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Singular constant control trajectories and transition degeneracies in a
closed 4-level quantum system

Mohamed Belhadj, Andreea Grigoriu and Gabriel Turinici

Abstract— We analyze in this paper controllability aspects
for a 4-dimensional quantum system. The ”strong regularity”
(cf. [1]) has been proven to be sufficient condition for global
controllability. A conjecture in the literature asks whether this
condition (up to the introduction of an additive constant in the
control field) is also necessary. We prove here a negative result.

The result also applies to the study of singularity of trajecto-
ries associated to constant control fields. The theoreticalresult
is supported by numerical simulations.

I. INTRODUCTION

The development of the laser technology in the 60’s
brought into the attention of the scientific community the
possibility to use the lasers to control chemical reactionsat
a quantum level[2], [4], [6], [8], [9], [12]. Latter the control
of quantum system has been extended to other types of
interaction such as magnetic fields in NMR experiments.
The interest related to this technique is that the contactless
manipulation affects the very structure of molecules and
has the potential to allow precision far beyond the usual
macroscopic means (temperature, pressure,...).

Today the technique has many other applications[6] in
various fields: designing logical gates for the next generation
of quantum computers, medical imaging by nuclear magnetic
resonance (NMR), study of protein dynamics, molecular
detection, molecular orientation and alignment, construction
of ultra-short laser.

The first experiments proved that controlling quantum phe-
nomena by external fields is a rather difficult task to handle
that the physical intuition alone cannot accomplish. This
hinted to the necessity of introducing rigorous control theory
tools. An important preliminary of experimental implementa-
tion is the study of the feasibility through theoretical methods
and computer simulations. In such a context informations
on the controllability of the system are crucial to the future
success of the experiment.

Depending on the application, the field that manipulates
the quantum system can have tendency to rather be oscilla-
tory (as in femtosecond chemistry when the laser is highly
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du Maréchal de Lattre de Tassigny, 75016, Paris, France.
gabriel.turinici@dauphine.fr

oscillatory) or on the contrary constant (magnetic fields in
NMR applications).

The controllability has been investigated in the context of
the bilinear systems on Lie groups and several criterions have
been put forward [1], [11].

Controllability can be of two types: local and global.
Passing from local to global controllability is a delicate task
and compactness is one of the arguments that can be invoked.
Several questions are of interest: around which trajectories
does local controllability hold, when is the system globally
controllable, etc.

In finite dimensional systems, global controllability has
been proved when the system is ”strongly regular” cf. [1].
However the ”strong regularity” is only a sufficient condition
and a natural question arises: can any controllable system
be proven to be strongly regular (eventually after a shift in
the field). This has been formulated as a conjecture in the
literature. The main result gives a negative answer to the
posed question if the dimension of the system is larger than
4.

On the other hand we analyse the local controllability
around a constant field. When local controllability does
not hold in the neighborhood of a field we say that the
corresponding trajectory is singular. We show in this paper
that systems exist such that all constant fields give rise to
singular trajectories.

The balance of the paper is as follows: in section II the
general control concepts and a detailed motivation of the
article are introduced, in section III the theoretical result is
presented supported by some numerical tests in section IV.

II. GENERAL SETTING

We consider a quantum system evolving under the
Schrödinger equation (we use atomic units, i.e~ = 1):

i
∂

∂t
Ψ(x, t) = H(t)Ψ(x, t)

Ψ(x, t = 0) = Ψ0(x), (1)

whereΨ(x, t) is the wave-function,Ψ0(x) is the initial data,
x ∈ Rγ the internal set of degrees of freedom andH(t)
the Hamiltonian of the system, a self adjoint operator over
L2(Rγ) (i.e H(t) = H†(t)).

In the presence of an external field the evolution of the
system can be modeled by:

i
∂

∂t
Ψ(x, t) = (H0 + ǫ(t)H1)Ψ(x, t)

Ψ(x, t = 0) = Ψ0(x), (2)



whereH1 is the operator connecting the system with the
laser fieldǫ(t) ∈ R andH0 is the internal Hamiltonian.

TheL2 norm is conserved during the evolution:

‖Ψ(x, t)‖L2(Rγ) = ‖Ψ0‖L2(Rγ) ∀ t > 0 (3)

and the state belongs to the unit sphereS(0, 1) of L2(Rγ):

S(0, 1) = {f ∈ L2(Rγ); ‖f‖L2(Rγ) = 1}. (4)

In order to avoid trivial cases we suppose[H0, H1] 6= 0,
where the Lie bracket[·, ·] is defined as:[X,Y ] = XY −Y X .

We work in a finite dimensional setting and consider a
Galerkin discretization of the Time Dependent Schrödinger
Equation(2). We take the basis functions{ϕi; i = 1, ..., N},
e.g. the eigenfunctions ofH0: H0ϕk = ekϕk, the wave-
function is written as:Ψ =

∑N
j=1 cjϕj . We denote byA

andB the matrices (N ×N ) associated to the operatorsH0

andH1, (A)kl = 〈ϕk|H0ϕl〉, (B)kl = 〈ϕk|H1ϕl〉, for k, l
from 1 to N . For simplicity we preserve the notationΨ for
the wave-function,Ψ = (cj)

N
j=1.

Here the symbol|ϕ〉 represents the bra-ket notation,〈ϕ|
it’s adjoint state and〈·|·〉 the hermitian product.

We obtain theN− dimensional system:

i
d

dt
Ψ(t) = (A+ ǫ(t)B)Ψ(t)

Ψ(t = 0) = Ψ0, (5)

whereΨ0 = (c0j )
N
j=1. The property of norm conservation is

preserved:
N∑

j=1

|cj |
2 = 1. (6)

In the following without loss of generality we suppose
that A is a diagonal matrix andB a real symmetrical
matrix (Hermitian). We conserve the assumption[A,B] 6= 0,
initially introduced for the operatorsH0 andH1, in order to
avoid trivial control problems.

A. Global controllability and strongly regular systems

In order to prove the controllability of the finite dimen-
sional system(5), we can use the Lie algebra rank condition:
the system(5) is controllable if the Lie algebra generated
by iA and iB, denoted byLA,B has the dimensionN2 (or
N2 − 1 if iA and iB are traceless).

Recall that the Lie algebra generated byiA and iB is
the real vector space spanned by all the combinations of
commutations ofiA andiB and their iterations, for example
[iA, [iA, iB]], where [iA, iB] = (iA)(iB) − (iB)(iA) =
BA−AB.

Although it is a very elegant way to prove controllability,
for large values ofN this criteria becomes difficult to check
(and there is no intuition to explain the result once obtained).
In the literature we can find other theoretical results[10], [11],
based on graph theory, that give necessary conditions to
prove that the system(5) is controllable. Since one of this
results [1], [10], [11] is relevant for our paper we present it
in the following.

We define the graphG = (V,E), whereV is the set of
vertices andE the set of edges, as follows:

G = (V,E) : V = {ϕi, i = 1...N},

E = {(ϕi, ϕj), i < j,Bij 6= 0} (7)

We denote by:ωij = µ0
i − µ0

j , i, j = 1, ..., N , the
eigenvalues difference for the matrixA.

Theorem 2.1:Under the hypothesis:
H1 : The graphG is connected
H2 : The graphG doesn’t have degenerate transitions, i.e

for all (i, j) 6= (a, b) i 6= j, a 6= b such thatBij 6= 0,
Bab 6= 0, ωij 6= ωab

the system(5) is controllable, that is for anyΨ ∈ SN (0, 1)
the set of reachable sets isSN (0, 1), whereSN (0, 1) is the
unit sphere ofCN .

A system that satisfy hypothesis above is called ”strongly
regular” [1] or again ”with non-degenerate transitions” [11].
This class of systems has very nice mathematical proper-
ties: the Lie algebra spanned byiA, iB can be constructed
explicitly and the global controllability holds [1]; moreover
the system is locally controllable around the null field for
generically any initial state [11]. A subclass with stronger
requirements (the ”ideal systems”) were showed to be im-
portant in the study of the Lyapunov stability [13].

Remark 2.1: The ”strong regularity” is not a necessary
condition for controllability in the wave-function formulation
(but it is sufficient together with hypothesisH1).

On the contrary if we consider the density matrix formu-
lation of (5)

i
d

dt
ρ(t) = (A+ ǫ(t)B)ρ(t)

ρ(t = 0) = ρ0, (8)

then hypothesisH2 is necessary.
There are systems, for example[5], [7] :

A =

(
0 0 0 0
0 0.04556 0 0
0 0 0.095683 0
0 0 0 0.095683

)

B =

(
0 1 1 −1
1 0 1 1
1 1 0 0
−1 1 0 0

)
, (9)

for which the second hypothesis, is not fulfilled, but the
system is still controllable. The explanation is the following
( see[10], [11] for more details) : takeǫ(t) = λ+ ǫ̃(t), then
the triplet(A,B, ǫ(t)) is transformed into(A+λB,B, ǫ̃(t)).
We can find a unitary transformationU(λ) such thatÃ =
U(λ)(A + λB)U t(λ) is a diagonal matrix and the dipole
matrix B̃ = U(λ)BU t(λ). Then the N-dimensional systems
(5), that models the evolution is equivalent to:

i
d

dt
Ψ̃(t) = (Ã+ ǫ̃(t)B̃)Ψ(t)

Ψ̃(t = 0) = U(λ)Ψ0. (10)

In conclusion, a sufficient condition for controllability of the
finite dimensional system(5) is the existence ofλ such that



the system defined by the triplet(A+λB,B, ǫ̃(t)) is strongly
regular.

The natural question to be asked here is: suppose a system
is controllable (A,B), does it existλ such that (A+ λB,B)
is strongly regular ? The situation forN = 3 was analyzed
in [14] (section A.3 page 163) and the answer is affirmative.

B. Singular trajectories around constant fields

When the fields are naturally constant (as in NMR) or
piecewise constant the study of the singular trajectories
around constant fieldsλ can be formulated as: is the system

i
d

dt
Ψ(t) = (A+ λB + ǫ(t)B)Ψ(t)

Ψ(t = 0) = Ψ0, (11)

locally controllable ?
We recall the definition of local controllable around a field

ǫ(t) in a setU , for a giving final stateΨ = Ψ(T ) with
ǫ(t) = ǫ(t) in equation(5).

Definition 2.1: The system(5) is called locally control-
lable if there exists neighborhoodsX of Ψ andY of ǫ in U

such that for anyΨ ∈ X there existsǫ ∈ Y such that the
system(5) hasΨ(T ) = Ψ.

The local controllability can be analyzed as in [11] Thm.1
by considering the matrixA+ λB instead of the matrixA.
If for all λ ∈ R the transitions ofA + λB are degenerate
(or equivalentlyA + λB is not strongly regular) then there
exists no constant field around which the system will be
locally controllable.

III. T HEORETICAL RESULT

In the following bysu(N) we understand the Lie algebra
of N-dimensional null trace hermitian matrices. We denote by
(µλ

i )i=1,..,N the eigenvalues ofA+ λB and by(µ0
i )i=1,..,N

the eigenvalues ofA, for example the energies corresponding
to the statesϕi.

Theorem 3.1:There existsA = (Aij)i,j=1,...,4 a real
diagonal matrix andB = (Bab)a,b=1,...,4 a symmetrical
matrix, both 4-dimensional with the following properties:

(i) [A,B] 6= 0 (i.e AB 6= BA)
(ii) The real Lie algebra generated byiA andiB contains

su(4) (or u(4) if Tr(A) 6= 0)

such that for everyλ ∈ R there exists(i, j) 6= (a, b), i 6= j,
a 6= b with Bij 6= 0, Bab 6= 0 such that:

µλ
i − µλ

j = µλ
a − µλ

b . (12)
Proof:

Even if a a construction of a single type of matrix would
be enough, the goal is to detect all the matrices that are
candidate to satisfy the theorem.

Let us takeA a real diagonal matrix andB a symmetrical
matrix:

A =




µ0

1
0 0 0

0 µ0

2
0 0

0 0 µ0

3
0

0 0 0 µ0

4





(13)

B =

(
B11 B12 B13 B14

B12 B22 B23 B24

B13 B23 B33 B34

B14 B24 B34 B44

)
.

Without loss of generality (see Remark A.2.3 page 169 in
[14]) we can setTr(A) = Tr(B) = 0, we obtain

Tr(A+ λB) = Tr(A) + λTr(B) = 0 ∀ λ ∈ R. (14)

This is equivalent to:

µλ
1 + µλ

2 + µλ
3 + µλ

4 = 0 (15)

From relation(14) for λ = 0 andλ = 1 we have:

µ0
1 + µ0

2 + µ0
3 + µ0

4 = 0

B11 +B22 +B33 +B44 = 0 (16)

• First case: A is non-degenerate
We say thatA is non-degenerate if for everyi 6= j,
i, j = 1, ..., 4, µ0

i 6= µ0
j .

In this case lets us take

µ0
1 = −η, µ0

2 = −ǫ, µ0
3 = ǫ, µ0

4 = η

B11 = −B44, B22 = −B33. (17)

ThusA andB are defined as:

A =

(
−η 0 0 0
0 −ǫ 0 0
0 0 ǫ 0
0 0 0 η

)

B =

(
B11 B12 B13 B14

B12 B22 B23 B24

B13 B23 −B22 B34

B14 B24 B34 −B11

)
, (18)

with B13 6= 0 andB24 6= 0.
We can easily note that forλ = 0 equality (12) is
fulfilled since there exists(1, 3) 6= (2, 4), 1 6= 3, 2 6= 4
with B13 6= 0, B24 6= 0 such that

µ0
1 − µ0

3 = µ0
2 − µ0

4 (19)

Since we are in the 4-dimensional case, relation(12)
together with relation(15) is equivalent to the existence
of (i, j) and(a, b) with i 6= j, a 6= b, i, j, a, b = 1, ..., 4
such that:

µλ
i = −µλ

b

µλ
j = −µλ

a (20)

We consider the polynomial:

P (X) = (X − µλ
1 )(X − µλ

2 )

(X − µλ
3 )(X − µλ

4 ). (21)



If relation (20) is fulfilled for (i, j) = (1, 3) and
(a, b) = (2, 4) then:

P (X) = X4 −X2
(
(µλ

1 )2 + (µλ
2 )2
)

+

(µλ
1 )2(µλ

2 )2. (22)

The polynomialP (X) is also defined by

P (X) = det(XI4 − (A+ λB))

= X4 + αX2 − βX + γ (23)

whereI4 is the 4-dimensional identity matrix.
By identification we obtain the following system:

α = −((µλ
1 )2 + (µλ

2 )2)

β = 0

γ = (µλ
1 )2(µλ

2 )2. (24)

We computedet(XI4−(A+λB)) by replacingA andB
with (18) and we obtainβ, a third order polynomial in
λ. We wantβ to verify (24) so we obtain the following
conditions:

(B11 +B22)(B
2
12 −B2

34) = (B11 −B22)(B
2
24 −B2

13) −

2B23(B24B34 +B12B13) −

2B14(B13B34 +B12B24)

(ǫ+ η)(B2
34 −B2

12) = (ǫ− η)(B2
24 −B2

13). (25)

The system above represents a sufficient condition for
(12) to be fulfilled. In order to become a necessary
condition we have to verify ifβ = 0 implies relation
(12).
We denote:

µλ
2 + µλ

4 = ξ

µλ
1 + µλ

3 = −ξ (26)

with ξ 6= 0. Sinceβ is defined by:

β = µλ
1µ

λ
2µ

λ
3 + µλ

1µ
λ
2µ

λ
4 + µλ

1µ
λ
3µ

λ
4 + µλ

2µ
λ
3µ

λ
4 (27)

together with(26) we obtain the following relation:

1

µλ
1

+
1

µλ
2

−
1

ξ + µλ
1

+
1

ξ − µλ
2

= 0. (28)

We have the following equivalences:

ξ + µλ
1 − µλ

1

µλ
1 (ξ + µλ

1 )
=

ξ + µλ
2 − µλ

2

µλ
2 (µλ

2 − ξ)

µλ
2 (µλ

2 − ξ) = µλ
1 (ξ + µλ

1 ) (29)

This follows:

ξ = −
(µλ

1 )2 − (µλ
2 )2

(µλ
1 + µλ

1 )
= µλ

2 − µλ
1 (30)

We replace relation(30) in (26) and we obtain:

µλ
2 + µλ

4 = ξ = µλ
2 − µλ

1

µλ
1 + µλ

3 = −ξ = µλ
1 − µλ

2 (31)

This implies:

µλ
1 + µλ

4 = µλ
3 + µλ

2 .

(32)

and conclusion follows.
Let us take two matricesA andB that verify relations
(16) and(25) (see Fig. 1):

A =

(
−5 0 0 0
0 4 0 0
0 0 −4 0
0 0 0 5

)
,

B =

(
0 −3 2 0
−3 0 0.1 1
2 0.1 0 6
0 1 6 0

)
. (33)

We can easily observe that[A,B] 6= 0 and the Lie
algebra generated byiA, iB has dimension 15, thus
contains su(4). We have for everyλ ∈ R the existence
of (1, 3) 6= (2, 4) with B13 6= 0, B24 6= 0, such that:

µλ
1 − µλ

3 = µλ
2 − µλ

4 . (34)

Let us take anotherA andB such that relations(16)

2

−3

0.1
6

1

4

5

−4

−5

Fig. 1. Schematic view corresponding toA andB defined by (33). Each
eigenvalue ofA is represented as a rectangle with the corresponding value
given inside. The edges drawn between two rectangles are labeled with the
corresponding value in the coupling matrixB.

and (25) are verified (see Fig. 2):

A =

(
−2 0 0 0
0 −3 0 0
0 0 3 0
0 0 0 2

)
,

B =

(
2 1 1 0
1 3 0 4
1 0 −3 2
0 4 2 −2

)
. (35)

Again [A,B] 6= 0 and the Lie algebra generated by
iA, iB has dimension 15, thus contains su(4).

• Second case:A is degenerate
We say thatA is degenerate if there existsi 6= j, i, j =
1, ..., 4 such thatλ0

i = λ0
j .

Let us take

µ0
1 = θ, µ0

2 = −θ, µ0
3 = −θ, µ0

4 = θ. (36)



2

2

3

1

−2
1

4

−3

Fig. 2. Same representation as in Fig. 1 forA andB defined by (35).

In this case:

A =

(
θ 0 0 0
0 −θ 0 0
0 0 −θ 0
0 0 0 θ

)

B =

(
B11 B12 B13 B14

B12 B22 B23 B24

B13 B23 B33 B34

B14 B24 B34 B44

)
. (37)

with B13 6= 0 andB42 6= 0.
This implies that forλ = 0 equality (12) is fulfilled,
since there exists(1, 3) 6= (4, 2), 1 6= 3, 4 6= 2 with
B13 6= 0, B24 6= 0 such that

µ0
1 − µ0

3 = µ0
4 − µ0

2 (38)

As in the non-degenerate case we want(24) to be
verified, so we obtain the following conditions:

B11B22B33 +B11B22B44 +B11B33B44 +

B22B33B44 −B11B
2
34 −B22B

2
34 −B44B

2
23 −

B11B
2
23 −B44B

2
12 −B33B

2
12 −B22B

2
13 −

B44B
2
13 −B11B

2
24 −B33B

2
24 −B22B

2
14 −

B33B
2
14 + 2B23(B24B34 +B12B13) +

2B14(B13B34 +B12B24) = 0

B2
23 = B2

14. (39)

Denoting:

µλ
1 + µλ

2 = δ

µλ
3 + µλ

4 = −δ (40)

with δ 6= 0, in the same way as in the non-degenerate
case we can proof thatβ = 0 implies relation(12).
Let us takeA andB such that relations(16) and (39)
are verified (see Fig. 3 ):

A =

(
2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 2

)
,

B =

(
3 −2 4 −1
−2 −3 1 4
4 1 −3 −2
−1 4 −2 3

)
. (41)

We can easily observe that[A,B] 6= 0 and the Lie algebra
generated byiA, iB has dimension 15, thus contains su(4).
This implies that for everyλ ∈ R there exists(1, 3) 6= (4, 2)
with B13 6= 0, B24 6= 0, such that:

µλ
1 − µλ

3 = µλ
4 − µλ

2 (42)

We have the existence of at least three matricesA andB

−2−2

2 2

−2

−1

1

4 4

−2

Fig. 3. Same representation as in Fig.1 forA andB defined by (41).

defined by(13) with conditions(16), (25) or (39), that verify
the hypothesis(i) and (ii) such that for everyλ ∈ R there
exists(i, j) 6= (a, b) with relation (12) fulfilled.

Remark 3.1: We can explain the existence of matricesA

andB, especially relation(17) for the non-degenerate case
using perturbation theory [3]. We present the main idea in
the following.

Denote byH(λ) = A + λB, with λ ≪ 1. We look for
the eigenvaluesµ(λ) = (µλ

i )i=1,...,4 and the eigenvectors
ψ(λ) = (ψi)i=1,...,4 of the operatorH(λ):

H(λ)|ψ(λ) > = µ(λ)|ψ(λ) > .

Using the perturbation theory we suppose thatµ(λ) can be
developed in power series ofλ:

µ(λ) = ε0 + λε1 + ...λqεq... (43)

By identification ( see [3] for more details) we have a second
order development:

µλ
i = µ0

i + λ < ϕi|B|ϕi > +O(λ2), (44)

where (ϕi)i=1,...,4 are the eigenvectors associated to the
eigenvalues(µ0

i )i=1,...,4.
We replace relation(44) in (12) and we obtain:

µ0
i + λ < ϕi|B|ϕi > −µ0

j − λ < ϕj |B|ϕj > =

µ0
a + λ < ϕa|B|ϕa > −µ0

b − λ < ϕb|B|ϕb > . (45)

Since< ϕi|B|ϕi >= Bii for every i = 1, ..4 it follows:

µ0
i + λBii − µ0

j − λBjj =

µ0
a + λBaa − µ0

b − λBbb. (46)

In fact by analyticity relation(46) is true for everyλ ∈ R.
Let us takeλ = 0 and we obtain:

µ0
i − µ0

j = µ0
a − µ0

b . (47)



We replace(47) in (46) and we have:

Bii −Bjj = Baa − Bbb. (48)

Thus(12) implies relations(47) and (48).

IV. N UMERICAL RESULTS

Simulations in Fig. 4, left figure describe the eigenvalues
µλ

i , i = 1, ..., 4 of the matrixA + λB for λ ∈ [−10, 10],
A,B given by(33); the right figure showsµλ

1 −µ
λ
3 −0.9 and

µλ
2 − µλ

4 for λ ∈ [−10, 10] in order to observe numerically
thatµλ

1 − µλ
3 = µλ

2 − µλ
4 .
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Fig. 4. Left figure: the eigenvalues of the matrixA+λB, with A, B defined
by (33); λ belongs to the interval[−10, 10]; right figure: the difference of
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Fig. 5. Left figure: the eigenvalues of the matrixA+λB, with A, B defined
by (35); λ belongs to the interval[−5, 5]; right figure: the difference of
eigenvalues of the matrixA+λB, µλ
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In Fig. 6 left image represents the eigenvaluesµλ
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Fig. 6. Left figure: the eigenvalues of the matrixA+λB, with A, B defined
by (41); λ belongs to the interval[−10, 10]; right figure: the difference of
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V. CONCLUSIONS

In this paper, we focus on global controllability for a 4-
dimensional quantum system. We prove a negative result to a
conjecture formulated earlier in the literature concerning the
”strong regularity” cf. [1] (eventually after the introduction
of a additive constant in the field) of a controllable system.

On the other hand we analyse the local controllability
around a constant field. Same result apply and shows that
controllable systems exists such that trajectories correspond-
ing to constant fields are singular.
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