of the angular
deterministic part is more important just after the combustion in this two
cylinders.
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3.4 Extraction and exploitation of random parts

The study of the deterministic part of signals is of prime interest for the mon-
itoring of the studied rotating machine, because it represents its operation at
the first order. The random part of the signals is the difference between the
original signal and its deterministic part. It is important to note at this stage
that a light underestimation of the deterministic part can induce in some sit-
uations large overestimations of the random part. The study of the random
part can be very interesting, for example in identification problems where some
sources have to be separated. It is known that the correlation between noise
and vibration sources of a rotating machine, that induces difficulties in the
identification of their own contributions to the total noise, is mainly due to
their determinism [7,8]. Removing the deterministic part of signals is thus a
clever way to help in their separation. Several studies recommend to remove
the temporal deterministic part of signals for system identification problems
[9–11]. The underlying idea of these works is to consider the structure of the
rotating machine as an invariant filter. In this case, the input-output rela-
tionship between sources and responses can be separated into two systems,
the first one between the deterministic parts of excitation and responses, and
the second one between random parts of excitation and responses. Coherent
contributions of other sources are supposed to be deterministic, the system
between random parts can thus be thought to be less disturbed than the sys-
tem between deterministic parts.
The system identification has been implemented to the experimental case stud-
ied in this work. The aim is to identify the linear relationship between the
pressure in cylinder #1 and the noise measured at 1m of the engine. The
temporal deterministic / random separation of input and output signals has
been realized as described in previous sections, and the transfer function has
been estimated separately for the two systems using a H1 estimator (see [11]
for details). The magnitude of obtained transfer functions are drawn in figure
10. It can be seen that the transfer function obtained using the deterministic
part is globally stronger than the one obtained using random parts. It can be
explained by the contributions of coherent mechanical sources that are still
present on the deterministic part of the response signal, but that are efficiently
suppressed by using the random parts. The engine was running at cold idle for
this example, an operating condition for which the mechanical noise is partic-
ularly strong. However, it is quite difficult to objectively determine the best
estimation of the transfer function, the real one being unknown. But a previ-
ous work [11] based on an important number of operating points brings out
the superiority of the approach based on the suppression of the deterministic
parts.
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Fig. 10. Magnitude of transfer functions using deterministic parts (solid black line, o
markers) and random parts (dashed gray line, × markers), averaged in third octave
bands.

4 conclusion

The determinism of signals acquired on rotating machines is dual : mechanical
events are determined in function of the angular position of the main shaft,
and vibration and acoustic responses result from convolution operations in
the time domain. If the cyclic rotation speed is purely periodic, this duality
is transparent because the cyclic time-angle relationship is determined. But
this situation is never perfectly achieved in real life, because the instanta-
neous rotation speed at a given cycle angle is never exactly the same from
cycle to cycle, and this speed uncertainty is sometimes sufficient to induce
different determinisms in time or angle. The effect of the speed uncertainty on
the estimation of the deterministic part has been investigated in temporal and
angular domains, and low pass filtering and damping effects have been quanti-
fied. The instantaneous speed uncertainty has been experimentally assessed in
the case of a diesel engine, and the angular and temporal deterministic parts
of vibration and acoustic signals have been assessed and compared, bringing
out illustrations confirming theoretical expectations. An example of the ap-
plication of the deterministic/random separation of signals has finally been
proposed, illustrating the pertinence of such approaches for system identifica-
tion problems.
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